
Instrumental Factor Models for
High Dimensional Functional Data

Jihyun Kim1 and Young Kim2

ESEM, Barcelona 2023

1Sungkyunkwan University
2Toulouse School of Economics

1 / 66



Table of Contents

1. Introduction

2. Model

3. Estimation Method

4. Model Application: Within/Between-Period Factor Model

5. Empirical Application: Climate Change

6. Asymptotic Properties

7. Simulations

2 / 66



Table of Contents

1. Introduction

2. Model

3. Estimation Method

4. Model Application: Within/Between-Period Factor Model

5. Empirical Application: Climate Change

6. Asymptotic Properties

7. Simulations

3 / 66



Introduction

◮ With the advance of data technology, high dimensional data (HD)
and functional data (FD) became much more accessible. Example

◮ For HD, a factor model is a framework that assumes a few latent
factors can explain the entire observed time series.

◮ The principal component analysis (PCA) is the most commonly
used method to estimate factor models.

◮ In PCA, the factors are estimated by eigendecomposition of
covariance matrix which corresponds to the solution of LS problem.
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Limitations of the Model and Estimation Method

Limitation of PCA: PCA estimation requires both cross-sectional
dimensionality (N) and time horizon (T ) to be large.

– In some applications, only short panel available (T is short).

– Structural instability over long time span (λ time varying).

Limitation of Conventional Model: The conventional model is based
on scalar-valued observation for each i and t.

– Often yit is a vector/matrix/function rather than a scalar.

• yit =(Return, Volatility)′ of financial asset i
• yit(r) = city i ’s temperature at time r , day t

• yit(r) = asset i ’s volatility at time r , day t

• yit(r) = distribution of i at t.

We introduce an instrumental factor model (IFM) for HDFD to
overcome such limitations.
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What We Have Done

Theoretical Studies:

◮ Identification and estimation methodology.

◮ Consistency as long as N → ∞, regardless of T being finite or not.

◮ Eigenvalue ratio estimator for the number of factors.

Model Applications: Within/Between-period factor model

◮ Propose a new type of factor model for high-frequency data.

◮ The number of estimated factors often depends on the choice of
data frequency.

◮ The proposed model provides a unified framework to explain the
phenomena.

Empirical Application: Climate change and economic outcome

◮ Long-run relationship between global temperature and economic
outcomes.
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Conventional Factor Model

A factor model has the following representation:

yit =
K∑

k=1

λik ftk + εit , i = 1, ...,N, t = 1, ...,T .

– yit : observed data.

– ftk : common factor.

– λik : factor loading.

– εit : idiosyncratic error.

In the conventional model, the variables (y , f , λ, ε) are all real-valued.
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IFM for Functional Data
An instrumental factor model for HDFD:

yit(r) =
K∑

k=1

λik(r)ftk + εit(r), r ∈ [0, 1].

– yit , λik , εit belongs to a Hilbert space H, and ftk ∈ R.

– Examples of H: square integrable function; vector space; square
integrable random variable.

In addition, loading coefficient is modeled as

λik(r) = gk(Xi , r) + γik(r).

– Xi = (Xi1, . . . ,XiH)
′ be observed characteristics.

– gk(X , r) be an unknown function R
H × [0, 1] → R.

– γik ∈ H be the remaining component unexplained by Xi .

– Xi is independent of γik , εit .

IFM encompasses various forms of factor model exist in the literature.
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IFM → Conventional Factor Model for Scalar Data

The conventional factor model becomes a special case of IFM.

yit =

K∑

k=1

λik ftk + εit .

– yit , λik , εit ∈ H.

– A case of interest is H = R.

Loading coefficient is modeled as

λik = γik .

– Xi has no explaining power, i.e. gk(Xi ) = 0.

– γik itself becomes the loading.
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IFM → Semiparametric Factor Model for Scalar Data

The semiparametric factor model is another special case of IFM for FD.

yit =

K∑

k=1

λik ftk + εit .

– yit , λik , εit ∈ H.

– We assume H = R.

Loading coefficient is modeled as

λik = gk(Xi ) + γik .

