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1 Introduction

The phenomenon of misinformation is deeply ingrained in contemporary society, impacting political, economic,

and social well-being (Vosoughi et al., 2018). Before the COVID-19 era, a supposed link between pediatric

vaccines and autism was one of the most propagated fake news, stemming from A. Wakefield’s 1998 Lancet

article on the trivalent Measles-Mumps-Rubella (MMR) vaccination (Jolley and Douglas, 2014, Leask et al.,

2006, Opel et al., 2011). Although the article has been retracted, and despite overwhelming evidence supporting

the safety and efficacy of vaccines, this piece of disinformation remains widespread (see among others Allcott

et al., 2019, Chiou and Tucker, 2018).

The diffusion of the internet and, more recently, the rise of social media have provided an unparalleled

platform for the dissemination of similar viewpoints on vaccines (Burki, 2019).1 These platforms have granted

virtually unlimited access to information that is not subjected to fact-checking or editorial judgment. As a

result, the ability of consumers to discriminate between true and “fake” (or unsubstantiated) news has decreased

(Lazer et al., 2018, Sunstein, 2001, 2017, 2018). Additionally, the dynamics of social networks tend to foster the

formation of ideological “echo chambers” (Cinelli et al., 2021, Flaxman et al., 2016), which fuel polarization

(Azzimonti and Fernandes, 2022), ideological self-segregation (Berinsky, 2017, Gentzkow and Shapiro, 2011,

Mullainathan and Shleifer, 2005), and misinformation diffusion (Allcott and Gentzkow, 2017).

Due to the spread of false claims about the vaccine-autism link, an increasing number of parents choose not

to vaccinate their children, relying instead on the herd immunity provided by vaccinated peers (Esposito et al.,

2014, Smith et al., 2017). In Italy, as in other countries, decreasing vaccination rates have led to reemergence

of previously controlled diseases such as measles. This has sparked a policy debate and prompted the imple-

mentation of legal measures that impose costs on individuals who choose not to vaccinate. Although vaccine

mandates curtailing individual freedom of choice have always been controversial, the Italian healthcare depart-

ment has argued that falling uptake poses a risk not only to those who are eligible for vaccination but also to

vulnerable individuals who are unable to receive vaccines, such as infants aged 0-12 months, pregnant women,

and immunosuppressed patients.

In this ongoing conflict between personal interests and public health endeavors, a crucial aspect to con-

sider is the influence of online vaccine skepticism on vaccination rates and vaccine-preventable diseases. If

skepticism spread through social media has a sizeable impact on vaccine hesitancy, addressing it could help

individuals make better decisions in their own best interest. Furthermore, given that communicable diseases

can impose significant externalities on society, including health risks, increased hospitalization rates and costs
1In addition, the fact-checking standards on social media are often lax, and the emotional appeal of such messages can contribute to

their rapid and widespread dissemination (Zhuravskaya et al., 2020).
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for individuals who are not targeted by vaccination campaigns, a comprehensive analysis should consider these

additional burdens placed on the community as a whole.

We empirically quantify the effects of exposure to vaccine skepticism on local public health outcomes such

as vaccination rates, vaccine-preventable hospitalizations, and their relative costs. We focus on Italy during the

2013-2018 period, which coincided with a major reform in 2017 that expanded the pediatric vaccine mandate

to include the MMR vaccine.2 The implementation of the new law followed a period of declining vaccine

coverage and was preceded by intense debates both offline and online.

To examine the spread of vaccine skepticism, we utilize Twitter data, specifically focusing on Italian tweets

related to vaccines. By employing a Natural Language Processing (NLP) algorithm similar to that used by

Polignano et al. (2019), we develop an anti-vaccine (hereafter anti-vax) classifier to determine the stance ex-

pressed in the tweets. Twitter data has been shown to accurately reflect public attitudes towards policy-relevant

topics across different locations and over time, as demonstrated by Grossman et al. (2020), Jin et al. (2021),

Kim (2022). Using this dataset, we calculate the average anti-vax sentiment expressed in geolocated tweets as

a proxy for the relevance and spread of the anti-vaccine movement within Italian municipalities. This allows us

to examine the relationship between vaccine-related attitudes and public health outcomes, such as vaccination

rates, vaccine-preventable hospitalizations, and associated costs at the local level.

When estimating the causal relationship between exposure to anti-vaccine views on social media and the

health outcomes associated with vaccine hesitancy, we encounter two challenges: i the endogeneity inherent in

this relationship, and ii the lack of data on individual-level vaccine hesitancy.

To address the first issue of endogeneity and formalize its sources, we employ a model of opinion dynamics

in social networks, inspired by the work of Baumann et al. (2020), to examine the evolution of individual

vaccine stances on Twitter. We show that even moderate degrees of homophily, when combined with highly

controversial topics, endogenously result in the formation of echo chambers and opinion polarization. Our

dynamic model emphasizes two complementary effects: the “link formation effect”, whereby users are more

inclined to share content and establish connections with individuals who hold similar beliefs, and the “exposure

effect”, whereby users’ stances are influenced by the opinions they are exposed to, particularly those at the

extreme ends of the spectrum. While the former effect determines the extent of exposure to anti-vaccine content

endogenously based on users’ own stances, the latter effect is the primary focus of our investigation.

To estimate the exposure effect, we employ an instrumental variables approach informed by the network

interaction literature (see e.g. Bramoullé et al., 2020, Cagé et al., 2022, De Giorgi et al., 2010). Our approach
2Until 2017, Italy required only four vaccines, and the mandate was rarely enforced. Vaccines for MMR, chickenpox, meningo-

coccal, and pneumococcal were strongly recommended but not mandatory, leaving the decision to parents. The legal enforcement of
mandatory pediatric vaccines upon school enrollment was implemented in late 2017, with a one-year transitional period to facilitate
parental compliance with the new regulations.
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relies on the existence of a subset of network connections that are unlikely to be influenced by homophily in

vaccine stances. First, for each user i we construct the complete network of her followings at the end of the

sample period, when all link formation effects have taken place.3 Second, we focus on the connections that were

not formed due to homophily in vaccine stances, referred to as “passive connections” (i.e., connections that do

not engage in vaccine-related discussions). Finally, we define each user i’s followings-of-passive-followings

(FoPF) network as the set of users followed by their passive connections j.4 Under standard assumptions, such

FoPF average exposure constitutes an exogenous source of variation that we exploit as an instrumental variable

for individuals’ stances.

To overcome the lack of individual data on vaccine hesitancy and its outcomes, we pair aggregated vaccine-

related Twitter stances with disease-specific vaccine coverage rates, vaccine-preventable hospitalizations, and

relative costs at the municipal level. This allows us to harness both the power of the individual-level Twitter

data and the highly detailed municipal data on vaccinations, hospitalizations and health-related costs through

a Mixed Two-Stage Least Squares (M2SLS) approach (Dhrymes and Lleras-Muney, 2006). Building on the

individual-level first-stage regression, we aggregate the instrumented variable at the municipal level to obtain a

valid causal estimate of the exposure effect.

Our estimates show that exposure to online vaccine skepticism causes a significant reduction in vaccination

rates for the MMR, particularly targeted by anti-vax misinformation. We find no statistically significant impact

on vaccines not affected by fake news (Hexavalent, Meningococcal, Pneumococcal). A 10 pp increase in aver-

age vaccine skepticism at the municipality level leads to a 0.43 pp decrease in vaccination coverage (mean value

89.50). Furthermore, vaccine skepticism leads to higher rates of hospitalization for vaccine-preventable dis-

eases and increased healthcare costs. Specifically, a 10 pp increase in the average stance leads to 2.1 additional

hospitalizations per 100,000 residents (mean value 22) and an excess expenditure of 7,311 euros, representing

an 11% increase in the relevant healthcare expenses.

To ensure the robustness of our findings, we control for the impact of Twitter algorithm changes,5 local

vaccine campaigns, and the impact of populist votes, finding virtually unchanged results. In addition to the

baseline analysis, we propose an alternative estimation strategy to address potential concerns about the exo-

geneity of our preferred instrument. The results are comparable to the baseline, both in terms of magnitude and

statistical significance.
3There are two categories of relationships on Twitter: “followers” and “followings”. “Followers” refers to Twitter users who follow

user i, whereas “followings” represents the Twitter users that user i follows and whose content she is directly exposed to. It’s important
to note that these connections can be unilateral and do not necessarily have to be reciprocated.

4Among the FoPF network, we exclude users who have a mutual relationship with user i, as well as direct connections with any
“active” following.

5Twitter introduced an “ampliphication algorithm” in 2016. As argued by Acemoglu et al. (2021), such algorithms are aimed at
maximizing engagement and tend to create more homophilic communication patterns, or “filter bubbles.”
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Finally, we examine the implications of our findings for policymakers and public health organizations

in terms of actions on social media to effectively engage with the public. We first investigate the potential

non-linearity in the exposure effects on individual user stances. Specifically, we examine whether pro- or anti-

vaccine individuals react differently to the exposure to FoPF content. We find that pro-vaccine users exhibit a

stronger “persuasion” effect compared to anti-vaccine users. This implies that interventions aimed at retaining

individuals with doubts about vaccines may be more effective than efforts focused on convincing ardent anti-

vax supporters. Second, in the spirit of Athey et al. (2022), we exploit the exogenous timing of events like

epidemics, scientific breakthroughs, court rulings, legislation, and news to test whether the “type” of event

influences the strength of the exposure effect.6 Our results show that political events and news originating from

national or international institutions (considered trustworthy sources) support pro-vaccine stances and weaken

the exposure effect of anti-vax content.

Additionally, we conduct Monte Carlo counterfactual analyses by simulating two alternative scenarios of

our dynamic model. The first scenario involves implementing a Censorship policy targeting anti-vax con-

tent, while the second scenario involves running vaccine Informative Campaigns. We find that informative

campaigns are the most efficient approach to counteract the effects of online misinformation and reduce polar-

ization. These findings imply that social media vaccine awareness campaigns may be a practical and scalable

intervention to increase understanding of public health issues and contain the spread of misinformation.

While a growing body of literature examines the effects of fake news on vaccine hesitancy (Carrieri et al.,

2019, Chiou and Tucker, 2018), anti-vaccine beliefs and behavior (Allam et al., 2014), and improving immu-

nization (Alatas et al., 2019), to the best of our knowledge, this is the first paper that jointly i uses detailed data

at a fine-grained geographical level on vaccination rates and hospitalizations, ii provides a data-driven approach

to proxy users’ stances toward vaccine-related topics, iii implements a causal identification strategy at the user

level, and most importantly, iv quantifies the monetary costs of online vaccine skepticism, distinguishing be-

tween the target population and the externalities for the vulnerable individuals not subject to the vaccination

campaigns.

We also contribute to the small but growing literature on the tangible effects of social media content on

offline communities, pioneered by Bond et al. (2012). Prominent contributions include Enikolopov et al. (2020),

who show that social media actually alleviate the collective action problem by lowering coordination costs,

Bursztyn et al. (2019), who estimate the causal effect of social media penetration on ethnic hate crimes and

xenophobic attitudes, and Allcott et al. (2020), who run a large-scale experiment showing that reducing online

activity increases wellbeing. More recently, Guriev et al. (2021) investigate the effects of the mobile broadband
6We classify events into four broad categories: vaccine efficacy, statements from trustful institutions, politics and mandates, and

allegations of vaccine unsafety.
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expansion on confidence in the government, and argue that the access to social media platforms might play a

prominent role in empowering anti-establishment politicians. In addition, social media platforms expose voters

to false information and increase their overconfidence, deteriorating the quality of democratic choice (Kartal

and Tyran, 2022). Finally, Cagé et al. (2022), Draca and Schwarz (2021), Müller and Schwarz (2020), Qin et al.

(2017) show that social media are associated with real-life social effects spanning from news production and

spread to hate crimes.

This work also contributes to the literature on the effects of vaccine mandates. Previous research has shown

that mandates can significantly impact vaccination uptake and decrease the incidence of infectious diseases,

such as pertussis, smallpox, chickenpox, and hepatitis A, with large long-term effects on affected individuals

(Abrevaya and Mulligan, 2011, Carpenter and Lawler, 2019, Holtkamp et al., 2021, Lawler, 2017). Our results

suggest that counteracting the spread of pediatric vaccine skepticism can have a significant impact on immu-

nization. Forced medical interventions are often seen as curtailments of individual freedom, which can lead

to controversy and unintended consequences. Athey et al. (2022) have recently shown that social media had

a significant impact on self-reported beliefs and knowledge about COVID-19 vaccines through public health

organization campaigns on Facebook and Instagram. The results of the study conducted by Larsen et al. (2022)

showed that using a counterstereotypical messenger on social media7 can be a powerful catalyst in encourag-

ing COVID-19 vaccine uptake among the hesitant. Additionally, Breza et al. (2021) have found that mobility

and COVID-19 infection rates decreased as a result of randomly assigned exposure to Facebook messages en-

couraging preventive health behaviors. Bailey et al. (2020) have also shown that Facebook users with friends

exposed to COVID-19 were more likely to support social distancing and other public health behavior measures.

Our findings provide direct evidence of the potential benefits of policies aimed at raising awareness of the risks

of communicable diseases and promoting preventive immunization to combat the effects of vaccine skepticism

on public health.

2 Institutional background

The advances in vaccine technology have been major contributors to the increases in life expectancy that char-

acterized the 19th and 20th centuries. Paradoxically, due to the past success of collective vaccination efforts,

individuals tend to underestimate the value of immunization and are more willing to risk being unprotected. Ad-

ditionally, the “self-eroding” nature of vaccination can lead to fluctuations in vaccine coverage for newborns,

which, in turn, affects the level of protection for the entire community when herd immunity is not achieved

(Siegal et al., 2009). In this sense, vaccine uptake can be seen as an example of a free-riding problem, where
7They used a Youtube “public service” announcement featuring Donald Trump encouraging his supporters to get vaccinated.
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individuals may prioritize their own interests over those of the community when deciding whether or not to get

vaccinated. Consequently, this can lead to cycles of suboptimal participation in vaccination campaigns.

One of the turning points in the history of Italian vaccine campaigns was the eradication of smallpox

between 1978 and 1998, followed by the introduction of hepatitis B and anti-pertussis vaccines. In the early

2000s, the first national vaccination plans were introduced under the National Plan of Vaccine Prevention

(PNPV). The PNPV establishes a vaccine calendar and offers eligible individuals free vaccines at Local Health

Authorities (LHAs).8

Until 2017, four vaccines were mandatory for children: polio, diphtheria, tetanus, and hepatitis B. They

were often combined with haemophilus influenzae type b and whooping cough into a 6-in-1 vaccine known

as hexavalent. Vaccines for the trivalent MMR, chickenpox, meningo- and pneumo-coccal diseases were only

strongly recommended. In 2012, a local court in Rimini issued a sentence against the Health Ministry, falsely

claiming a causal link between the MMR vaccine and autism. This decision had a detrimental impact on

immunization rates, leading to a decline that reached its lowest point in 2015, a year in which the local court

of Bologna reversed the controversial Rimini sentence (Carrieri et al., 2019). In response to the declining

immunization rates and a significant rise in measles cases in Italy, there was a strong political commitment to

counter anti-vaccine movements. This commitment resulted in the approval of a new PNPV in 2017, known

as the “Lorenzini’s Decree”, which extended the scope of mandatory pediatric vaccines by making them a

requirement for school enrollment and introduced stricter penalties for doctors who promoted anti-vaccine

views.