The proposed model is estimated by a Projected-PCA method introduced
by Fan et al. (2016).
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IFM → Factor Model for Functional Data

A factor model can be also developed for the FD, which is a special case
of IFM for FD. This model considered by Tavakoli et al. (2021).

yit(r) =

K∑

k=1

λik(r)ftk + εit(r).

– yit , λik , εit ∈ H, and ftk ∈ R.

– We assume H = L2([0, 1], R).

For each (i , k), loading coefficient is modeled as

λik(r) = γik(r).

– Xi has no explaining power, i.e. gk(Xi ) = 0.

– γik ∈ H.
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IFM Representation

IFM representation provides a unified modeling approach for various
factor models that exist in the literature.

An instrumental factor model for HDFD:

yit(r) =

K∑

k=1

λik(r)ftk + εit(r), r ∈ [0, 1].

– We assume yit , λik , εit ∈ L2([0, 1], R), and ftk ∈ R.

In addition, loading coefficient is modeled as

λik(r) = gk(Xi , r) + γik(r).

– Xi = (Xi1, . . . ,XiH)
′ be observed characteristics.

– gk(X , r) be an unknown function R
H × [0, 1] → R.

– γik ∈ L2 be the remaining component unexplained by Xi .

– Xi is independent of γik , εit .
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Principal Component Analysis

Suppose we have a factor model in the conventional setup:

Y = ΛF ′ + ε.

– Y : N × T matrix of yit

– Λ : N × K matrix of λik

– F : T × K matrix of ftk

– ε : N × T matrix of εit

Under regularity conditions, Λ and F can be estimated as follows:

1. (PCA) Apply eigendecomposition to the covariance matrix Y ′Y .

– Extract matrix U consists of K number of eigenvectors.
– The factor estimator is defined as F̂ =

√
TU.

2. (Regression) Regress Y on F̂ .

– The loading estimator is Λ̂′ = (F̂ ′F̂ )−1F̂ ′Y ′.
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Projected Principal Component Analysis
Suppose we have a factor model as follows:

Y = ΛF ′ + ε, F ′F/T = I , Λ′Λ/N = diagonal.

For an expositional purpose, let Λ = X , i.e., the loadings are observable.

Y = XF ′ + ε.

We can estimate F by simply running regression of Y on X for each t

when N is large enough.

Equivalently, we may consider the projection matrix P = X (X ′X )−1X ′

and the projected data Ŷ = PY ,

Ŷ = XF ′ + Pε ≈ XF ′

as long as X and ε are asymptotically orthogonal (N → ∞). Here the
large T assumption is not necessary.

So, F can be estimated by applying the PCA to Ŷ ′Ŷ as long as N is
large enough.

Here the eigenvector of Ŷ ′Ŷ becomes the estimator for F which is
equivalent to the one obtained by the regression.
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Projected Principal Component Analysis

This idea can be generalized for Λ = G (X ) by using a proper projection
PJ = GJ(X )(GJ(X )′GJ(X ))−1GJ(X ), where GJ(X ) is the sieve
approximation of unknown G (X ) with J basis functions.

This approach is proposed by Fan et al. (2016) for a scalar variable, and
is called projected-PCA (PPCA).

Clearly, factors and loadings are accurately estimable as long as N → ∞
(and J → ∞), regardless of T being fixed or not.

In this project, we generalize the PPCA method to functional data.
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PCA vs Projected-PCA

Suppose we have a factor model:

Y = ΛF ′ + ε,

and assume that a projection P satisfies PΛ = Λ, and Pε ≈ 0.

PCA : As N,T → ∞

ψk

(
1

NT
Y ′Y

)
≈ ψk

(
1

NT
FΛ′ΛF ′

)

︸ ︷︷ ︸
Op(1)

+ ψk

(
1

NT
ε
′
ε

)

︸ ︷︷ ︸
Op(1/min{N,T})

.

PPCA : As long as N → ∞

ψk

(
1

NT
Y ′PY

)
≈ ψk

(
1

NT
FΛ′ΛF ′

)

︸ ︷︷ ︸
Op(1)

+ψk

(
1

NT
ε
′
Pε

)

︸ ︷︷ ︸
Op(1/N)

.
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PCA for Functional Data
Let Y = (y1, . . . , yT ), yt = (y1t , . . . , yNt)

′, yit ∈ L2([0, 1]).

To apply PCA, a symmetric p.d. matrix Y ∗Y can be constructed as
follows:

Y ∗Y ≡



〈y1 , y1〉 . . . 〈y1 , yT 〉

...
. . .

...
〈yT , y1〉 . . . 〈yT , yT 〉


 ∈ R

T×T ,

〈yt , ys〉 ≡
N∑

i=1

〈yit , yis〉L2 =

N∑

i=1

∫ 1

0

yit(r)yis(r) dr .

We call the matrix Y ∗Y the integrated covariance matrix since

E 〈yt , ys〉 =
N∑

i=1

∫ 1

0

E (yit(r)yis(r))dr =

N∑

i=1

∫ 1

0

cov(yit(r), yis(r))dr .

It can be shown that

Y ∗Y ≈ F

(∫ 1

0

Λ′(r)Λ(r)dr

)
F ′

So, the eigenvectors of Y ∗Y become a valid estimator for F .

Remark 1 Remark 2
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FPPCA for Functional Data
Our FPPCA method consists of three steps.

First step (projection)

For each r ∈ [0, 1], we project Y (r) on X , i.e., Ŷ (r) ≡ PY (r).

Second step (pca → eigenvector = factor)

Apply the PCA to the ICM Q̂ of Ŷ ,

Ŷ ∗Ŷ ≡



〈ŷ1 , ŷ1〉 . . . 〈ŷ1 , ŷT 〉

...
...

〈ŷT , ŷ1〉 . . . 〈ŷT , ŷT 〉


 ∈ R

T×T ,

The eigenvector of Ŷ ∗Ŷ becomes the estimator for F .

Third step (regression on F̂ → loadings Λ(r) = G (X , r) + Γ(r))

Λ(r) is estimated by regressing Y (r) on F̂ for each r .

G (X , r) is estimated by regressing Ŷ (r) on F̂ for each r .

Γ̂(r) = Λ̂(r)− Ĝ (X , r) for each r .
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Within/Between-Period Factor Model

In some applications, the number of estimated factors depend on the
choice of data frequency (see, e.g., Kong et al. (2021, JASA)).

The Instrumental FM for FD provides

◮ a unified framework to explain the phenomena

◮ a useful tool to separately identify and analyze
within/between-period factors.

We consider the continuous-time factor model

◮ time index at high frequency: r

◮ time index at low frequency: t

⇒ yit(r) is an intraday observation indexed by r for a given day t.

⇒ Goal is to separately identify and estimate the factors driving

- the intraday variation at the frequency r

- the day-to-day variation at the frequency t
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Factor Model in Continuous Time
Let t = 1, · · · ,T be the index of days.

Let r be the index of normalized intraday observations, i.e.,
r = 1/R , · · · , 1 with the number of intraday observation R .

Let’s assume that the price of financial asset follows an Ito
semi-martingale

dPit(r) = {bidG (r)}Ft︸ ︷︷ ︸
common component

+ dUit(r)︸ ︷︷ ︸
idiosyncratic component

(ignoring drift for simplicity)

Note that Pit(0) = Pi,t−1(1).

A special case with Ft = I has been extensively considered in the
literature on high frequency and high dimensional data analysis in
econometrics/statistics/finance (see, e.g., Äıt-Sahalia and Xiu (2017)).

In this case,

dPi (r) = {bidG (r)}︸ ︷︷ ︸
common component

+ dUi (r)︸ ︷︷ ︸
idiosyncratic component

(ignoring drift for simplicity)
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Within/Between-Period Factors in Continuous Time
Now let Ft 6= I .

Assume that the discrete samples (Pit(r), r = 1/R , · · · , 1) are observed.