Under the 2017 PNPV, the number of mandatory vaccinations increased from four to ten (adding whooping

cough, Haemophilus influenzae type b, measles, mumps, rubella, and chickenpox). Although vaccine mandates

curtailing individual freedom have always been disputed, the PNPV proposers argued that the declining vaccine

coverage rate, driven by anti-vaccine sentiment, resulted in significant negative externalities, increasing the risk

of infection not only for the eligible population but particularly for vulnerable individuals not targeted by the

vaccination.

3 Data

We gathered data on vaccine skepticism and relevant discussions from Twitter. To do this, we used the Twitter

Application Programming Interface (API) to retrieve all publicly available tweets written in Italian that con-
8The regional authorities implement public health policies through their health departments, while health protection and promotion

fall under the responsibility of the Departments of Prevention within the 101 LHAs. LHAs cover on average 590,000 individuals each
and are divided into 711 districts with an average population of 84,000. LHAs manage and deliver vaccinations free of charge to eligible
populations, including the pediatric population, the elderly, and other protected categories.
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tained vaccine-related keywords and a wide range of information on users for the period from 2013 to 2018.

Furthermore, we hand-collected news-related data from newspapers and official sources of information cover-

ing various topics related to vaccines, such as vaccine-preventable disease outbreaks, legal cases, court rulings,

and regulatory interventions at both local and national levels.

In terms of health data, we rely on two main sources. The first dataset contains annual information on

disease-specific vaccination rates provided by the LHAs, aggregated at the municipal level for the period 2013-

2018. The second source is an administrative dataset on all hospital admissions in Itay, provided by the Italian

Ministry of Health. This dataset allows us to examine vaccine-preventable conditions in both the target popula-

tion and the population exempted from the vaccination plan, such as infants of 0-12 months, pregnant women,

and immunosuppressed patients, aggregated at the municipality/year level for the period 2013-2016.

3.1 Twitter data

Twitter ranks as the fourth most popular social media platform in Italy, following Facebook, Instagram, and

LinkedIn, with 8 million unique users in 2018. Alongside TikTok, it boasts the fastest-growing user base. The

demographics of Twitter users tend to skew towards older age groups, with 39% of users identifying as female.

Notably, Twitter serves as a hub for news outlets, TV channels, and blogs, emphasizing its role in disseminating

information. Furthermore, Twitter’s influence extends beyond its own platform, as its content is often shared

across other social media platforms. In fact, a significant portion of Twitter users is also present on Facebook

(84%), YouTube (80%), and Instagram (88%).9

To harness the significance of Twitter data in information dissemination, we leverage the Academic Re-

search product track to access the complete archive of tweets that have not been deleted. In addition to the

tweet text, the API provides information about the tweets and the associated users. Apart from textual analysis,

we focus on two aspects: geolocation mapping of users and analysis of their online networks. Geolocation data

provides insights into the contexts in which target populations reside (Martinez et al., 2018). Through the API,

we retrieve the complete list of users that each vocal user follows and is followed by, enabling the construction

of user-specific online networks.10 This approach facilitates the study of the interplay between users’ Twitter

conversations and their local environments.
9Data from the Authority for Communications Guarantees (AgCom).

10As of now, Twitter API v.2 permits retrieval of the following/follower structure at the date of download, which, in our case, spans
from May to September 2021. Consequently, we establish network-related variables based on the “equilibrium” network, encompassing
all endogenous interactions among users during the 2013-2018 analysis period.
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Download and filtering. We collected all tweets that contained the Italian equivalents of the following key-

words: “vaccine(s)”, “vaccination”, “vaccinating”, “anti-vax”, “vax”, for a total of 2,031,448 observations.11

The current version of the dataset was downloaded on April 23rd, 2021.

Each retrieved object consists of the following information: i) the plain text of the tweet; ii) the unique tweet

ID, creation date, counts of associated replies, likes, mentions, retweets, hashtags, and multimedia contents, as

well as tweet-specific location if available, and iii) user details including ID, Twitter handle, display name, short

bio, and several metrics such as the number of followings, followers, and tweets posted, the verified status of

the account, date of Twitter account creation, and user location if available (see Figure 1).12

Figure 1: Twitter objects
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Notes: Structure of Twitter objects returned by the API. The structure includes: i) Place fields, ii) Tweet fields and iii)
User fields. The former two are matched through the Geo place ID, the latter two are univocally connected through the
User ID.

We also collect information on the followers and followings of users. Followers refer to Twitter users who

follow a specific user, while followings are the Twitter users that a specific user follows and whose content she is
11To ensure data relevance, we excluded tweets referring to cow milk (“latte vaccino” in Italian). The query used was “(vaccino OR

vaccini OR vaccinazione OR vax OR novax OR vaccinarsi OR vaccinato OR vaccinati) -mozzarella -latte lang:it”.
12This study does not include any personally identifiable information.
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directly exposed to. We discuss specific aspects regarding the followings group in more detail in subsection 5.1.

Data cleaning. To extract relevant content, we apply filters to the tweets, excluding hashtags, special charac-

ters, emojis, and multimedia items. Furthermore, we remove tweets that solely consist of links or mentions13

and tweets from temporarily unavailable accounts due to violation of Twitter’s media policy.14 We also dis-

regard tweets referring to pet vaccinations, tweets where the string “vax” is only found in a URL within the

tweet, and tweets written in languages other than Italian. In total, we excluded 13,909 tweets.

Within our Twitter sample, we geocode the tweets through a three-step process. Firstly, we use the tweet-

specific geo-tag information (“Place fields” in Figure 1). Secondly, for the remaining tweets, we rely on the

users’ geo-tag information (“location” within the “User Fields” in Figure 1). Lastly, we leverage Twitter users’

profile information with place-name dictionaries (e.g. “live in Rome”). To map the geocoded tweets, we use

geospatial shapefiles and match the latitude and longitude to Italian municipalities.15 Figure A1 in Appendix A

shows the distribution of tweets across municipalities over time.

We distinguish between original tweets, retweets, and mentions. Original tweets refer to the first occurrence

of a particular content, retweets are copies of the original tweet, and mentions are copies of the original tweet

accompanied by a comment.16.

Descriptive Statistics. After the cleaning process, we are left with a sample of 2,017,539 tweets related to

227,182 unique users out of the initial 2.03 million tweets. The geolocalization narrows down the sample to

830,253 tweets written by 80,471 unique users across 4,220 municipalities from January 2013 to December

2018. This user-specific sample is strongly unbalanced, with only 4.04% of unique users present throughout

the entire 6-year period, 7.13% for 5 years, 9.56 % for 4 years, 15.38% for 3 years, 25.35 % for 2 years, and

38.54% for 1 year only. Panel (a) in Table 1 provides an overview of the main characteristics of the users, panel

(b) presents information about the tweets, and panel (c) focuses on user activity. On average, users created their

accounts in 2012 and tweeted about vaccines ten times. Only 0.7% of users have a verified account.17

13A tweet containing another user’s username, indicated by “@” symbol.
14Since 2021, Twitter has implemented measures such as labeling potentially misleading COVID-19 vaccine-related tweets and

removing the most harmful misleading information from the platform.
15Roughly 5% of tweets or users’ locations fall outside the Italian territory and are excluded.
16We screen tweets’ contents for the prefix “RT @”, indicating the reposting of an original tweet. We extract the Twitter handles of

the creators of the original tweets by identifying the content following “@” preceding the main text. Through this procedure, we also
identify replies and mentions to both original and retweeted versions of the content

17During the analysis period, a verified Twitter user was typically an account of public interest, often associated with well-known
individuals in various domains such as music, acting, fashion, politics, religion, news, sports, and business.
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Table 1: Summary statistics: Twitter data

median mean sd min max

Panel a: User characteristics
Tweets about vaccine 1.00 6.24 32.82 1.00 3,720
Total tweets 5,586.00 19,793.54 50,699.13 1.00 1,825,203
Total followers 335.00 3,692.14 51,951.40 0.00 3,262,940
Total followings 462.00 970.31 2,759.93 0.00 189,582
Account’s date of creation 2012 2.49 2006 2018
Verified accounts 0.007 0.084 0 1

Panel b: Tweets’ characteristics
Length of the tweet (number of characters) 102.42 42.05 0 306
Number of words 16.13 6.96 0 62
Retweets (%) 0.60 0.49 0 1
Replies (%) 0.10 0.30 0 1

Panel c: Original Tweets’ metrics
Retweet count 2.59 35.85 0.00 6696
Reply count 0.73 7.10 0.00 1106
Quote count 0.06 1.31 0.00 341
Like count 5.71 90.44 0.00 14,188

Notes: (a) summary statistics of 80,471 geotagged users tweeting on vaccines (2013-2018); (b) summary
statistics of 830,253 geotagged tweets cleaned by hashtag, "RT @", "@", url and emoji; (c) Tweet-related
popularity metrics of 328,879 original tweets.

Within the sample, retweets or mentions account for 60% of the tweets, while replies make up 10%. On

average, original tweets are retweeted 2.5 times, receive 0.7 replies, 1.6 likes, and 0.06 quotes (Table 1).

Figure 2 plots the temporal distribution of unique Twitter users in Italy. The bars show the total number

of Twitter users, the dashed line represents the number of users engaged in the Twitter vaccine debate, and the

solid line shows the subset of geolocalized users within the previous group. The number of users in all three

categories exhibits an upward trend, reaching its peak towards the end of our analysis sample, reflecting the

increasing popularity of Twitter in recent times.

Among the geolocalized tweets, approximately 1% consists of municipalities where only one user tweets

about vaccines in a year on average. For our analyses, we disregard this first percentile of municipalities and

assess the impact of this sample restriction on our results in Table A.10 in Appendix A.
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Figure 2: Number of unique users

Notes: The figure shows the absolute and geotagged users who tweeted vaccine contents in Italy (left-hand axis) and the
total number of Unique users in Italy as reported by AgCom (right-hand axis).

Anti- and pro-vax stances To label vaccine-skeptic tweets, we build a Natural Language Processing (NLP)

transfer learning model called VaxBERTo. This anti-vax tweet classifier is developed on top of a pre-trained

Bidirectional Encoder Representations from Transformers (BERT) model (Devlin et al., 2018a) trained in Ital-

ian (similar to the approach proposed by Polignano et al., 2019), providing the necessary final step in the data

processing pipeline.

To construct the training set for our model, we pre-label tweets as 0 or 1, with 1 indicating vaccine skeptic

content. Following Pierri et al. (2020), we curate the training set using tweets from renowned fake news

spreaders and vaccine-skeptic users (labeled as 1), as well as pro-vaccine activists and mainstream media outlets

(labeled as 0). The training sample consists of 43,472 tweets, with 20,422 pro-vaccine tweets (46.98%) and

23,050 anti-vaccine tweets (53.02%) from 108 unique users. We divide the sample into a training set of 39,124

tweets (≈ 90% of the total) and a validation set of 4,348 tweets to fine-tune the training. Additionally, we build

a labeled test set of 4,830 tweets to evaluate the model’s performance on a different set of users. For technical

details, please refer to Appendix C.

In NLP applications, the choice of the training sample directly affects the model’s performance. In our

approach, we construct the training sample based on pro- and anti-vax users, assuming that: i) users in our

training sample consistently express the same stance on vaccination within their tweets, unlike “fringe” users

whose stance may change over time, and ii) there are identifiable language characteristics, syntax, and structure
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that distinguish pro-vaccine and anti-vaccine tweets. As an example, consider the two tweets shown in Figure 3.

In panel (a), a popular Italian fake news outlet spreads false information about a baby’s death related to a

vaccine. The tweet employs linguistic constructs commonly found in fake news, including conspiracy allusions,

attacks on mainstream media, and the expression of doubts and mysteries.18 Conversely, panel (b) shows a tweet

from a mainstream media outlet reporting the death of a pediatric leukemia patient due to measles contracted

from unvaccinated siblings. The tweet lacks emotional language and does not contain any conspiracy allusions.

Figure 3: Example of anti-vax (left) and pro-vax (right) tweets used for training
(a) Anti-vax tweet

(b) Pro-vax tweet

Notes: The translation from Italian is provided by Google.

Using the trained model, we label all the tweets in our sample, assigning them a leaning l ∈ {0,1}. Next,

following Cinelli et al. (2021), for each user i, who produces ait tweets on vaccines in year t, we define her

leanings as Lit = {l1, l2, . . . , lait}. The individual stance s of user i in year t is then determined by their average

vaccine leaning during that period. This average is calculated as the fraction of tweets with an anti-vaccine label

(l = 1) and is given by:

sit ≡
∑ait

j=1 lj

ait
(1)

To enhance the interpretability of an individual user’s stance, we rescale it to a range between 0 and 100.
18For a detailed linguistic analysis see Michaels (2008).
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For instance, a user with sit = 50 has an equal number of pro- and anti-vaccine tweets, while a user with

sit = 100 has only anti-vax tweets. Within our estimation sample, the average stance value is 32.46, and the

overall standard deviation is 40.03. The between-user and within-user standard deviations are 38.57 and 20.36,

respectively.

3.2 Vaccination data

The data on disease-specific vaccination rates at the municipal/year level from Italian LHAs were gathered

through a Freedom of Information Act (FOIA) request.19 The vaccination rates indicate the share of the target

population that has received the first dose of a vaccine recommended in the national vaccination schedule. The

data cover all vaccines included in the Italian routine pediatric immunization schedule: diphtheria*; hepatitis

B*, tetanus*, polio*, haemophilus influenzae type B (HIB)**, pertussis** (included in the hexavalent conjugate

vaccine); measles**, mumps**, rubella** (included in the trivalent conjugate MMR vaccine), meningococcal,

and pneumococcal.20

Table 2 shows the population-weighted average vaccination rates in the study period, along with their me-

dian, standard deviation, minimum, and maximum values. As expected, the conjugated vaccines exhibit a

strong correlation in vaccination rates, while the pairwise correlation between hexavalent and MMR is 0.657,

and their levels vary substantially. The hexavalent vaccine shows the highest average vaccination rates (ap-

proximately 94%), likely due to its inclusion of four mandatory shots, while the meningococcal vaccine has the

lowest coverage rate (81%).
19The Freedom of Information Act (FOIA) provides access to public data while ensuring compliance with data protection regulations.
20* denotes vaccines that were compulsory in Italy between 2013 and 2017, while ** denotes vaccines included in the compulsory

list under the “Lorenzin’s Law” (Law Decree 73, 2017). We exclude chickenpox vaccination from our analysis, as a significant portion
of the eligible population acquires immunity through natural infection and is exempted from the vaccine mandate.
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Table 2: Descriptive statistics of vaccination rates (2013-2018)

Median Mean SD Min Max N

Hexavalent

Diphteria* 94.97 94.29 3.15 54.69 100.00 44,750
Hephatitis B* 94.80 94.15 3.19 54.69 100.00 44,750
Polio* 95.00 94.31 3.14 54.69 100.00 44,750
Tetanus* 95.00 94.38 3.13 54.69 100.00 44,777
Pertussis** 94.94 94.29 3.14 54.69 100.00 44,750
HIB** 94.64 94.04 3.17 54.69 100.00 44,749

Hexavalent 94.53 94.09 3.12 54.69 100.00 44,779

MMR
Measles** 91.05 89.52 5.97 10.72 100.00 44,750
Rubella** 91.00 89.50 5.97 10.72 100.00 44,750
Mumps** 91.00 89.48 5.96 10.72 100.00 44,750

MMR 91.00 89.55 5.57 10.72 100.00 44,752

Meningococcus 87.40 81.48 15.39 0.17 99.61 43,219

Pneumococcus 91.46 87.26 11.94 .17 100 43,167

Notes: Hexavalent and MMR vaccination rates across 7,929 Italian municipalities for the
period 2013-2018. Average values are weighted by the municipality population size. *
marks 2013-2017 set of compulsory vaccinations, ** indicates additional mandatory shots
introduced by the 2017 Law Decree 73.