Then, the discrete samples satisfy (when R is large)

⇒ Pit(r + δ)− Pit(r) ≈ {bi (G (r + δ)− G (r))}Ft + Uit(r + δ)− Uit(r)

⇒ yit(r) ≈ bi (G (r + δ)− G (r))︸ ︷︷ ︸
g(r)

Ft + Uit(r + δ)− Uit(r)︸ ︷︷ ︸
εit(r)

Therefore, the model admits a factor representation for functional data

yit(r) = Λi (r)︸ ︷︷ ︸
1×K1

Ft︸︷︷︸
K1×1

+εit(r), Λi (r)︸ ︷︷ ︸
1×K1

= bi︸︷︷︸
1×K2

g(r)︸︷︷︸
K2×K1

, K2 ≥ K1

We may interpret

◮ Ft : between-period factor (K1 vector)
⇒ day-to-day variation

◮ G (r) =
∑

s≤r g(s): within-period factor (K2 vector)
⇒ intraday variation

24 / 66



Sampling Frequency Matters

Recall the within/between-period factor representation.

yit(r) = Λi (r)︸ ︷︷ ︸
1×K1

Ft︸︷︷︸
K1×1

+εit(r), Λi (r)︸ ︷︷ ︸
1×K1

= bi︸︷︷︸
1×K2

g(r)︸︷︷︸
K2×K1

, K2 ≥ K1

The model can be rewritten as

yit(r) = bi︸︷︷︸
1×K2

g(r)︸︷︷︸
K2×K1

Ft︸︷︷︸
K1×1

+εit(r).

If one applies PCA or PPCA at daily frequency (t), then the number of
factors (Ft) becomes K1.

However, if one applies the same PCA or PPCA using intraday data (r),
then the number of factors (g(r)Ft) becomes K2.
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Estimation of Within/Between-Period Factors

yit(r) = Λi (r)︸ ︷︷ ︸
1×K1

Ft︸︷︷︸
K1×1

+εit(r), Λi (r)︸ ︷︷ ︸
1×K1

= bi︸︷︷︸
1×K2

g(r)︸︷︷︸
K2×K1

(i) Ft and Λi (r) can be estimated by PPCA for IFM.

(ii) We then apply PPCA to the estimated functional loading

Λ̂i (r) = big(r) + estimation errori (r)

PPCA provides consistent estimates for bi and g(r) in the second step.
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Estimation of Within/Between-Period Factors

Between Factor Rep.: yit(r) = Λi (r)︸ ︷︷ ︸
1×K1

Ft︸︷︷︸
K1×1

+εit(r), Λi (r)︸ ︷︷ ︸
1×K1

= bi︸︷︷︸
1×K2

g(r)︸︷︷︸
K2×K1

Gross Factor Rep.: yit(r) = bi︸︷︷︸
1×K2

Ht(r)︸ ︷︷ ︸
K2×1

+εit(r), Ht(r)︸ ︷︷ ︸
K2×1

= g(r)︸︷︷︸
K2×K1

Ft︸︷︷︸
K1×1

(i) Ft and Λi (r) can be estimated from BFR by PCA (for FM) or PPCA
for (IFM).

(ii) bi and Ht(r) can be estimated from GFR by applying PCA or PPCA
to the realized covariance matrix P of pit(r)

P =

T∑

t=1



〈y1t , y1t〉 . . . 〈y1t , yNt〉

...
...

〈yNt , y1t〉 . . . 〈yNt , yNt〉


 , 〈yit , yjt〉 =

R∑

r=1

yit(r/R)yjt(r/R)

(iii) g(r) can be estimated by
- regressing Ĥt(r) on F̂t for each r , or

- regressing Λ̂i (r) on b̂i for each r .
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Number of Within/Between Factors

Between Factor Rep.: yit(r) = Λi (r)︸ ︷︷ ︸
1×K1

Ft︸︷︷︸
K1×1

+εit(r), Λi (r)︸ ︷︷ ︸
1×K1

= bi︸︷︷︸
1×K2

g(r)︸︷︷︸
K2×K1

Gross Factor Rep.: yit(r) = bi︸︷︷︸
1×K2

Ht(r)︸ ︷︷ ︸
K2×1

+εit(r), Ht(r)︸ ︷︷ ︸
K2×1

= g(r)︸︷︷︸
K2×K1

Ft︸︷︷︸
K1×1

Our approach with PPCA (PCA) provides consistent estimations of the
between/within/gross factors and the between/gross loadings as
N,R → ∞ (N,R ,T → ∞).

Moreover, the proposed model can explain the phenomenon that the
number of estimated factors varies over the choice of data frequency.