3.3 Hospitalization data

The Hospital Discharge Data (SDO) from the Italian Ministry of Health provides information on the universe

of hospitalizations in public and publicly-funded private hospitals from 2013 to 2016. Italy’s universal public

healthcare system ensures equitable access to care without significant barriers. In addition, there are no cost dif-

ferentials that could affect vaccine uptake. The dataset includes socio-demographic information (age, gender,

nationality, place of birth and residence, educational attainment), clinical data (diagnoses, procedures, hospi-

tal transfers, discharges), and hospitalization details (type and specialty). Hospital discharge records report

information on the primary diagnosis leading to the hospitalization, along with up to five secondary diagnoses.

We focus on the diagnosis of vaccine-preventable diseases in two distinct populations: the vaccine-target

population and vulnerable groups not targeted by vaccines (newborns, pregnant women, and patients with

immunosuppressing conditions). The identification of the relevant diagnoses is based on the International

Statistical Classification of Diseases and Related Health Problems v.9 (ICD-9) codes.21 Based on the SDO

data, we construct municipality-level annual hospitalization rates and costs per 100,000 residents for both the

target and non-target populations.

Table 3 provides a detailed overview of hospitalizations and costs for different population groups. Addi-

tionally, Figure A2 in Appendix A plots the monthly trends in hospitalizations in the vaccine-target population

and in the vulnerable population not targeted by vaccines.
21ICD-9 codes for vaccine-preventable diseases include Rubella (056 and 6475), Measles (055), Diphtheria (032), Pertussis (033

and 4843), Meningococcal (036), Tetanus (037 and 7713), Polio (045–049), Hepatitis B (070[2-3]), Mumps (072), HIB (4822), and
Pneumococcal (320[1-3] and 481).
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Table 3: Descriptive statistics of hospitalizations due to vaccine-preventable diseases (2013-2016)

Median Mean sd Min Max N
Panel a: Hopitalizations
non-target population 14.71 22.21 30.95 0.00 3,202.85 31,760
non-target population (MMR) 0.00 4.99 17.58 0.00 2,846.98 31,760
non-target population (Hexav.) 10.40 16.99 22.02 0.00 355.87 31,760
non-target population (Meningo.) 0.00 0.02 0.26 0.00 29.02 31,760
non-target population (Pneumo.) 0.00 0.88 2.25 0.00 155.04 31,760
Children age 1-10 (MMR) 0.00 2.96 6.87 0.00 1,617.25 31,760
Children age 1-10 (Hexav.) 0.00 1.27 2.70 0.00 152.44 31,760
Children age 1-10 (Meningo.) 0.00 0.04 0.41 0.00 26.21 31,760
Children age 1-10 (Pneumo.) 0.00 0.50 1.76 0.00 132.04 31,760

Panel b: Healthcare costs
non-target population 38,581.69 66,477.60 116,320.65 0.00 59,880,842.11 31,760
non-target population (MMR) 0.00 15,381.55 96,931.58 0.00 59,880,842.11 31,760
non-target population (Hexav.) 46,275.59 83,151.57 119,925.38 0.00 14,819,697.72 31,760
non-target population (Meningo.) 0.00 150.92 3,976.38 0.00 411,341.22 31,760
non-target population (Pneumo.) 0.00 2,332.30 9,004.03 0.00 1,941,927.83 31,760
Children age 1-10 (MMR) 0.00 4,749.99 25,506.58 0.00 2,274,286.39 31,760
Children age 1-10 (Hexav.) 0.00 2,545.85 9,407.74 0.00 759,286.31 31,760
Children age 1-10 (Meningo.) 0.00 190.58 3,185.72 0.00 409,748.10 31,760
Children age 1-10 (Pneumo.) 0.00 1,255.36 5,365.51 0.00 259,504.65 31,760

Notes: The statistics refer to 7,940 municipalities for the time period between 2013-2016 and are weighted by the
municipality population size.

4 Twitter stances and user interactions

Social media platforms play an active role in news creation and distribution, involving users and influencing

opinions beyond the platform itself. User-to-user sharing is a key factor in disseminating content online and

potentially offline, impacting opinions and real-world behaviors. Social media discussions often exhibit pat-

terns of attention, with periods of low interest or controversialness interrupted by sudden spikes of activity.

These spikes can be triggered by exogenous events or fueled by platform algorithms designed to enhance user

engagement (Lorenz-Spreen et al., 2019). Twitter, in particular, has employed algorithmic amplification since

2016 to maximize exposure to captivating content(Huszár et al., 2022).
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Figure 4: Number of tweets, vaccination rates and anti-vax sentiment in Italy

(a) Number of tweets over time
(b) Vaccination rate and share of geolocated anti-vax

tweets

Notes: Panel (a) shows the time series of the number of tweets on vaccinations, 2013-2018. The dashed reference lines
report notable (i.e., covered by national media) events regarding vaccination. In particular, they flag i) verdicts (green):
the reversal of the Rimini’s Court sentence by the Bologna’s Appeal Court - February 15th, 2015; the recognition of
the inconsistency of the link between the MMR vaccination and autism by the prosecutor of Trani - June 1st, 2016; the
dismissal by the court of Milan of the appeal against a sentence establishing the causal link between the vaccine and
the severe encephalopathy developed by in an infant - November 10th, 2016; ii) death (orange) of an infant following
a mandatory vaccination - May 25th, 2016 and of another infant affected by leukemia of measles contracted from
non-vaccinated siblings - June 23rd, 2017. The first grey shaded area marks the period of the debate, which preceded
and ensued the approval of “Lorenzin’s Law” (June 7th, 2017, solid black line). The second grey area followed the
general elections (March 4th, 2018) until the upcoming school starting date - a symbolic moment that created political
clashes between the Italian populist parties then ruling the government due to the vaccine mandate’s enforcement on
school enrollment. Panel (b) reports the yearly average values of hexavalent (solid blue) and MMR (solid red) vaccine
coverage rates, as well as the average Twitter anti-vax sentiment (dashed black) as computed in Figure 3.1 recorded
between 2013 and 2018.

Based on our data, Figure 4, panel (a) illustrates the daily dynamics of vaccine-related tweets in our sample

from 2013 to 2018. The average activity remained relatively stable until 2017, when the implementation of

the Lorenzin’s law sparked longer and more intense debates. This resulted in a peak of approximately 8,000

tweets per day around the approval date. The vaccine debate became highly politicized during the 2018 general

election campaign, with populist politicians expressing skepticism towards the vaccine mandate.

Figure 4, panel (b), shows the aggregate trends in coverage rates for the hexavalent and MMR vaccines,

along with the average anti-vax Twitter sentiment from 2013 to 2018. Over this period, there has been a

progressive decline in the coverage of both vaccinations. Coverage rates started to increase in 2015 due to the

reversal of the court ruling on the vaccine-autism link, and a significant rise in measles cases in Italy. In 2017,

the expansion and legal enforcement of mandatory vaccines under the new law led to an increase in MMR

coverage.

It is important to note that the fluctuations in average Twitter anti-vax sentiment may not immediately

translate into lower vaccination rates. Vaccination decisions are influenced by individuals’ risk perceptions,

which can be shaped by cognitive biases and local epidemiology. As a result, the correlation between coverage
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rates and anti-vax stances may be distorted due to simultaneity and omitted variables.

Echo chambers formation. We rationalize the evolution of anti-vax views on social media in Italy using a

model of opinion dynamics in social networks based on Baumann et al. (2020) (see Appendix B for the complete

model description). The model combines exogenous and endogenous drivers of attention and interactions,

which can result in the polarization of opinions when controversy surrounding a topic intensifies. Users with

divergent views tend to form links and cluster in echo chambers, amplifying the impact of external shocks

and potentially leading to longer periods of intense activity and more extreme positions. These endogenous

dynamics contribute to the complex relationship between the spread of anti-vax opinions on social media and

vaccine hesitancy.

The model identifies two channels through which users influence each other’s opinions on a controversial

topic. On the one hand, users are influenced by exposure to views that differ from their own, with more divergent

perspectives having a greater impact (exposure effect). On the other hand, the controversial nature of the

vaccine-related topic intensifies polarization by shaping the formation of network connections (link formation

effect). Importantly, the first channel captures the impact of anti-vax stances expressed on social media on

vaccine hesitancy, which is the focal point of our analysis. However, due to the link formation effect, when a

topic becomes controversial, leading to a non-random network structure that deviates from the assumption of

random content exposure.

In the model, the dynamics of opinion within the social network are driven by interactions among agents,

where each agent’s stance (si) and the level of controversy of the topic influence the stances of others. Im-

portantly, the influence of individual stances on other users is modulated by the controversialness, which is

modeled as a hyperbolic function. Even moderate opinions can effectively capture the beliefs of peers. Each

agent has a propensity to interact with a certain number of other agents, and the probability of interaction de-

pends on the degree of homophily, modeled as a decreasing function of the opinion distance between agents

(Bessi et al., 2016). Links in the network represent the medium through which information flows. For example,

if user i is linked to user j, user i is exposed to the content produced by user j, resulting in an information flow

from node j to node i in the network. The network’s topology reveals the presence of echo chambers when a

large portion of users are tied to peers with similar views, increasing the likelihood of exposure to similar con-

tent. From a network perspective, this means that a node i with a given stance si is more likely to be connected

to nodes with stances close to si.

The model generates different predictions for the converged state (Figure 5) depending on the level and

time-varying nature of the exogenous topic controversialness. When the controversialness remains consistently
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low (panel a), the tendency of users to connect with like-minded peers is counterbalanced by their limited

influence, resulting in convergence to a non-polarization state. Conversely, when the controversialness is per-

manently high (panel b), strongly polarized echo chambers form. Similar results are observed when the level

of controversialness varies over time (panel c). In our simulations, we replicate the occurrence of short periods

of high controversy interspersed with prolonged periods of low controversialness, resembling the patterns ob-

served in the data. Notably, these brief periods of high controversy have long-lasting effects on the overall level

of polarization due to the link formation effect. For further details on the model and simulation results, please

refer to Appendix B).

Figure 5: Simulated distribution of stances

(a) Low controversialness (b) High controversialness (c) Time-varying

Notes: user (x-axis) and average followings’ (y-axis) distribution of stances in a simulated model when controversialness
is low (α = .1 in panel a), high (α = .2 in panel b), and low with short-lived outbursts (α = 0.1 and α = 1 in panel c).
In all models, the number of individuals is N = 500 and the periods are T = 5 - divided into 100 subperiods. Initial
values (s0) are randomly drawn from a gaussian distribution with µ = −0.2 and σ = 0.5 to match the asymmetry of
the initial opinions in the data. The time series report the degree of polarization and the controversialness parameter
observed in each subperiod.

In Figure 6, bars plot the annual count of unique users and tweets in our dataset (normalized to 2013=100).

Additionally, the heatmaps depict the joint distribution of users’ average stances and the average stances of the

users they follow. In line with Figure 4, the period from 2013 to 2016 exhibits a sustained low level of activity.

In 2017, when the vaccination mandate was extended, there was a significant increase in the number of users

and tweets. Interestingly, the number of tweets increased much more (10×+) compared to the corresponding

number of users (3×+), suggesting that users already interested in the topic engaged more often in vaccine-

related debates (indicating a heightened controversy around the topic). Accordingly, the heatmaps show the

formation of echo chambers, with two distinct clusters representing users, suggesting the radicalization of

opinions among users. In this context, it is likely that the higher controversialness of vaccine-related topics was
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further reinforced by the Twitter amplification algorithm introduced in 2016, which magnifies the exposure to

topics that engage users’ attention.

Figure 6: Dynamics of Twitter activity on vaccination - 2013/2018

Notes: yearly number of vaccine-related total tweets (grey bars) and unique users (blue bars) between 2013 and 2018
(2013=100). The contour plots report the joint distribution of users’ and average followings’ stances on vaccination.
Colors represent the density of users: the stronger the red hue, the larger the number of agents. The marginal distribution
of users’ opinions and their followings’ are plotted on the x and y-axis, respectively. To construct the figure, we exclude
the users with less than 15 friends and 10 tweets/year in the sample to avoid social bots, as their inclusion would
artificially generate echo chambers - see, e.g., (Shao et al., 2018).

The persistent effect of endogenous link formation resulting in echo chambers poses a challenge for causal

inference. Without adjusting for the systematic tendency towards homophily, naive estimates of the exposure to

online anti-vax content on vaccine hesitancy will inevitably be biased. Hence, these model predictions motivate

the use of an IV identification strategy to estimate the empirical counterpart of the exposure effect.

5 Empirical strategy

Ideally, our goal would be to estimate the impact of exposure to anti-vax content on vaccination decisions at

the individual (parent) level.22 However, there are two challenges that make this goal difficult to achieve: i

22In an ideal model, this would be represented by the following linear relationship at the individual (parent) level:

v−it = βsit + Xi + Zc + Ωt + εit (2)
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the endogeneity inherent in the relationship between exposure and stance, and ii the lack of individual-level

vaccination data.

Firstly, as discussed in section 4, the presence of homophily and the controversial nature of the vaccine

topic contribute to the formation of echo chambers. Consequently, any observed correlation in vaccine stances

among users may be driven by the endogenous selection of connections. For instance, user i may choose to

connect with user j because they both hold similar views on vaccines, leading to exposure to similar content. To

address the endogeneity in the formation of social connections, also well-known in the literature on peer effects

in social networks, we use an IV approach.23 In our study, we build an instrument for the exposure to anti-vax

content by leveraging the Twitter network structure. Our approach is similar in spirit to the local-average model

proposed by Bramoullé et al. (2009) and others, but with a focus on the subset of connections that are plausibly

exogenous. Further details on the construction of the instrument can be found in subsection 5.1.

A second challenge rises from the unavailability of individual-level data on vaccine hesitancy (vit). We

thus rely on the most granular data available on pediatric vaccinations based on the coverage rates at the mu-

nicipal/year level in Italy. To bridge the mismatch between individual Twitter stances and vaccination rates,

we use a mixed two-stage least squares (M2SLS) strategy proposed by Dhrymes and Lleras-Muney (2006) for

grouped data. We explain details of this approach in subsection 5.2.

5.1 The “Followings of Passive Followings” (FoPF) network

To construct a two-step neighborhood for each user i, we gather two groups of users: the set of users they follow

(j ∈ Ji) and the users followed by each of their followings (k ∈ Kj|i, where Kj|i represents the set of users

followed by user j). We define the set Ki as the union of all these “followings-of-followings” (FoF) users, i.e.,

Ki =
⋃

j∈Ji
Kj|i.24 A user k in the FoF network, denoted as k ∈ Ki, can fall into two categories. First, if k is

a direct connection of user i (i.e., k ∈ Ji), it is excluded from the FoF network to avoid “circles in friendships”.

Second, k can be an incidental connection not chosen endogenously, meaning that user i does not follow k

(k /∈ Ji), but k is connected to user i through another user j. In this second case, k still has the potential to

where v−it reflects vaccine hesitancy of peers of individual i at time t, sit is the stance of individual i, Xi and Zc are individual and
characteristics, and Ωt is the amount of information available in each period, including policy interventions (e.g., vaccine mandates),
new scientific knowledge, and news related to vaccine-preventable diseases outbreaks. The proposed model assumes a one-to-one
mapping between vaccine hesitancy and the observed behavior towards vaccination, i.e., there is a threshold value v⋆ = µ + α above
which parents do not vaccinate their children. The parameter of interest β would capture the influence that individual i’s stance has
on her peers’ decision on vaccinations. An assumption underlying the above model is that the extent of anti-vaccination persuasion on
Twitter is representative of the pressure exerted by vaccine skeptic activists on parents exposed to other media outlets, both online and
offline.