◮ the high frequency data ⇒ Gross Factor (K2)

◮ the low frequency data ⇒ Between Factor (K1)

In our model, the assumption K2 ≥ K1 is a seemingly artificial and
technical condition for the separate identification of g(r) and Ft .

However, the assumption corresponds to (and is supported by) the recent
empirical findings in Kong et al. (2021).
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Empirical Application

Global annually averaged air temperature has risen by around 1◦C since
the mid-20th century, and this trend is expected to continue.

Key Question: Climate change and economic outcomes?

◮ GDP growth: Dell, Jones and Olken (2010), (2012).

◮ Labor productivity: Heyes and Saberian (2022).

◮ Agriculture: Burke and Emerick (2016), Chen and Gong (2021).

We analyze the effect of temperature rise on the European cereal
markets; barley, maize, and wheat.

Specifically, we use factor-augmented VAR with a time series of
(Temp,Precip,Production,Price) from 1962− 2020.

30 / 66



Cereal production shares by continent
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Figure: Annual average production share by region 1961 - 2020
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Empirical Application: Global Temperature

Annual average temperature does not fully capture the increasing trend
in global temperatures (IPCC 2014).

To improve the temperature measure, we use globally gridded data and
extract factors using our instrumental factor model framework.

Data: NCEP/NCAR Reanalysis dataset

– Daily air temperature from 1948 to 2020

– A globally gridded data set consists of 2629 stations.

Characteristics of each station:

– Latitude and longitude.

– Köppen climate classification (1961).

The variables are defined as:

yit(r) = Air temperature at station (i) for month (t) on day (r).

Xi = [Latitude, Longitude, Köppen’s classification] at station (i).
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Estimation Result : Temperature and Precipitation
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Temperature Shock : Barely Market
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Figure: Impulse response functions temperature shock on barely market
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Figure: 68% confidence intervals of IRF on barely market
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Temperature Shock : Maize market
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Figure: Impulse response functions temperature shock on maize market
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Figure: 68% confidence intervals of IRF on maize market
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Temperature Shock : Wheat market
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Figure: Impulse response functions temperature shock on wheat market
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Figure: 68% confidence intervals of IRF on wheat market
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Assumptions

Assumption 1 (Random functions)

yit , λik , εit ∈ L2([0, 1], R), and ftk ∈ R.

Assumption 2 (Identification)

1. Almost surely,

F ′F

T
= IK ,

G (X )∗G (X )

N
= D,

where D ∈ R
K×K is a diagonal matrix with distinctive elements.

2. There exists two positive constants cmin and cmax such that with
probability approaching one, as N → ∞

cmin ≤ ψmin

(
G (X )∗G (X )

N

)
≤ ψmax

(
G (X )∗G (X )

N

)
≤ cmax .
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Assumptions

Assumption 3 (Basis functions)

1. As N → ∞, with probability approaching one

dmin ≤ ψmin

(
Φ(X )′Φ(X )

N

)
≤ ψmax

(
Φ(X )′Φ(X )

N

)
≤ dmax ,

where dmin and dmax denote two positive constants.

2. max
j≤J,i≤N,h≤H

E [φj(Xih)
2] <∞.

Assumption 4.1 (Data generating process)

1. A mean zero functional process {εt}t≤T is independent of
{Xi , ft}i≤N,t≤T .

2. {ft , εt}t≤T is strictly stationary.

39 / 66



Assumptions

Assumption 4.2 (Data generating process)

Let M1 be a positive constant. Then

max
i≤N

N∑

q=1

∫ 1

0

|E [εit(r1)εqt(r2)]|dr1dr2 < M1

1

NT

N∑

i,q=1

T∑

t,s=1

∫ 1

0

|E [εit(r1)εqs(r2)]|dr1dr2 < M1

max
i≤N

1

NT

N∑

i,q=1

T∑

t,s=1

∫ 1

0

|cov [εit(r1)εqt(r2), εis(r1)εms(r2)]|dr1dr2 < M1
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Assumptions

Assumption 5 (Unexplained loading components)

1. {γik}i≤N,k≤K is independent of {Xi}i≤N , and E [γik(r)] = 0.