23Various frameworks have been developed to identify peer effects in the presence of endogeneity, by e.g. Goldsmith-Pinkham and
Imbens (2013) and (Johnsson and Moon, 2021). A second strand of literature exploits field experiments to estimate peer pressure effects
(Bursztyn et al., 2014, 2019).

24In building the network, we use end-of-the-sample-period data, accounting for the endogenous effects of link formation that
occurred during the analysis period.
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influence user i’s exposure to vaccine-skeptic content through interactions with j, such as retweeting, liking,

or replying to j’s posts. Even within the FoF network, there exists some degree of endogenous link formation,

as users may interact or not based on the vaccine stance of their direct connections.25 To address this issue,

we distinguish between two types of connections: i) active followings (JA
i ), who actively generate original

vaccine-related tweets, and ii) passive followings (JP
i ), who never create vaccine content but can retweet or

like other users’ posts. Although we cannot directly measure the vaccine stance of passive followings (JP
i )

since they do not produce original content, their lack of engagement ensures that the connection with user i is

not driven by endogenous factors such as homophily (at least not specifically related to the vaccine debate).26

Our aim is to assess the impact of passive exposure to vaccine-related content on individual vaccine atti-

tudes. To do so, we focus on the exposure mediated by passive users JP
i . Specifically, we define the set of their

followings as KP
i =

⋃
j∈JP

i
Kj|i, which represents the followings-of-passive-followings (FoPF) network. We

utilize this network to instrument users’ exposure to vaccine-related content. While the stance of FoPFs users

may influence individual i’s opinion, the formation of connections between them is not affected by endogene-

ity.27 To ensure that the links in the FoPF network were established before the user’s involvement in the vaccine

debate on Twitter, we impose a restriction. Specifically, we consider only the FoPF that were engaged in any

vaccine-related debate before user i.28

Figure 7 illustrates the selection of followings and FoPF for every “ego” user, represented by the Twitter

handle @Jane. The nodes represent users, with their size indicating their distance from @Jane (first- or second-

degree connections), and their color indicating their engagement level - yellow for active users, gray for passive

ones. The edges represent the connections between users, which are driven by endogenous factors.

@Jane’s first-degree network (Jjane) includes one active following (@Julie) and two passive followings

(@John and @Bob). The FoF network consists of four users: one linked to @Julie (@Miriam), two connected

to @John (@David and @Anne), and one user (@Tony) who is connected to both @Julie and @John. We

build the user-centered FoPF network, and by considering their exclusive connections (e.g., excluding @Tony

due to his connection to an active first-degree user), we build the measure of indirect and exogenous exposure
25For example, let’s consider an anti-vaccine journalist who shares her views on Twitter. She collects information and insights from

her own network, which likely consists of individuals who share her viewpoint. She then creates original content that resonates with
and establishes connections with like-minded users. In this case, the formation of links is influenced by the journalist’s connections,
whose vaccine stance cannot be considered exogenous.

26It is possible for connections to form between users due to various reasons, including shared interests or offline networks such as
supporting the same soccer team or working together. As long as these connection formations are unrelated to their stance on vaccines,
the indirect connections established through these links provide an exogenous source of variation.

27To further clarify our approach, we construct the FoPF network using the active followings of the passive users, denoted as KA
jP |i,

where jP represents a passive user. Since the passive FoPFs (KP
jP |i) do not express their opinion and we cannot define their stance, we

focus on the active followings to build the network.
28We exclude those who created their account after user i or whose first tweet about vaccines was published after user i posted her

first vaccine-related tweet.
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to anti-vax content of @Jane, represented by the blue edges. In this example, the measure is determined solely

by the stance of @David, who is the only active user within the FoPF network.

Figure 7: Example of an “ego” Network.

7
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7
@Bob

7
@John

7
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7
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7
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7
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Notes: The figure plots the architecture of the network on Twitter. The white node (@Jane) is the “ego” user,
the gray nodes denote the passive users, in yellow the active ones. The node size depends on the distance from
the ego user (lag-1 or lag-2), which is informed by the endogenously-generated links, described by the edges.
These are either gray - i.e., passing through an active user in lag-1 or not connected to any lag-2 user - or blue
- valid connections to build the measure of indirect exposure.

We examine a sample of 65,673,913 followings’ nodes. Among these, we identify 8,176,261 unique passive

followings. As is typical on social media, we observe significant variations in the number of followings and

followers. While the majority of users have only a few followings, there are some users who serve as central

nodes in the network. The final sample of the second-degree network consists of approximately 2 billion nodes,

corresponding to an average of 12,556 FoF per user. The median user has 469 passive followings and a median

of 7,687 FoPF. These connections collectively generate an on average of 142,261 tweets about vaccines (see

Table 4).

Table 4: Descriptive statistics of users’ networks

Median Mean sd Min Max
Followings 469 973.46 2,717.55 1.00 189,433
FoPF 7,687 12,556.24 14,078.73 1.00 139,508
Total FoPF’ tweets with vaccine contents 59,535.50 142,261.09 186,460.83 1.00 1,685,355
FoPF’ stance (ffsit) 28.829 29.353 6.750 0 100

Notes: The networks refer to 80,471 geotagged unique users who tweeted on vaccines in Italian (2013-
2018).

Finally, for each FoPF network, we compute the average anti-vax stance. For user i in year t, we define

their indirect exposure to anti-vax stance as ffsit =
∑Nit

j=1 sjt

Nit
, where Nit represents the number of FoPFs for

user i in year t. This measure ranges from 0 to 100. We utilize this measure as an instrumental variable for
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each user’s own stance.

Validation To ensure the validity of the average stance of the FoPF network as an instrument, it is important

that the connections between user i and her JP
i were not driven by endogenous factors related to the stance of

their connections. Although we cannot formally test this hypothesis, we provide suggestive evidence in support

of our claim in Figure 8. We plot users’ stance on the x-axis against the average stance of their FoF network

(row 1), followings-of-active-followings KjA|i (FoAF, row 2), and FoPF network KjP |i (row 3) for each year

in our sample.

We observe that the FoF network exhibits a significant degree of polarization in later years, similar to the

ones plotted in figures 5 and 6 for users and their direct connections. This suggests the presence of endogenous

links that affect their network beyond their direct connections. Similarly, the FoAF network also displays a

strong polarization pattern.

Conversely, when we focus on the FoPF network we find that their stance is uncorrelated with the stances

of the users, and their distribution follows a Gaussian pattern centered around the unconditional mean in each

period. This finding is consistent with passive followings being connected to users independently of their own

stance on vaccines, as well as the stance of their connections.

Figure 8: Dynamics of Twitter activity on vaccination

(a) User vs. FoF stances

2013 2014 2015 2016 2017 2018

(b) User vs. FoAF stances

(c) User vs. FoPF stances

5.2 The Mixed two-stage least squares

In a naive OLS estimation, without taking into account endogeneity, we would measure the impact of online

anti-vax skepticism and health outcomes at the municipality level as follows:
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Vmt = βsmt + T ′
mtζ + C ′

mtϕ + γm + θt + εmt (3)

where Vmt is a vaccination rate, or the vaccine-preventable hospitalizations/costs in municipality m in year

t, smt is the average vaccine-related stance at municipality/year level, T ′ represents vectors extracted from

the Twitter corpus and the followings’ network (i.e. the sum of tweets per municipality/year and the sum of

FoPF tweets per users’ municipality/year), C ′s are socioeconomic characteristics (income per capita at the

municipality level, birth rate, the share of lower secondary school attainment, the mean age of women at the

birth of their first child at province level, and health costs per capita at the regional level).29 Additionally, as

there might be strong political components to vaccination rates, in C ′ we include an indicator variable for the

rule of populist parties at the local level. Several populist parties have raised concerns about vaccine safety

(Guriev and Papaioannou, 2022, Kennedy, 2019).30 We also include municipality and year fixed effects (γm

and θt, respectively). Finally, as public health measures and compliance with these measures might vary at the

regional level, we include a set of region-specific time trends ρr × t (region×year).

The simple OLS fixed effects estimation in this context would be prone to bias, which cannot be predeter-

mined. This bias stems from potential bidirectional effects, where a stronger anti-vax sentiment may lead to

lower vaccination rates, and conversely, lower vaccination rates may result in more severe health complications,

potentially influencing the anti-vax sentiment.To mitigate these biases, we require an instrument that introduces

exogenous, independent variation in the average sentiment.

To address this, we leverage user-level data from Twitter, which offers higher resolution, to enhance the

accuracy of the first stage. However, since the outcome measures are only available at the municipality level,

we employ the M2SLS approach proposed by Dhrymes and Lleras-Muney (2006). In the first stage of M2SLS,

estimated using weighted least squares, we specify the following equation:

First stage - (individual level)

sit = α + βffsit + T′
itζ + C′

mtϕ + γm + ρr × t + θt + εit (4)

where sit is the Twitter stance on vaccines of user i in year t, ffsit denotes her indirect exposure to anti-vax

content (as described in subsection 5.1), while Tit and Cmt represent Twitter and municipal characteristics.

Both sit and ffsit range between 0 and 100, with 100 indicating the maximum level of vaccine skepticism. In
29Birth rate, the percentage of people with at least lower secondary school, the mean age of females at first birth, and health costs

per capita data come from the Italian National Institute of Statistics. Per-capita income data comes from the Ministry of Economy and
Finance. Descriptive statistics are reported in Table A.1 in Appendix subsection A.1

30Following Albanese et al. (2022), parties coded as populist in Italy are the Movimento Cinque Stelle (Five Stars Movement) and
Lega Nord (Northern League). The data comes from the Ministry of the Interior.
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our setting, there is a one-to-one mapping between geotagged users and the municipality they reside in or tweet

from. Equation (4) allows us to compute the instrumented value ŝit, which is then aggregated at the municipal

level to obtain the main regressor for the second stage, which reads:

Second stage - (municipal level)

Vmt = α + λŝmt + T′
mtξ + C′

mtϕ + γm + ρr × t + θt + ηmt (5)

where the outcome of interest (Vmt) is represented by vaccination rates, the number of vaccine-preventable

hospitalizations in the targeted and non-targeted populations, or their cost. ŝmt is the averaged instrumented

regressor computed in the first stage, weighted by the number of observations in the original cell (number of

users at municipality/year level), T mt is the average value of Twitter’s control variables (T ′
it), C ′

mt is the vector

of socioeconomic characteristics, γm, and θt are municipality and year fixed effects that account for time-

invariant differences between municipalities and ρr × t (region×year) controls for region-specific trends. All

estimates are weighted by municipality population size. We correct the variance-covariance matrix throughout

the analysis by bootstrapping the standard errors. In the main specification, the parameter of interest λ captures

the causal effect of anti-vax stances on the vaccination rate at the municipality level.

6 Results

In our presentation of the results, we begin by examining the baseline estimates for vaccination rates, categoriz-

ing them based on the type of vaccine. This allows us to analyze the differential impact of vaccine skepticism on

mandatory or recommended vaccines, including MMR vaccine, which is the specific target of online disinfor-

mation. Subsequently, we present the findings on hospitalizations. We examine the number of hospitalizations

for vaccine-preventable diseases and the associated costs, adjusted per 100 thousand residents. Furthermore, we

differentiate between hospitalizations of the vaccine-targeted pediatric population and those of non-target pop-

ulations consisting of vulnerable individuals, such as newborns, pregnant women, and immunocompromised

patients.

To assess the random assignment of the IV with respect to the contextual features of the user’s geolocalized

municipality, we conduct a series of regression tests. Specifically, we regress municipality characteristics, such

as income per capita, birth rates, public healthcare expenditure per capita, and education attainment, on the

average Twitter stance on vaccines that user i in municipality m is indirectly exposed to through her FoPF

network (ffsit), while controlling for municipality and year fixed effects. The results presented in Table A.2

support the assumption that our model specification identifies a source of variation unrelated to municipality
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characteristics, as none of the estimated correlations deviate significantly from zero.

The results of the M2SLS first stage, presented in Table Table 5, provide strong evidence that the vaccine-

related stances of a user’s followings-of-followings network significantly influence the user’s own stance on

vaccines. This finding highlights the substantial impact of indirect exposure to anti-vaccination sentiments on

individuals.

The M2SLS first stage results, shown in Table 5, suggest that the vaccine-related stances of a user’s

followings-of-followings network significantly influence the user’s own stance on vaccines.31 A one-unit in-

crease in the anti-vaccination stance on the 0-100 scale leads to a 0.7-unit increase in the individual’s vaccine-

related stance, indicating that indirect exposure to anti-vaccination stances can lead users to engage in anti-

vaccination activism.

Table 5: M2SLS Individual - First stage.

(1) (2) (3) (4) (5) (6)
sit sit sit sit sit sit

(30.31) (30.31) (30.31) (30.31) (30.31) (30.31)
ffsit (28.77) 0.799∗∗∗ 0.751∗∗∗ 0.703∗∗∗ 0.703∗∗∗ 0.704∗∗∗ 0.704∗∗∗

[ 0.021] [0.021] [0.017] [0.017] [0.017] [0.017]
N 127,754 127,754 127,754 127,754 127,754 127,754
CONTROL (Twitter) ✓ ✓
CONTROL (socioeconomics) ✓ ✓
YEAR FE ✓ ✓ ✓ ✓ ✓ ✓
CITY FE ✓ ✓ ✓ ✓ ✓
Reg × Year ✓ ✓ ✓ ✓
F-stat 1,501.16 1,288.96 1,765.22 1,763.52 1,755.84 1,757.86

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: The numbers refer to the sample of 830,253 tweets and to a population of 80,471 unique users
across 4,220 municipalities. All estimates include municipal and year fixed effects as well as region specific
time trends. Standard errors (in brackets) are clustered at the municipality level. The average values of sit

and ffsit in parentheses are weighted by population size.

6.1 Vaccination rates

Table 6 reports the baseline IV results alongside those of the naive OLS model that does not account for

endogeneity. Given that hexavalent and MMR vaccines are almost always administered through a single shot,

the disease-specific vaccination rates are identical and we report the pooled figure for both. Their average

coverage rates are given in parentheses, and the table reports the most demanding specifications, including all

controls and fixed effects.

The coefficient estimated for mandatory vaccines (hexavalent) is not statistically distinguishable from zero,

and there is no detectable difference between the OLS and the M2SLS approaches. Similarly, we estimate no

statistically significant effect of anti-vax stance on the other recommended vaccines against meningococcal and
31Among the geolocalized tweets, 1% has an average of 1 user only tweeting about vaccines in a year. In the baseline analysis

(Table 5), we drop the first percentile of municipalities. We test the results obtained on the full sample in Appendix A, Table A.10.
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pneumococcal diseases. The magnitudes of the coefficient estimates, in this case, are comparable to the one on

MMR, which is likely to reflect the non-compulsory nature of these shots. Yet, the precision of the estimates

is scant. On the other hand, when we look at the vaccine most targeted by the fake news, the MMR shot, we

find i) a significant effect on coverage rates, and ii) a sizeable difference with respect to the OLS specification.

We find that a 10 percentage point increase in the municipality-level anti-vaccination stance leads to a 0.43

percentage point decrease in the MMR coverage rate.32

Table 6: Results of the OLS and the Second stage of the M2SLS - Vaccination rates

(1) (2)
OLS M2SLS
Vmt Vmt

Panel a: Hexavalent (94.06)
smt -0.001 -0.023

[0.002] [0.015]
N 7,239 7,239
Panel b: MMR ( 89.53)
smt -0.005 -0.043∗∗

[0.003] [0.021]
N 7,238 7,238
Panel c: Menigococcal (81.32)
smt -0.002 -0.040

[0.008] [0.054]
N 7,061 7,061
Panel d: Pneumococcal (82.64)
smt -0.0001 -0.029

[0.008] [0.052]
N 7,066 7,066
Controls (Twitter) ✓ ✓
Controls (socioeconomics) ✓ ✓
City and year FE ✓ ✓
Reg × year ✓ ✓

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: All estimates include city and year fixed effects
as well as region specific time trends. Standard errors (in
brackets) are clustered at the municipality level and have
been corrected in the second stage. Estimates as well as
averages of Vmt are weighted by the municipality popula-
tion size.

6.2 Hospitalizations

We also estimate the effect on hospitalizations due to vaccine-preventable conditions. We distinguish between

two groups: the target pediatric population and non-target vulnerable individuals. In fact, the number of hos-

pitalizations for vaccine-preventable diseases among non-targeted patients measures the extent of negative ex-

ternalities of suboptimal immunization rates on local communities. Quantifying these externalities provides an

objective argument in the policy debate on vaccine mandatesmat.
32Table A.3 in Appendix A reports the reduced form estimates. Table A.5 in Appendix A reports the full set of estimates for the

different models as specified in Table 5.
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Table 7: Results of the OLS and the Second stage of the M2SLS - Hospitalizations .

(1) (2) (3) (4) (5) (6)
OLS M2SLS OLS M2SLS OLS M2SLS
Vmt Vmt Vmt Vmt Vmt Vmt

non-target non-target non-target non-target Children Children
pop. pop. pop.(MMR) pop.(MMR) age 1-10 (MMR) age 1-10 (MMR)

Panel a: Hopitalizations
smt 0.0211 0.213∗ 0.018∗∗ 0.234∗∗∗ 0.007 0.145∗∗

[0.0159] [0.113] [0.00841] [0.0601] [0.008] [0.065]
Panel b: Healthcare costs
smt 129.8∗ 731.1∗∗ 71.96∗∗ 722.1∗∗∗ 47.13∗ 366.9∗∗

[66.39] [353.8] [30.92] [243.1] [25.95] [161.1]

N 3,331 3,331 3,331 3,331 3,331 3,331
Controls (Twitter) ✓ ✓ ✓ ✓ ✓ ✓
Controls (socioec.) ✓ ✓ ✓ ✓ ✓ ✓
City and year FE ✓ ✓ ✓ ✓ ✓ ✓
Reg × year ✓ ✓ ✓ ✓ ✓ ✓

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: All estimates include city and year fixed effects as well as region specific time trends. Standard errors (in brack-
ets) are clustered at the municipality level and have been corrected in the second stage. Estimates are weighted by the
municipality population size.

Also in Table 7, we estimate the effect on hospitalizations and their cost for the two populations, expressed

per 100 thousand residents. For vulnerable individuals (the non-target population), we find that a 1 percent-

age point increase in the municipality-level anti-vaccination stance leads to an additional 0.21 hospitalizations

per 100 thousand residents (the baseline average being 22.21). This corresponds to an additional healthcare

expenditure of 731.1 euros, representing a 1.1% increase relative to the baseline. Specifically, in terms of

hospitalizations due to MMR, the same increase in vaccine skepticism is associated with an additional 0.23

hospitalizations per 100 thousand residents (the baseline average being 4.99) and an additional expenditure of

722.1 euros, corresponding to a 4.6% increase. When looking at hospitalizations among the target pediatric

population, our estimates (column 5) suggest that a 1 percentage point increase in the municipality-level anti-

vaccination stance leads to an additional 0.145 hospitalizations per 100 thousand residents (the baseline average

being 2.96) and an excess expenditure of 366.9 euros, corresponding to a 7.7% increase.33

In line with the baseline results, Table A.6 in subsection A.1 shows no significant results for the non-target

population and target pediatric population hospitalized for diseases preventable by hexavalent, meningococcus

and pneumococcus vaccines, respectively.

To evaluate the efficacy of vaccinations in reducing the probability of mortality from vaccine-preventable

diseases, Table A.8 in Appendix A shows the result of our estimates on the mortality cases of patients hospital-

ized with these diseases.
33Table A.4 in Appendix A reports the reduced form estimates.
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6.3 Robustness checks

We first check the robustness of our results to three potential confounders that could affect either the first stage

(the introduction of a homophily-enhancing algorithm on Twitter) or the second stage (pre-existing vaccine

mandates or the influence of strong populist parties). Finally, we propose a reweighting of our estimates to

account for the number of second-degree links between each user and her FoPF network.

First, in 2016, Twitter introduced an algorithmic timeline that rearranges users’ feeds based on relevance

rankings. This is likely to amplify the impact of indirect exposure on user stance formation. To account for this

change, we interact our instrumental variable (ffsit) with a dummy variable (TWalg) equal to 1 from 2016

onwards. We also provide an additional check, where we restrict the sample to the 2013-2016 period only.

Moreover, we control for the adoption of a vaccine mandate in the Emilia-Romagna region since Novem-

ber 25th, 2016 (Regional Law n.19), which followed several outbreaks of infectious diseases affecting non-

vaccinated individuals (Gori et al., 2020). The mandate required vaccination certificates for enrollment in pub-

lic schools and kindergartens. This is captured by an interaction term between ffsit and an indicator variable

(ER), which equals 1 for individuals in Emilia-Romagna after the regional law was implemented.

Finally, Italian populist parties have occasionally expressed concerns about vaccine safety (Guriev and

Papaioannou, 2022, Kennedy, 2019). Our estimates could thus be capturing a differential effect of political

stances rather than disinformation spread. We control for this potential confounder by interacting ffsit with

an indicator variable (PP ) for a populist party ruling at the municipal level.

Table 8 reports the first-stage results of the above exercises alongside the baseline model (column 1). While

we find a significant impact of the introduction of the algorithm (column 2), neither the pre-existing mandate

(column 3) nor the influence of populist parties (column 4) seems to play a significant role in affecting users’

stance through indirect exposure. For all models, the first-stage results are significant and strongly relevant.
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Table 8: M2SLS Individual - First stage.

(1) (2) (3) (4) (5) (6) (7)
Main Twitter Emilia Romagna Populist Network Excluding F oF 2013-2016

algorithm Law party distance geolocated in
user’s municipality

sit sit sit sit sit sit sit

(30.33) (30.33) (30.33) (30.33) (30.33) (30.33) (30.33)
ffsit 0.704∗∗∗ 0.528∗∗∗ 0.706∗∗∗ 0.691∗∗∗ 0.611∗∗∗ 0.731∗∗∗ 0.512∗∗∗

[0.017] [0.035] [0.017] [0.022] [0.021] [0.016] [0.031]
ffsit× TWalg 0.251∗∗∗

[0.039]
ffsit× ER 0.005

[0.0742]
ffsit× PP 0.048

[0.043]

N 127,754 127,754 127,754 127,754 127,754 127,746 48,180
Controls (Twitter) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls (socioec.) ✓ ✓ ✓ ✓ ✓ ✓ ✓
City and year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reg × year ✓ ✓ ✓ ✓ ✓ ✓ ✓
F-stat 1,757.86 998.690 870.815 943.98 875.82 2102.95 266.18

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: The numbers refer to an initial sample of 830,253 tweets to a population of 80,471 unique users across 4220 municipalities.
All estimates include city, region and year fixed effects and region-specific time trends fixed effects. Standard errors (in brackets)
are clustered at the municipality level. Averages of sit in parentheses is weighted by population size.

Additionally, in order to address any remaining concerns about the exogeneity of the FoPF network, we

propose two alternative estimation strategies. Firstly, the network has a hierarchical structure with “ego” users,

their passive followings, and the relative FoPF connections. If a FoPF user is linked to the ego user through

multiple passive followings, this can weaken the network exogeneity assumption underlying the validity of the

IV. To account for this, we reweight the estimates with the inverse of the number of connections that a FoPF

shares with the ego user with the following equation:

wi = 1∑n
j=1 fij

(6)

where fij is the number of shared nodes between user i and each FoPF j. This weight can be regarded as

a proxy for how long the new content takes to spread across the network. The first stage results (column 5)

show a slightly decreased coefficient estimate, which however remains comparable to the original one in terms

of both magnitude and statistical significance.

Secondly, we exclude all followings-of-followings geolocated in the user’s municipality, in order to rule

out the possibility that the network might be influenced by common local offline vaccine views. The respective

first-stage results (column 6) remain virtually unchanged.
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Table 9: M2SLS Municipal - Second stage (Vaccination rate, hospitalizations and healthcare costs).

(1) (2) (3) (4) (5) (6) (7)
Main Twitter Emilia Romagna Populist Party Network Excluding F oF 2013-2016

algorithm Law Law distance geolocated in
user’s municipality

Vmt Vmt Vmt Vmt Vmt Vmt Vmt

Panel a: MMR vaccination rate ( 89.53)

smt -0.043∗∗ -0.047∗∗ -0.048∗∗ -0.055∗∗ -0.050∗∗ -0.042∗∗ -0.087∗∗

[0.021] [0.022] [0.021] [0.026] [0.023] [0.021] [0.044]

N 7,238 7,238 7,238 7,238 7,238 7,238 3,137
Panel b: Non-target population

Hopitalizations
smt 0.213∗ 0.231∗ 0.204∗ 0.215∗ 0.220∗ 0.205∗ 0.319∗

[0.113] [0.121] [0.112] [0.112] [0.115] [0.108] [0.167]
Healthcare costs
smt 731.1∗∗ 821.3∗∗ 712.8∗∗ 746.5∗ 794.0∗∗ 909.9∗∗ -162.2

[409.8] [434.7] [406.6] [412.2] [411.0] [402.0] [952.1]

N 3,331 3,331 3,331 3,331 3,331 3,331 3,331
Panel c: Non-target population (MMR)

Hopitalizations
smt 0.234∗∗∗ 0.256∗∗∗ 0.233∗∗∗ 0.231∗∗∗ 0.242∗∗∗ 0.211∗∗∗ 0.320∗∗

[0.0601] [0.0675] [0.0596] [0.0603] [0.0621] [0.0578] [0.128]
Healthcare costs
smt 722.1∗∗∗ 716.7∗∗∗ 725.1∗∗∗ 734.0∗∗∗ 743.7∗∗∗ 713.8∗∗∗ 422.6∗

[243.1] [250.6] [242.8] [247.7] [247.1] [235.6] [214.3]

N 3,331 3,331 3,331 3,331 3,331 3,331
Panel d: Children age 1-10 (MMR)

Hopitalizations
smt 0.145∗∗ 0.150∗∗ 0.145∗∗ 0.146∗∗ 0.142∗∗ 0.115∗ 0.184∗

[0.0650] [0.0664] [0.0651] [0.0653] [0.0659] [0.0619] [0.096]
Healthcare costs
smt 366.9∗∗ 428.7∗∗ 366.5∗∗ 363.6∗∗ 390.2∗∗ 375.5∗∗ 233.8∗

[161.1] [171.8] [160.9] [163.9] [163.7] [162.3] [117.1]

N 3,331 3,331 3,331 3,331 3,331 3,331 3,331
Controls (Twitter) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls (socioec.) ✓ ✓ ✓ ✓ ✓ ✓ ✓
City and year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reg × year ✓ ✓ ✓ ✓ ✓ ✓ ✓

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: All estimates include city and year fixed effects and region-specific time trends. Standard errors (in brackets) are clustered
at the municipality level and have been corrected in the second stage. Estimates, as well as averages of Vmt, are weighted by the
municipality population size.

Table 9 reports the second stage results for all the checks relative to the MMR vaccination rates (panel a),

the hospitalization rates and costs for non-target population (panel b), the specific MMR non-target population

(panel c) and for children aged 1 to 10 (panel d).34 All estimates are qualitatively and quantitatively in line with

the baseline.
34Table A.9 in subsection A.1 reports the (null) results on all vaccination types.
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7 Non-linear effects and policy implications

To explore the potential policy implications of our results, we investigate whether there is any non-linearity

in the effect of indirect exposure on user stances. Specifically, we look at whether the influence channeled

through the followings-of-followings network varies depending on where a user falls in the stance distribution

(i.e., whether they are vaccine supporters or skeptics).

Hence, we first re-run our main model specification while classifying user stances into two binary cate-

gories: pro-vax users (those with an average anti-vax stance of zero), and anti-vax users (those with an average

anti-vax stance of 100). This allows us to better understand the factors that influence vaccine attitudes among

these two sub-groups.

Table 10: M2SLS for pro-vax vs. anti-vax users - First stage.

(1) (2)
P roit Antiit

(0.495) ( 0.204)
ffsit (28.77) -0.0076 ∗∗∗ 0 .0046∗∗∗

[0 .0003] [ 0.0001]
N 127,754 127,754
Controls (Twitter) ✓ ✓
Controls (Socioec.) ✓ ✓
City and year FE ✓ ✓
Reg × year ✓ ✓
F-stat 1,765.22 1,763.52

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: The numbers refer to an initial sample of
830,253 tweets to a population of 80,471 unique
users across 4220 municipalities. All estimates in-
clude city, region and year fixed effects and region
specific time trends fixed effect. Standard errors
(in brackets) are clustered on municipalities level.
Mean values of P roit, Antiit and ¯ffsit in paren-
theses are weighted by population size.

According to the magnitude of the coefficient estimates presented in Table 10, the exposure to followings-

of-followings stances has a stronger effect on pro-vax users compared to anti-vax users. Hence, each unit

change in the exposure stance is more likely to increase hesitancy among pro-vax users rather than reduce it

among anti-vax users.
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Table 11: Results of the Second stage of the M2SLS for pro-vax vs. anti-vax users - Vaccination rates

(1) (2)
M2SLS M2SLS
P romt Antimt

Vmt Vmt

Panel a: Hexavalent (94.06)
0.4567 0.0674

[1.4333] [2.1973]
N 7,239 7,239
Panel b: MMR ( 89.53)

3.9086∗ -6.6162∗

[2.1978] [3.5315 ]
N 7,238 7,238
Panel c: Menigococcal (81.32)

0.5034 -1.6496
[4.8856] [8.2071]

N 7,061 7,061
Panel d: Pneumococcal (82.64)

2.7584 -4.2443
[5.3633] [ 8.4350]

N 7,066 7,066
Controls (Twitter) ✓ ✓
Controls (Socioec.) ✓ ✓
City and year FE ✓ ✓
Reg × year ✓ ✓

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: All estimates include city and year fixed effects
as well as region specific time trends. Standard errors (in
brackets) are clustered at the municipality level. Estimates
as well as averages of Vmt are weighted by the municipality
population size.

In fact, the second stage results (Table 11) confirm that the effect on vaccine coverage is more strongly

channeled through a shift of users towards anti-vax stances, rather than pro-vax ones. In turn, this suggests that

policy interventions aimed at discouraging vaccine hesitancy should be targeted toward reducing the exposure to

and the flow of anti-vax content, rather than increasing pro-vax campaigns. However, social media censorship -

although effective - has a number of political, social, and ethical implications that go beyond the debate around

vaccinations.35 In addition, recent contributions have shown that these measures can backfire, leading to a

larger spread of censored information (Hobbs and Roberts, 2018).

We also consider the role of random events related to epidemics, scientific discoveries, court sentences,

policies, and news in mitigating or reinforcing the influence of exposure on user stances. To do that, we

manually collected all of the significant events related to vaccines that were discussed in the media during the

period of our analysis. These topics include issues such as deaths of children allegedly caused by vaccines or

lack of vaccination, court rulings in favor of anti-vax or pro-vax views, the dissemination of scientific evidence

for or against vaccines, and political debates about pro- and anti-vax stances. Following Athey et al. (2022),
35Twitter acts on complaints by third parties, including governments, to remove illegal content from the platform. In addition, it runs

its own content moderation policy, which includes actions like user suspension, content removal, and permanent bans in response to
violations of the terms of use (https://help.twitter.com/en/rules-and-policies/twitter-rules). Current allegations against Twitter policies
include partisan implementation of moderation rules and arbitrary or politically biased use of bans.
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we manually classify these online debates into four broad domains: vaccine efficacy, statements from trustful

sources, politics and mandates, and allegations that vaccines are unsafe.36

Table 12: User exposure to FoPF stances and the role of online debates topics.