2. Let ρN = sup
r∈[0,1], k≤K

1
N

∑N
i=N E [γ2ik(r)] <∞. Then we have

sup
r1,r2∈[0,1],i≤N,k≤K

N∑

q=1

|E [γik(r1)γqk(r2)]| = O(ρN).

3. sup
r∈[0,1],i≤N,k≤K

E [g2
k (Xi , r)] <∞.
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Assumptions

Assumption 6 (Sieve approximation)

1. For all h ≤ H, k ≤ K , the loading component gkh(·) belongs to a
Hölder space G(ω, β, L) defined as

G(ω, β, L) = {g : |D ωg(v1)− D ωg(v2)| ≤ L‖v1 − v2‖β}

for some L > 0, v1, v2 ∈ R× [0, 1].

2. Suppose κ = (ω + β) ≥ 2. As J → ∞, the sieve coefficients
{bk, jh}j≤J satisfy, for all h ≤ H, k ≤ K ,

sup
r∈[0,1], x∈Xh

|gkh(x , r)−
J∑

j=1

bk, jh(r)φj(x)|2 = O(J−κ),

where Xh denotes the support of Xih.

3. sup
r∈[0,1], k≤K ,j≤J,h≤H

b2k, jh(r) <∞.
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Asymptotics for F and G (X )

Consider IFM:
Y = ΛF ′ + ε, Λ = G (X ) + Γ.

Theorem 1

Suppose J = o(
√
N). Under the assumptions 1-6, as N, J → ∞ (T may

stay constant or simultaneously grow with N and J),

1

T
‖F̂ − F‖2 = Op

( 1

N
+

1

Jκ

)
,

1

N
‖Ĝ (X )− G (X )‖2 = Op

( J

N2
+

J

NT
+

J

Jκ
+

JρN
N

)
.

Only large N assumption is needed for the consistency of F and G (X ).

Under the correct specification with Γ = 0, Λ is consistently estimable for
a fixed T via our FPPCA.
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Asymptotics for Γ Under Misspecification

Now let the model be misspecified and Λ = G (X ) + Γ with Γ 6= 0.

Corollary 1

Under assumptions of Theorem 1, as T → ∞ simultaneously with N and
J,

1

N
‖Γ̂− Γ‖2 = Op

( J

N2
+

1

T
+

1

Jκ
+

JρN
N

)
.

Large N assumption is not sufficient for the consistency of Λ.

We additionally require the large T for the consistent estimation of Λ.
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Estimating the Number of Factors

Assumption 7 (Error structure)

The error matrix ε(r) can be decomposed as

ε(r) = A
1/2
N U(r)Z

1/2
T ,

1. AN ∈ R
N×N and ZT ∈ R

T×T are non-stochastic positive definite matrices
where eigenvalues are bounded away from zero and infinity.

2. U(r) is the N × T matrix of uit(r), where uit is mean-zero and
independent over i and t. In addition, ut = (u1t , . . . , uNt)

′ is iid
sub-Gaussian, that is, there exists M2 > 0 such that

E [exp{τ〈ut , v〉}] ≤ exp{τ 2M2‖v‖2},

for all τ > 0, v ∈ HN .
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Estimating the Number of Factors
The number of factors can be estimated in various ways:

– Eigenvalue Ratio (Ahn and Horenstein (2013))

– Eigenvalue Difference (Onatski (2010))

– AIC/BIC (Bai and Ng (2002), Alessi et al. (2010)).

Among the methods, we consider the ER.

Theorem 2 (Number of factors)

The number of factors estimator is defined as

K̂ = argmax
1≤ℓ<ℓmax

ψℓ

(
Ŷ ∗Ŷ

)

ψℓ+1

(
Ŷ ∗Ŷ

) .

Under assumptions 1-7, and 1 ≤ K < JH/2, as N → ∞, and
J = o (min{N,T}), we have

P(K̂ = K ) → 1.
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Estimation of Factors, Loadings, and Common Component

The purpose of the simulation is to compare the performance of FPPCA
and PCA estimators.

Consider a model with two factors and three characteristics:

yit(r) = g1(Xi , r)ft1 + g2(Xi , r)ft2 + εit(r).

◮ Basis functions : {φ1(r), . . . φ5(r)}.
◮ Factor loading : gk(Xi , r) = (Xi1βk1 + Xi2βk2 + Xi3βk3)φk(r).