(1) (2) (2)
sit P roit Antiit

(30.31) (0.495) ( 0.204)
ffsit 0.2884∗∗∗ -0.3309∗∗∗ 0.2295∗∗∗

[0.0693] [0.0757] [0.0728]
ffsit × Efficacy -0.3425 0.3765 -0.3548

[ 0.2724] [ 0.2754] [0.2961]
ffsit × T rustful Source -0.3136∗∗∗ 0.2656∗∗ -0.3805∗∗∗

[ 0.0992] [0.1127] [0.1057]
ffsit × P olitics and Mandate -0.1749∗∗∗ 0.0660 -0.3899∗∗∗

[ 0.0530] [0.0408] [0.0589]
ffsit × V accines Unsafe -0.0697 0.1369 -0.0387

[ 0.2292] [ 0.2442] [0.2495]
N 531,352 531,352 531,352
User FE ✓ ✓ ✓
Date FE ✓ ✓ ✓

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: The numbers refer to an initial sample of 830,253 tweets to a population
of 80,471 unique users across 4220 municipalities. All estimates include individ-
ual and daily date fixed effects. Standard errors (in brackets) are clustered at the
individual. Mean values of sit, P roit, and Antiit in parentheses are weighted
by population size.

Table 12 presents estimates of daily-level user stances on vaccines, conditional on user and daily date fixed

effects. These estimates show how individual stances fluctuate as a function of their followings-of-followings’

stances on regular days, and on days when specific events related to vaccines are debated on Twitter. Column

1 shows that, after controlling for individual fixed tendencies and day-specific features of Twitter activity,

individual stances tend to be influenced by the stances of their followings-of-followings, consistent with our

baseline first-stage result. Exposure to anti-vax content tends to make individuals more lenient towards such

stances. However, this relationship is moderated (and even reversed) on days when credible sources, such as the

World Health Organization, the academic or research community, the European Commission, or a court, issue

statements in favor of vaccines. Similarly, on days when political debates about the effectiveness of vaccines

are discussed on Twitter, the influence of exposure to anti-vax stances is mitigated.

When we classify user stances into binary categories (pro-vax and anti-vax), we find that the mitigating

effect of exposure to anti-vax content is more pronounced in the anti-vax category (column 3). Events involving

statements from trustworthy sources and political debates generally have the ablility to offset the influence of

exposure to anti-vax stances or reinforce the influence of exposure to pro-vax content.

We use our sketched model to assess the potential effects of interventions on social media platforms. Build-

ing on the previous findings, we conduct two types of counterfactual exercises that are symmetrical in imple-
36The full list of events are reported in Table A.11 in Appendix A.
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mentation but differ in their interpretation. On the one hand, we look at the censorship effect on anti-vax stances

by exogenously reducing the activity rate of users whose stance exceeds the 90th percentile by half (Censor-

ship). On the other hand, we investigate the effects of broadening the reach of pro-vax activists by doubling the

number of contacted users for pro-vax activists in the first decile of the distribution (Informative campaigns).37

The results of the exercises are reported in Figure 9, where we plot the converged density distribution of users’

stances for the baseline exercise (panel (c) of Figure 5) as well as for the Censorship and for the Informative

campaign counterfactuals. The figure illustrates two key findings, consistent with our estimates: firstly, both

interventions result in a reduction in the peak and the number of anti-vax users; secondly, the informative cam-

paigns, more so than the censorship intervention, contribute to a decrease in overall polarization. It is important

to note that the varying effects are influenced by the initial distribution’s asymmetry, which aligns with the

observed data.

Figure 9: Policy counterfactuals - Monte Carlo results

Notes: converged density distributions of users’ stances (N=T=500) - average over 100 Monte Carlo runs. We report the
baseline model (blue), the “Censorship” counterfactual exercise (green) in which we halve the activity rate of users in
the upper decile of the stance distribution, and the “Informative campaigns” counterfactual exercise (orange) in which
we double the activity rate for users in the first decile of the stance distribution.

Indeed, informative campaigns targeting vaccines have the potential to be a highly effective and scalable in-

tervention for promoting public health awareness. Their impact is particularly significant when these campaigns
37With these exercises, we simulate two distinct policies. First, we replicate a scenario where the platform flags and reduces the visi-

bility of tweets based on their content. Second, we simulate an informative pro-vax campaign, potentially sponsored by the government
or another public entity, which by design allows for increased reach.
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are perceived as originating from trusted sources and are supported by political interventions.

8 Conclusions

Between 2013 and 2018, Italy experienced significant changes in pediatric vaccine coverage rates, partly due

to the dissemination of misinformation regarding the safety of MMR vaccines. The vaccine hesitancy has con-

tributed to outbreaks of infectious diseases, leading to the implementation and legal enforcement of a mandate

for a wide range of pediatric vaccines in 2017. In this study, we utilize a rich dataset of online interactions and

employ state-of-the-art natural language processing techniques to quantitatively examine the tangible costs that

misinformation and disinformation impose on society.

The negative consequences of spreading fake or unverified news have been largely discussed in academic,

political and media circles, especially in the context of the COVID-19 crisis. While it is known that clusters

of conspiracy theories serve as fertile ground for the proliferation of fake news, and that online activities,

particularly on social media platforms, can have harmful effects such as hate crimes (Müller and Schwarz, 2021)

and influence electoral outcomes (Fujiwara et al., 2021), this paper makes several contributions to the ongoing

debate. Firstly, we develop a method to estimate the causal effects of individual-level online interactions on

observable aggregate outcomes. Secondly, we estimate the actual costs incurred by healthcare systems due to

online anti-vaccine activity. Lastly, we provide data-driven insights and simulations on how to mitigate the

spread of anti-scientific or unsubstantiated content on social media.

In relation to the latter point, our findings indicate that individuals who advocate for vaccination are more

influenced by exposure to vaccine-related content compared to their anti-vaccine counterparts. Conversely,

anti-vaccine individuals are responsive to statements from trusted sources. These results suggest that infor-

mative campaigns targeting vaccines, both online and offline, have the potential to effectively combat vaccine

hesitancy. Even though it may be challenging to change the views of vaccine skeptics, such campaigns can

counteract the persuasive impact of anti-vaccine content on pro-vaccine individuals.

In conclusion, our policy insights offer a viable approach to addressing the decline in vaccine coverage with-

out resorting to coercive measures like vaccine mandates. Our findings suggest that while the legal enforcement

may address the immediate effects of vaccine hesitancy on coverage rates and associated health costs, it also

leads to polarization and radicalization of opinions, which are long-lasting and can perpetuate themselves when

coupled with echo chambers. Therefore, policymakers must consider these potential consequences to prevent

vaccine-enhancing measures from backfiring once legal enforcement is lifted.

Baumann et al. (2021) suggest that when debated topics overlap thematically, increases in controversialness
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can lead to the emergence of ideological states where multiple stances align within a common, “political”

stance. In their model, ideology emerges endogenously from uncorrelated polarization, achieved by relaxing the

unrealistic assumption of topic orthogonality. In this paper’s analysis of pediatric vaccines from 2013 to 2018,

fake news related to vaccinations was limited to the debate on the vaccine-autism causation. However, today the

topic is no longer uncorrelated to other salient debates. The controversy surrounding the COVID-19 pandemic

has created an ideological state that covers a wide range of topics including vaccines, face masks, mobility

restrictions, and ultimately political opinions. Finding a way to deescalate the debates around scientifically

grounded topics can prove to be a viable way to reduce the polarization and foster constructive discussions.
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Appendix A

A.1 Additional Tables

Table A.1 provides an overview of the statistical data pertaining to the characteristics of the municipality.

Table A.1: Descriptive statistics of municipality’s characteristics

Median Mean sd Min Max
Avg. mother’s age at birth 31.92 31.82 0.31 30.32 32.81
Health public cost pc (AC) 1,911.00 1,903.89 56.37 1,662.00 2,515.00
Income pc (AC) 9,183.32 10,854.95 3,786.64 1,986.88 84,253.34
Lower secondary school attainment (%) 86.41 85.30 2.22 74.36 87.73
Birth rate (%) 7.30 7.38 0.64 5.40 10.70
Populist party 1.00 0.58 0.49 0.00 1.00

Notes: The statistics are weighted by the municipality population size.

A.2 Balance tests

Table A.2 shows the results of an instrument balance test run by regressing municipal characteristics on the

instrument. Each column refers to a variable related to financial (health expenditure, income), social (education,

average mother’s age at birth, birth rate) or political (populist parties vote share) characteristics.

Table A.2: Instrument balance tests
(1) (2) (3) (4) (5) (6)

Health public Income Lower secondary Avg. mother’s Birth rate Populist party
cost per capita (AC) per capita (AC) school att. (%) age at birth

Panel a: geolocated in the same user’s municipality
ffsit -0.0211 -0.403 0.0001 0.0001 -0.0002 0.0002

[0.0246] [0.442] [0.0002] [0.0001] [0.0002] [0.0002]
N 110,639 110,639 110,639 110,589 110,639 110,639

Panel b: geolocated in municipalities different from the user’s municipality
ffsit -0.0001 -0.447 -0.0001 -0.0001 -0.00002 0.0001

[0.0126] [0.337] [0.0004] [0.0001] [0.0001] [0.0001]
N 131,003 131,003 131,003 130,817 131,003 131,003

Panel c: not geolocated
ffsit 0.0037 1.001 -0.00004 -0.00001 0.0001 0.0002

[0.0121] [0.912] [0.0002] [0.00003] [0.0001] [0.0002]
N 130,977 130,977 130,977 130,791 130,977 130,977
CITY and YEAR FE ✓ ✓ ✓ ✓ ✓ ✓

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: The figures in each row are estimated coefficients from regressions of municipal characteristics on FoPF stances. Standard
errors (in brackets) are clustered at the municipality level.
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A.3 Reduced Form

Table A.3 and Table A.4 reports the reduced form results for the vaccination rates, hospitalizations and average

annual costs for vaccine preventable diseases, respectively.

Table A.3: Reduced form - Vaccination rates
(1) (2) (3) (4)
Vmt Vmt Vmt Vmt

Hexavalent MMR Meningococcus Pneumococcus
ffsmt -0.007 -0.038∗∗ -0.022 -0.071

[0.012] [0.019] [0.049] [0.055]
N 7,239 7,238 7,061 7,066

Controls (Twitter) ✓ ✓ ✓ ✓
Controls (Socioec.) ✓ ✓ ✓ ✓
City and year FE ✓ ✓ ✓ ✓
Reg × year ✓ ✓ ✓ ✓

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: All estimates include city, region and year fixed effects and region-specific time
trends fixed effects. Standard errors (in brackets) are clustered on the municipality level.
Estimates are weighted by municipality population size.
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Table A.4: Reduced form - Hospitalizations.

(1) (2) (3)
Vmt Vmt Vmt

non-target non-target Children
pop. pop.(MMR) age 1-10 (MMR)

Panel a: Hopitalizations
smt 0.123∗∗ 0.104∗∗∗ 0.0603∗

[0.0550] [0.0309] [0.0323]
Panel b: Healthcare costs
smt 383.7∗ 326.7∗∗ 147.0∗

[203.9] [146.2] [78.60]

(4) (5) (6)
(Hexav.) (Meningo.) (Pneumo.)

Non-target population
Panel c: Hopitalizations
smt 0.0266 -0.0002 -0.005

[0.0432] [0.0005] [0.0079]
Panel d: Healthcare costs
smt -138.3 -5.515 -17.42

[340.2] [8.761] [21.84]

Children age 1-10
Panel e: Hopitalizations
smt 0.0005 0.00008 0.006

[0.0097] [0.0019] [0.0074]
Panel f: Healthcare costs
smt -32.78 5.163 0.478

[26.40] [7.744] [23.39]

N 5,136 5,136 5,136
CONTROL (Twitter ) ✓ ✓ ✓
CONTROL (Socioec. ) ✓ ✓ ✓
CITY and YEAR FE ✓ ✓ ✓
Reg × Year ✓ ✓ ✓

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Notes: All estimates include
city and year fixed effects and region-specific time trends. Standard errors
(in brackets) are clustered at the municipality level. Estimates are weighted
by the municipality population size.

A.4 Results - Vaccination Rates (full set of estimates)

Table A.5 shows second stage estimates related to vaccination rates under several specifications.
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Table A.5: Results of the Second stage of the OLS and the M2SLS - Vaccination rates

(1) (2) (3) (4) (5) (6) (7)
OLS M2SLS M2SLS M2SLS M2SLS M2SLS M2SLS
Vmt Vmt Vmt Vmt Vmt Vmt Vmt

Panel a: Hexavalent (94.06)
smt -0.001 -0.033 -0.005 -0.004 -0.003 -0.008 -0.023

[0.002] [0.026] [0.015] [0.015] [0.015] [0.016] [0.015]
N 7,239 7,601 7,239 7,239 7,239 7,239 7,239
Panel b: MMR ( 89.53)
smt -0.005 -0.157∗∗∗ -0.045∗ -0.037 -0.041∗ -0.048∗ -0.043∗∗

[0.003] [0.044] [0.026] [0.024] [0.024] [0.027] [0.021]
N 7,238 7,600 7,238 7,238 7,238 7,238 7,238
Panel c: Menigococcal (81.32)
smt -0.002 -0.470∗∗∗ -0.030 -0.001 -0.013 -0.009 -0.040

[0.008] [0.128] [0.066] [0.062] [0.064] [0.062] [0.054]
N 7,061 7,438 7,061 7,061 7,061 7,061 7,061
Panel d: Pneumococcal (82.64)
smt -0.0001 -0.206∗∗ -0.060 -0.032 -0.046 -0.071 -0.029

[0.008] [0.086] [0.072] [0.063] [0.067] [0.069] [0.052]
N 7,066 7,429 7,066 7,066 7,066 7,066 7,066
CONTROL (Twitter) ✓ ✓ ✓
CONTROL (socioeconomics) ✓ ✓ ✓
YEAR FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
CITY FE ✓ ✓ ✓ ✓ ✓ ✓
Reg × Year ✓ ✓ ✓ ✓ ✓

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: All estimates include city and year fixed effects as well as region specific time trends. Standard errors (in
brackets) are clustered at the municipality level and have been corrected in the second stage. Estimates as well as
averages of Vmt are weighted by the municipality population size.

A.5 Results - Hexavalent, Meningococcus and Pneumococcus Hospitalizations

Table A.6 reports the estimates for the second stage, indicating the number of hospitalizations and the average

annual costs associated with administering Hexavalent, Meningococcal, and Pneumococcal vaccinations.
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Table A.6: Results of the OLS and the Second stage of the M2SLS - Hospitalizations.

(1) (2) (3) (4) (5) (6)
OLS M2SLS OLS M2SLS OLS M2SLS
Vmt Vmt Vmt Vmt Vmt Vmt

(Hexav.) (Hexav.) (Meningo.) (Meningo.) (Pneumo.) (Pneumo.)
Non-target population

Panel a: Hopitalizations
smt 0.009 0.025 -0.0001 -0.0003 -0.0006 -0.021

[0.012] [0.092] [0.0002] [0.0009] [0.002] [0.015]
Panel b: Healthcare costs
smt 102.0 -628.4 -4.756 -20.81 -10.53∗ -46.519

[100.6] [700.3] [3.976] [16.46] [6.103] [37.26]

Children age 1-10
Panel a: Hopitalizations
smt -0.0001 0.002 0.0001 0.0003 -0.002 0.009

[0.003] [0.016] [0.001] [0.004] [0.002] [0.011]
Panel b: Healthcare costs
smt 12.74 -66.18 -0.528 10.36 -3.788 -37.99

[18.45] [49.21] [2.887] [14.90] [6.229] [42.28]

N 3,331 3,331 3,331 3,331 3,331 3,331
Controls (Twitter) ✓ ✓ ✓ ✓ ✓ ✓
Controls (Socioecon.) ✓ ✓ ✓ ✓ ✓ ✓
City and year FE ✓ ✓ ✓ ✓ ✓ ✓
Reg × year ✓ ✓ ✓ ✓ ✓ ✓

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: All estimates include city and year fixed effects as well as region specific time trends. Standard
errors (in brackets) are clustered at the municipality level and have been corrected in the second stage.
Estimates are weighted by the municipality population size.

A.6 Results - Mortality among hospitalized

Descriptive statistics and second stage estimates for mortality cases of hospitalized patients with vaccine-

preventable diseases are presented in Table A.7 and Table A.8, respectively.

Table A.7: Descriptive statistics of mortality among hospitalized due to vaccine-preventable diseases (2013-2016)

Median Mean sd Min Max N
Panel a: Hopitalizations
Non-target population 0.00 1.00 2.08 0.00 97.56 31,760
Non-target population (Hexav.) 0.00 0.93 1.98 0.00 97.56 31,760
Non-target population (Meningo.) 0.00 0.00 0.15 0.00 29.02 31,760
Non-target population (MMR) 0.00 0.04 0.38 0.00 28.92 31,760
Non-target population (Pneumo.) 0.00 0.14 0.68 0.00 97.56 31,760

Children age 1-10 0.00 0.01 0.12 0.00 7.28 31,760
Children age 1-10 (Hexav.) 0.00 0.00 0.06 0.00 5.53 31,760
Children age 1-10 (Meningo.) 0.00 0.00 0.07 0.00 6.67 31,760
Children age 1-10 (MMR) 0.00 0.00 0.05 0.00 7.28 31,760
Children age 1-10 (Pneumo.) 0.00 0.00 0.04 0.00 2.81 31,760

Notes: The statistics refer to 7,940 municipalities for the time period between 2013-2016
and are weighted by the municipality population size.
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Table A.8: Results of the Second stage of the M2SLS - Mortality among Hospitalized.

(1) (2) (3) (4) (5)
Vmt Vmt Vmt Vmt Vmt

Main Hexavalent MMR Meningococcus Pneumococcus
Panel a: Non-target population

Hospitalizations
smt -0.013 -0.019 0.005 -0.0006 -0.006

[0.014] [0.013] [0.003] [0.0004] [0.005]
N 3,331 3,331 3,331 3,331 3,331

Panel a: Children age 1-10
Hospitalizations
smt -0.000005 0.0002 0.00006 -0.0002 -0.0001

[0.0005] [0.0002] [0.00005] [0.0003] [0.0002]
N 3,331 3,331 3,331 3,331 3,331
Controls (Twitter) ✓ ✓ ✓ ✓ ✓
Controls (socioec.) ✓ ✓ ✓ ✓ ✓
City and year FE ✓ ✓ ✓ ✓ ✓
Reg × year ✓ ✓ ✓ ✓ ✓

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: All estimates include city and year fixed effects and region-specific time trends. Standard
errors (in brackets) are clustered at the municipality level and have been corrected in the second stage.
Estimates are weighted by the municipality population size.

Results - robustness checks

For completeness, we report here the full tables of robustness checks, including the second-stage results on all

vaccinations.
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Table A.9: M2SLS Individual - Second stage (Vaccination rate)

(1) (2) (3) (4) (5) (6) (7)
Main Twitter Emilia Romagna Populist Party Network Excluding F oF 2013-2016

algortithm Law Law distance geolocated in
user’s municipality

Vmt Vmt Vmt Vmt Vmt Vmt Vmt

Panel a: Hexavalent (94.06)
smt -0.023 -0.021 -0.024 -0.022 -0.023 -0.018 -0.041

[0.015] [0.016] [0.015] [0.019] [0.015] [0.016] [0.032]

N 7,239 7,239 7,239 7,239 7,239 7,239 3,139
Panel b: MMR ( 89.53)
smt -0.043∗∗ -0.047∗∗ -0.048∗∗ -0.055∗∗ -0.050∗∗ -0.042∗∗ -0.087∗∗

[0.021] [0.022] [0.022] [0.027] [0.023] [0.021] [0.0441]

N 7,238 7,238 7,238 7,238 7,238 7,238 3,137
Panel c: Menigococcus (81.32)
smt -0.040 -0.044 -0.041 -0.026 -0.038 -0.043 0.001

[0.054] [0.057] [0.054] [0.069] [0.0559] [0.056] [0.0964]

N 7,061 7,061 7,061 7,061 7,061 7,061 3,023
Panel d: Pneumococcus (82.64)
smt -0.029 -0.035 -0.031 -0.104 -0.027 -0.004 -0.193

[0.057] [0.056] [0.057] [0.083] [0.060] [0.054] [0.155]

N 7,066 7,066 7,066 7,066 7,066 7,066 3,029
Controls (Twitter) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls (Socioec.) ✓ ✓ ✓ ✓ ✓ ✓ ✓
City and year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reg × year ✓ ✓ ✓ ✓ ✓ ✓ ✓

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: All estimates include city and year fixed effects and region-specific time trends. Standard errors (in brackets) are clustered at the
municipality level and have been corrected in the second stage. Estimates, as well as averages of Vmt, are weighted by the municipality
population size.

Results - full sample

For the sake of clarity, we present the findings for the full sample of geolocated tweets, including the first

percentile of municipalities that were left out of our primary findings.
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Table A.10: Results of the M2SLS - Vaccination rate, Hospitalizations and Costs (full sample)

Panel a: First stage
sit sit sit sit

( 30.33) ( 30.33) ( 30.33) ( 30.33)
ffsit (28.77) 0.709∗∗∗ 0.709∗∗∗ 0.710∗∗∗ 0.710∗∗∗

[0.0164] [0.0164] [0.0164] [0.0164]

N 130,896 130,896 130,896 130,896
Controls (Twitter) ✓ ✓
Controls (socioec.) ✓ ✓
City and year FE ✓ ✓ ✓ ✓
Reg × year ✓ ✓ ✓ ✓
F-stat 1,875.96 1,874.25 1,865.62 1,868.15

Panel b: Second stage - Vaccination Rate
(1) (2) (3) (4)
Vmt Vmt Vmt Vmt

Hexavalent MMR Meningococcus Pneumococcus
OLS
smt -0.0003 -0.003 -0.005 -0.006

[0.001] [0.002] [0.005] [0.005]
M2SLS
smt -0.014 -0.030∗∗ -0.047 -0.012

[0.010] [0.014] [0.035] [0.034]

N 10,281 10,275 9,978 9,994

Panel c: Second stage - Non-target Population
(1) (2) (3) (4) (5)
Vmt Vmt Vmt Vmt Vmt

Main Hexavalent MMR Meningococcus Pneumococcus
Hopitalizations
smt 0.181∗∗ 0.0440 0.150∗∗∗ -0.000370 -0.00788

[0.0779] [0.0610] [0.0436] [0.000677] [0.0111]
Healthcare costs
smt 585.2∗∗ -191.6 464.3∗∗ -8.797 -24.01

[286.3] [478.9] [205.1] [11.74] [30.78]

N 5,136 5,136 5,136 5,136 5,136

Panel d: Second stage - Children age 1-10
(1) (2) (3) (4)
Vmt Vmt Vmt Vmt

Hexavalent MMR Meningococcus Pneumococcus
Hopitalizations
smt -0.0003 0.0846∗ -0.0001 0.008

[0.0137] [0.0452] [0.00266] [0.0104]
Healthcare costs
smt -48.82 206.8∗ 6.494 -2.958

[37.29] [110.0] [10.97] [33.27]

N 5,136 5,136 5,136 5,136
Controls (Twitter) ✓ ✓ ✓ ✓ ✓
Controls (socioec.) ✓ ✓ ✓ ✓ ✓
City and year FE ✓ ✓ ✓ ✓ ✓
Reg × year ✓ ✓ ✓ ✓ ✓

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Notes: All estimates include city and year fixed effects as well as region specific time trends.
Standard errors (in brackets) are clustered at the municipality level and have been corrected in the
second stage. Estimates, as well as the sit are weighted by the municipality population size.
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List of events and classification

Table A.11: List of events
date Classification Description
14jan2013 Efficacy Vaccino anti-meningite B,protezione in 95% vaccinati
28jan2013 Efficacy Bimba di 3 anni muore di setticemia forse provocata da pneumococco
17apr2013 Efficacy In Italia migliaia di casi di morbillo e rosolia evitabili
02may2013 Efficacy Epidemia di morbillo nel Regno Unito: dobbiamo preoccuparci?
15may2013 Efficacy Sanita’: Napoli; vaccini gratis contro rosolia congenita
10jun2013 Efficacy Veneto: casi di complicanze da morbillo e varicella in persone non vaccinate
13jun2013 Efficacy Sanita’: polmonite, in Lombardia costa 68 mln di euro l’anno
26jun2013 Efficacy Arriva vaccino contro meningite ceppo B
27jun2013 Efficacy Meningite: Veneto; e’ 10% tutte malattie invasive da batteri
24sep2013 Efficacy In Lombardia campagna vaccinazione Hpv anche per uomini
12may2016 Efficacy Morbillo in Campania: allerta dei medici per le basse coperture vaccinali nella Regione
08jul2016 Efficacy Documento sui vaccini della Fnomceo
23jun2017 Efficacy Un bimbo malato di leucemia morto per il morbillo: “Contagiato dai fratelli non vaccinati”
21may2013 Politics and Mandate Proposta di Legge d’iniziativa del deputato Burtone Istituzione della Giornata in ricordo delle persone

decedute o rese disabili a causa di vaccinazioni
01jul2016 Politics and Mandate introduzione obbligo vaccinale per gli asili nido in Emilia Romagna
23nov2016 Politics and Mandate introduzione obbligo vaccinale per gli asili nido in Emilia Romagna
26jan2017 Politics and Mandate accordo stato-regioni per una legge nazionale sui vaccini
03may2017 Politics and Mandate Tutte le volte del Movimento 5 Stelle contro i vaccini, la Rete smentisce Grillo
20may2017 Politics and Mandate Veneto Vaccini, torna l’obbligo. Zaia: «Misura inefficace». I virologi: «Salva la vita»
07jun2017 Politics and Mandate decreto legge n 73 /2017 "legge lorenzin"
08jun2017 Politics and Mandate Alto Adige, dove il consiglio provinciale ha approvato all’unanimità una mozione che chiede “lo stralcio

delle misure coercitive previste dal decreto sui vaccini e una campagna di sensibilizzazione ampia ed
equilibrata

28jul2017 Politics and Mandate Il Decreto vaccini è legge, tutte le novità
10jan2018 Politics and Mandate Vaccini, Salvini: “Con noi al governo via l’obbligo”. Lorenzin: “Per qualche voto gioca con la salute

dei bambini”
22jun2018 Politics and Mandate Vaccini, Salvini: ’Inutili 10 vaccini obbligatori’. Burioni: ’Bugie pericolosissime’. Alt Di Maio e della

Grillo
05aug2018 Politics and Mandate Taverna, la sciamannata vicepresidente del Senato: i vaccini? Come i marchi alle bestie
12aug2018 Politics and Mandate Salvini sa che i soldati devono vaccinarsi? Mettetevi d’accordo" Ironia social sulla # LevaObbligatoria
06sep2018 Politics and Mandate Vaccini a scuola, colpo di scena: emendamento ripristina l’autocertificazione
08jan2013 Trustful Source Pneumococco. L’EU estende l’uso di Prevenar 13 a bambini e adolescenti fino a 17 anni
17sep2013 Trustful Source Oms, nessun legame tra vaccini e autismo
26nov2014 Trustful Source Lorenzin condanna il giudice del tribunale del lavoro:"Quella sentenza sul vaccino è un attentato alla

salute pubblica
17feb2015 Trustful Source sentenza 1767/14 della corte d’Appello di Bologna nella causa d’appello alla sentenza 15.03.2012 Ri-

mini
10jan2016 Trustful Source La battaglia dei vaccini - presadiretta
27mar2016 Trustful Source Robert De Niro ritira il film sul legame tra vaccini e autismo dal Tribeca Film Festival di New York
01jun2016 Trustful Source Procura di Trani ha riconosciuto l’inconsistenza del presunto legame tra la vaccinazione trivalente MPR

(contro morbillo, parotite e rosolia) e autismo
21apr2017 Trustful Source L’Ordine dei medici di Treviso ha radiato Roberto Gava, considerato uno dei paladini dei no-vax in

Italia
02may2017 Trustful Source new york times pubblica "Populism, Politics and Measeles"
07sep2017 Trustful Source TAR Lazio – decreto 7 settembre 2017: respinto il ricorso del Codacons riguardante le misure adottate

per ottemperare agli obblighi di documentazione vaccinale
22nov2017 Trustful Source la sentenza della Corte costituzionale considera legittimo l’obbligo dei vaccini nel contesto attuale

definito dal Decreto 73/2017 e respinge i ricorsi presentati dalla Regione Veneto
05jul2018 Trustful Source Giulia Grillo: «Vaccini, a scuola con autocertificazione. L’obbligo cambierà. Io incinta, vaccinerò mio

figlio»
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List of events - continued from previous page

date Classification Description
01jul2013 Vaccine Unsafe Tribunale di Pesaro, 1 luglio 2013
07jul2013 Vaccine Unsafe “Vaccine adverse events reporting system" pubblica uno studio dove Heidi Stevenson parla di migliaia

di morti per colpa di vaccini, probabilità di morte aumenta del 50 per cento – e con ogni dose di vaccino
supplementare"

10oct2013 Vaccine Unsafe Vaccini:1 italiano su 2 è contrario, "inutili e poco sicuri"
11nov2013 Vaccine Unsafe Tribunale di Pesaro, 11 novembre 2013
09jan2014 Vaccine Unsafe Venti nuovi casi di danno da vaccini alla settimana per l’avvocato di Rimini
17mar2014 Vaccine Unsafe Si vaccina poco? Big Pharma fa pressing sulle Asl e telefona alle famiglie
02jul2014 Vaccine Unsafe Tribunale di Rimini, 2 luglio 2014, n. 217
23sep2014 Vaccine Unsafe Tribunale del lavoro di milano: vaccino esavalente Infanrix Hexa Sk causa l’autismo
20oct2014 Vaccine Unsafe La presenta di DNA fetale umano nei vaccini é una possibile causa di autismo
28nov2014 Vaccine Unsafe Aifa: “Tredici casi di morte sospetta” vacccino antiinfluenzale
11mar2015 Vaccine Unsafe ll ministero riconosce l’indennizzo per un bimba Catanzaro
01jul2015 Vaccine Unsafe Jim Carrey tweet sul mercurio nei vaccini
03jul2015 Vaccine Unsafe Jim Carrey causa l’autismo
25may2016 Vaccine Unsafe Bimba muore a 2 mesi in culla dopo il vaccino: l’Asl sostituisce tutti i lotti
10nov2016 Vaccine Unsafe Corte d’Appello di Milano, 10 novembre 2016, n.1255
01feb2017 Vaccine Unsafe Corte di Cassazione, Sezione 6 civile, 1 febbraio 2017, n. 2684
17apr2017 Vaccine Unsafe report vaccino HPV

Additional Figures

Figure A1 shows tweets’ distribution across municipalities over time.
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Figure A1: Tweets over time (2013-2018)

(a) Number of tweets (2013) (b) Number of tweets (2014) (c) Number of tweets (2015)

(d) Number of tweets (2016) (e) Number of tweets (2017) (f) Number of tweets (2018)

Notes: The sample consists of 830,253 tweets relative to a population of 80,471 unique users across 4,220 municipalities.