– Xih
iid∼ N(0, 1).

◮ Factors : ftk
iid∼ N(0, 1).

◮ Errors : εit(r) = a1,itφ1(r) + · · ·+ a5,itφ5(r), aℓ,it
iid∼ N(0, 1)

◮ Sample size :

– Fixed N sample : N = 100, T = 10, 20 . . . 100.
– Fixed T sample : T = 100, N = 10, 20 . . . 100.
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Estimation Results : Fixed N
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Estimation Results : Fixed T
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Estimation Results

MSE -Ratio :=
MSE (FPPCA)

MSE (PCA)
.

Table: MSE-ratio for fixed N = 100 (in %).

Size of T 10 20 30 40 50 60

(Factors) 47.7 63.6 72.7 77.6 81.3 83.9
(Loading) 16.8 16.8 16.9 17.0 17.1 17.1

(CC ) 4.3 6.0 7.7 9.3 10.8 12.3

Table: MSE-ratio for fixed T = 100 (in %).

Size of N 10 20 30 40 50 60

(Factors) 90.0 88.7 88.5 88.4 88.4 87.1
(Loading) 57.7 40.0 32.6 28.1 24.6 22.6

(CC ) 64.5 48.3 39.8 33.9 29.2 25.9
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Estimation with Weak Instrument

The objective is to examine the performance of the FPPCA when we
observe an incomplete set of instruments that may be strong/weak.

Consider a model with one factor and two characteristics:

yit(r) =

[
Xi1β1φ1(r) + Xi2

(
β2
dNT

)
φ2(r)

]
ft + εit(r), (1)

◮ Factor loading :

– The parameter for X2 is modeled as local-to-zero.
– β1, β2 ∈ {0.5, 1}, dNT = T .
– X1,X2 ∼ N(0, 1), and cov(X1,X2) = 0.5.

◮ Sample size :

– Fixed N sample : N = 100, T = 20, 40 . . . 140, dNT = T .

◮ Instrument set :

– X1, strong instrument observed.
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Estimation Results
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Thank you for your attention!
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Global Temperature : NCEP/NCAR Climate Dataset
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◮ A globally gridded dataset of 2701 stations (i).

◮ Air temperature recorded daily (t) at time (r).

◮ One observation : Tempi t(r).
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PCA for Functional Data: Remark 1
Let SN = H1 ⊕H2 ⊕ · · · ⊕ HN , where ⊕ denotes the direct some of
spaces. The inner product of the space SN is defined by

〈v ,w〉SN
=

N∑

i=1

〈vi ,wi 〉Hi
, ∀v ,w ∈ SN .

If Hi = R,

〈v ,w〉SN
=

N∑

i=1

〈vi ,wi 〉R = v ′w .

If Hi = R
R ,

〈v ,w〉SN
=

N∑

i=1

〈vi ,wi 〉RK =

N∑

i=1

R∑

r=1

virwir .

If Hi = L2([0, 1]),

〈v ,w〉SN
=

N∑

i=1

〈vi ,wi 〉L2 =

N∑

i=1

∫ 1

0

vi (r)wi (r)dr

Go back

62 / 66



PCA for Functional Data: Remark 2
Let Y = (y1, . . . , yT ), and yt = (y1t , . . . , yNt) ∈ SN .

Then, we can define Q = Y ∗Y , a real-valued T × T matrix such that

Q =




〈y1 , y1〉SN
. . . 〈y1 , yT 〉SN

...
. . .

...
〈yT , y1〉SN

. . . 〈yT , yT 〉SN


 .

If yit ∈ R, we have Q = Y ′Y since

Q =




y ′
1y1 . . . y ′

1yT
...

. . .
...

y ′

T y1 . . . y ′

T yT


 .

If yit ∈ L2([0, 1]), we have Q =
∫ 1

0
Y (r)′Y (r)dr since

Q =




∫ 1

0
y ′
1(r)y1(r)dr . . .

∫ 1

0
y ′
1(r)yT (r)dr

...
. . .

...∫ 1

0
y ′

T (r)y1(r)dr . . .
∫ 1

0
y ′

T (r)yT (r)dr


 .

Go back
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