Figure A2 plots the monthly trends in hospitalizations among the vaccine-target population and in vulnera-

ble populations that are not targeted by vaccines. The trends for hexavalent, pneumococcus, and meningococcus

are generally comparable for the two groups. For diseases covered by the hexavalent vaccine, hospitalisation

rates for the vaccine targeted population was stable for the entire study period, while hospitalization rates for the

non-targeted population decreased from 3000 to 1000 during the study period. For Meningococcus, we see a

higher overall number of hospitalizations for target population than for target population. Instead, the trend for

pneumococcus is similar across groups. However, for the MMR vaccine, the hospitalization rate trends were

opposite between January 2015 and January 2017, which was a period marked by several measles epidemic

outbreakshe hospitalization rate for the group that received the vaccine decreased from 250 in 2015 to 170 in

2016, with the lowest point being in 2016. During the study period, the hospitalization rate for the vaccine

non-targeted population remained steady at an average of 200 hospitalizations until july 2016, but then started

to decrease after August 2016.
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Figure A2: Hospitalization trends (2013-2016)

(a) MMR Hospitalizations (b) Hexavalent Hospitalizations

(c) Meningococcus Hospitalizations (d) Pneumococcus Hospitalizations

Notes: The hospitalization rate for the vaccine-targeted population is represented by the red dashed line, while the
vaccine non-targeted vulnerable groups are represented by the black solid line.

Appendix B

The Model of Opinion Dynamics and Network Formation.

The model builds on Baumann et al. (2020)’s work on endogenous polarization dynamics in social networks.

In the model we consider a continuum of individuals in a discrete, infinite time setting [t = 0, 1, .., ∞]. Each

individual i has a stance on vaccinations st
i = [s, s̄] which spans from unconditional support to hesitancy. We

assume that the stance reflects individuals’ opinions on the overall utility of vaccinations a one-to-one mapping

between parents’ and children’s (perceived) utility.

Individual stances evolve over time from initial positions s0
i , drawn from a distribution S0 ∼ Fs(0), with

finite first and second moments; in particular, µ0 = E(s0
i ), stands for the average initial stance in the society. To

reflect the observed distribution of initial stances - on average pro-vaccines - in the baseline simulations µ0 ≤ 0

and initial stances are drawn from a Gaussian distribution. We obtain qualitatively equivalent results when we

move to a case where the initial distribution of opinions is centered around zero (i.e., µ0 = 0).
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The opinion dynamics within the social network are entirely driven by the interactions among agents and

are described by a system of N coupled differential equations:

ṡi = −si + I
N∑

j=1
Wij(t)tanh(αtsj) (B.1)

In Equation (B.1) I measures the strength of the interaction among users of the platform, W (t) is a time-

varying spatial contiguity matrix, whose ith, jth elements represent every link between individuals in the net-

work - i.e., wij(t) = 1 if i interacts with j, wij(t) = 0 otherwise. The function tanh(·) is the hyperbolic

tangent function, which provides a sigmoidal influence function of peers on individuals’ stances, ensuring that

i) an agent’s i stance influences others monotonically and that ii) such influence “flattens” in the extremes.

Finally, αt is the degree of controversialness of the topic.

The contiguity matrix W (t) evolves according to an activity-driven (AD) temporal network (Perra et al.,

2012), where each agent is characterized by the propensity to interact with a share ωi ∈ [ϵ, 1] of other agents,

and the probability of an interaction is driven by homophily (Bessi et al., 2016) - that is to say, individuals

are more likely to interact with like-minded peers, and we model it as a decreasing function of the (absolute)

distance between i and j’s opinions, pij(t) = |si(t)−sj |−β∑
j

|xi−xj |−β . Note that the β parameter that informs the power

law decay of interaction probability includes effects as diverse as the endogenous preferences for homophily

(i.e., to what extent individuals dislike the interaction with people of different stances) or the exogenous settings

embedded in the social networks’ algorithms - e.g., how likely one’s content is to appear in a like-minded peer’s

home newsfeed.

Figure 3 shows the predictions of the simulated models. The heatmaps show the distribution of stances

for the users and their followings in a simulation for low controversialness (α = 0.1 in panel a), relatively

higher controversialness (α = 0.2 in panel b), and time-varying controversialness (long periods of α = 0.1

with short-lived outbursts of α = 1 in panel c). The colors in the heatmaps represent the density of users,

with lighter colors indicating a higher number of users. The marginal distribution of users’ opinions and their

followings’ opinions are plotted on the x- and y-axis, respectively. The simulation shows that users are more

likely to connect with peers who share similar opinions due to homophily.

In addition to homophily, higher controversialness strengthens the influence of peers’ opinions on users

who tend to form homogeneous groups. At the network level, this results in a correlation between users’ and

their followings’ average opinions. When controversialness is low (panel a), the model converges to a bivariate

Gaussian distribution centered at approximately (-.5,-.5); on the other hand, when the model is characterized by

higher controversialness (panel b), it converges to a bivariate bimodal distribution with a high density of users
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with like-minded followings, resulting in two echo chambers corresponding to opposite stances on vaccinations.

In a more realistic simulation where long periods of low controversialness are interrupted by short-lived, high-

controversialness outbursts (panel c), the model also generates echo chambers.

The figures below the heatmaps show the degree of polarization during the simulations. When controver-

sialness is low, there is no trend in polarization within the population, but polarization increases with relatively

high controversialness. Interestingly, with time-varying controversialness, polarization increases during the

outbursts and remains stable at the new, higher level until the next shift.

Figure 3: Simulated distribution of stances

(a) Low controversialness (b) High controversialness (c) Time-varying controversialness

Notes: user (x-axis) and average followings’ (y-axis) distribution of stances in a simulated model when controversialness
is low (α = .1 in panel a), high (α = .2 in panel b), and low with short-lived outbursts (α = 0.1 and α = 1 in panel
c). In all models, the number of individuals is N = 500 and the periods are T = 5 - divided in 100 subperiods. Initial
values (s0) are randomly drawn from a gaussian distribution with µ = −0.2 and σ = 0.5 to match the asymmetry of
the initial opinions in the data.
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Appendix C - not for publication

Data Colleciton and classification procedure

In this section we describe the process by which we obtain the Twitter data used in this paper as well as the

classification procedure.

Data collection. We access these data through the Twitter Academic API, which provides the full archive

public Twitter posts to users upon requests.38

First, we registered for an API key through Twitter’s Developer program to obtain a set of keys (API key,

API secret key, Access token, Access token secret) that allow us to access the data.39 Users are required to agree

to Twitter’s conditions in order to use these data. Second, we wrote a Python script using the Full Archive

endpoint of the Twitter developer site for academic researchers to gather publicly available Twitter posts in

Italian that contained the words "vaccine(s)", "vaccination", "vaccinating", "novax", and "vax"

(and their feminine and plural forms).40 We excluded tweets that were advertisements for "mozzarella" or "cow

milk" ("latte vaccino" in Italian). The most recent version of the dataset was downloaded on April 23, 2021.

We collected 2,031,448 tweets. We omit ex-post all tweets containing only links or mentions41 and those

produced by accounts that are temporarily unavailable due to violation of the Twitter media policy.42 We also

disregard all tweets referring to pets’ vaccinations, those where the string “vax” is only retrieved in a URL

contained in the tweet, and those written in other languages. After this initial screening process we leaved a

sample of 2,017,539 posts.

query = "(vaccino OR vaccini OR vaccinazione OR vaccinarsi

OR vaccinato OR vaccinata OR vaccinati OR novax OR vax

OR vaccinare -latte vaccino) lang:it"

start_date = "01-01-2013T00:00"

end_date = "01-01-2019T00:00"

38Twitter’s license agreement for this API forbids sharing the raw Twitter data publicly.
39Accessible here: https://developer.twitter.com/en/products/twitter-api/academic-research
40We used the Full Archive endpoint search/all at the following URL: https://api.twitter.com/2/tweets/

search/all. This endpoint allows us to access up to 10 million tweets per month. Please note that Twitter’s license agreement
for this API prohibits the public sharing of raw Twitter data.

41A tweet containing another user’s username, preceded by "@".
42Since 2021, Twitter has applied labels to tweets that may contain misleading information about COVID-19 vaccines and removed

the most harmful misleading information from the service.
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VaxBERT classifier. To determine the stance of a tweet on vaccines, we created an anti-vax tweet classifier

called vaxBERTo using BERT (Bidirectional Encoder Representations from Transformers), a state-of-the-art

Natural Language Processing (NLP) algorithm.43 BERT is a pre-trained model that can be used to analyze

text for a variety of tasks, as demonstrated in research such as See et al. (2017) and Johnson and Goldwasser

(2016). NLP allows us to analyze text using various methods, from human analysis to automatic processes

using built-in libraries, and to categorize tweets as positive or negative based on their main points. The polarity

of the tweets is then determined based on these categories.

The following subsections provide a full description of each stage in the suggested model.

Data cleaning. The tweets are pre-processed and normalized, we remove all URLs and hashtag symbols (#)

and retain only the text that could provide useful information. All tags (e.g. @username) were also removed

so that the labeling process could focus solely on the content and not on the people mentioned.44 An example

of original tweet and the clean version is reported below ( Table C.1).

Table C.1: Example of tweet

Original Tweet Clean Text
rt @nextquotidiano: la storia di nadja,
la bambina serba morta di #morbillo

(per colpa dei #novax) https://t.co/6lfsl2mxcs

la storia di nadja,
la bambina serba morta di morbillo

(per colpa dei novax)

Notes: Cleaning of tweet ID n. 1007*************203. English translation:
"Nadja’s story, the Serbian girl who died from measles (for the fault of the anti-vax)"

Training phase. We divided our database into two categories: original tweets (which includes quotes and

replies) and plain retweets. Since retweets’ text is identical to the original tweet, which was still preserved,

we didn’t include them in the sample. Indeed, using the same lines repeatedly during the training phase would

merely increase noise and not offer any new information. Additionally, as there would be no justification for the

algorithm to treat the labels of retweets in the prediction phase as if they were original tweets, we remove the

retweets’ subsample also in that phase. Instead, we label retweets of their corresponding original tweets with

the same label. In order to reduce bias in the training sample, we followed Pierri et al. (2020) and categorize

tweets from well-known Italian fake news outlets, pro-vax activists, and mainstream media outlets as either

"anti-vax" (labelτ = 1), "pro- or neutral" (labelτ = 0). A list of mainstream media outlets and fake news

sources can be found in Table 1.
43BERT was developed for Google by Devlin et al. (2018b).
44Notice that according to Polignano et al. (2019), BERT is able to efficiently parse the social media language, and that mentions,

links and hashtags do not affect model training. We decided in favor of the cleaning process in order to avoid any interference between
mentions, unhelpful information like urls, some symbols, and the outcome, which we wanted to be focused on context only. However,
results hold without the additional cleaning.
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Table C.2: List of renown fake news outlets as in Pierri et al. (2020)
mag24.es saper-link-news.com
notiziarioromacapitale.blogspot.com tg24-ore.com
ilmessangero.it tuttiicriminidegliimmigrati.com
mondodiannunci.com voxnews.info
skynew.it webtg24.com
zapping2017.myblog.it accademiadellaliberta.blogspot.com
daily-screen.com altrarealta.blogspot.com
il-quotidiano.info aurorasito.wordpress.com
adessobasta.org compressamente.blogspot.com
catenaumana.it freeondarevolution.wordpress.com
ilvostropensiero.it ilsapereepotere2.blogspot.com
lettoquotidiano.it laveritadininconaco.altervista.org
interagisco.net madreterra.myblog.it
5stellenews.com neovitruvian.wordpress.com
breaknotizie.com olivieromannucci.blogspot.com
byoblu.com pianetax.wordpress.com
comedonchisciotte.org terrarealtime.blogspot.com
direttanews24.com corrieredelcorsaro.it
essere-informati.it siamonapoletani.org
il-giornale.info ilfattoquotidaino.it
il-quotidiano.info conoscenzealconfine.it
informarexresistere.fr disinformazione.it
informazionelibera.eu ecplanet.org
jedanews.it effervescienza.org
italianosveglia.com filosofiaelogos.it
lonesto.it hackthematrix.it
silenziefalsita.it ilpuntosulmistero.it
sostenitori.info libreidee.org
tankerenemy.com liberamenteservo.com
ununiverso.it nibiru2012.it
skytg24news.it pandoratv.it
ilprimatonazionale.it tmcrew.org

List of the mainstream media outlets

ANSA L’Avanti
Adnkronos Liberazione
AGI L’Osservatore Romano
ASCA Il Sole 24 Ore
Reuters ItaliaOggi
Press Association Milano Finanza
Bloomberg La Gazzetta dello Sport
News.cn open
La Repubblica Panorama
La Stampa L’Espresso
Il Tempo Micromega
La Nazione Le Scienze
Il Messaggero Focus
Il Giornale Galileo
Il Fatto Quotidiano Universinet
Il Foglio Famiglia Cristiana
Il Giorno Le scienze
Il Manifesto

We manually labeled 43,472 tweets from 108 unique users for the training set, with 23,909 tweets (55% of

the total) classified as 1 and 19,563 as 0. During the training process, the machine further divided the sample

into a training set of 39,124 tweets (around 90% of the total) and a validation set of 4,348 tweets to fine-tune

the training based on the performance of the trained neurons. Finally, we created a labeled test set of 4,830
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tweets to evaluate the model’s performance on a set of users different from those in the training set.45

First, we made the model run for 4 epochs and 32 batches, in accordance with Devlin et al. (2018a)46.

In Table C.3 we report the training and the validation losses alongside the accuracy reached.47 While the

latter increases with the epochs, the validation loss increases at the end of the routine - indicating a possible

over-fitting that we exclude by using the model run for two epochs only.

Table C.3: vaxBERTo last layer training

epoch Training Loss Valid. Loss Valid. Accur. Training Time Validation Time
1 0.3342 0.2650 0.8885 0:05:50 0:00:13
2 0.1897 0.2456 0.9072 0:05:47 0:00:13
3 0.1074 0.3554 0.9023 0:05:47 0:00:13
4 0.0660 0.4025 0.9055 0:05:46 0:00:13

Notes: training and validation losses (columns 2 and 3), accuracy (4) and computing time (5
and 6) for each vaxBERTo training epoch.

After every batch an error is calculated comparing the predictions with the expected output. The network

updates the weights before moving to the next batch. We plot the performance in terms of training loss in

Figure C.1.

Figure C.1: Training and validation loss

Prediction phase. We used the Matthews correlation coefficient (MCC) to evaluate the performance of

our model. MCC is a useful metric because it ranges from -1 to 1, with -1 indicating that the model made no

correct predictions, 0 indicating random guessing, and 1 indicating perfect accuracy. When we ran our model,
45Training was carried out with platform Google Colab using the GPU Tesla P100-PCIE-16GB
46Devlin et al. (2018a) found the range of possible values to work well across all tasks: Batch size: 16, 32; Learning rate (Adam):

5e-5, 3e-5, 2e-5; Number of epochs: 2, 3, 4.
47Training time and Validation time may vary widely depending on the hardware used to perform the training.

60



the MCC was 0.749, which suggests that our model is reliable. We then applied the model to label 781,337

original tweets in our dataset (2,017,539 including the retweets, that we label back using the original labels).
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