Posted Wage Inequality

Xuanli Zhu Keio University

August 31, 2023

Roadmap

1. Introduction

2. Data

- 3. Econometric Setting
- 4. Machine Learning Vacancy

5. Main Results

6. A Short Cut

7. Extensive Analyses

8. Conclusion

- What's the determinants of wage dispersion in the labor market?
 - \rightarrow Worker heterogeneity + Firm heterogeneity + W-F sorting + ...

- What's the determinants of wage dispersion in the labor market?
 → Worker heterogeneity + Firm heterogeneity + W-F sorting + ...
- Major econometric problem: unobserved worker/firm characteristics
 → common approach: TWFE + linked EE panel data (AKM1999)

- What's the determinants of wage dispersion in the labor market?
 → Worker heterogeneity + Firm heterogeneity + W-F sorting + ...
- Major econometric problem: unobserved worker/firm characteristics
 → common approach: TWFE + linked EE panel data (AKM1999)

- Results from the literature:
 - 1. 50+% worker effect \rightarrow unobserved skill & task variations
 - 2. 5-15% firm effect \rightarrow variations in firm wage premiums
 - 3. 5-15% sorting \rightarrow important to correct for limited mobility bias

- What's the determinants of wage dispersion in the labor market?
 → Worker heterogeneity + Firm heterogeneity + W-F sorting + ...
- Major econometric problem: unobserved worker/firm characteristics \rightarrow common approach: TWFE + linked EE panel data (AKM1999)

(Q: Only available for a limited set of developed countries. Other countries? Alternative ways?)

- Results from the literature:
 - 1. 50+% worker effect \rightarrow unobserved skill & task variations
 - 2. 5-15% firm effect \rightarrow variations in firm wage premiums
 - 3. 5-15% sorting \rightarrow important to correct for limited mobility bias

(Q: Do we fully understand any of these components? Deep drivers? Heterogeneity?)

This Paper - New Method

- A new way to study wage determination taking advantage of
 - 1. Online job vacancy/ads data
 - 2. Machine learning algorithms
- Key idea: worker \sim job

As firms document all the job characteristics to attract their ideal candidates, and post wage based on their valuation • vacancy sample

Implicit presumptions: directed search & perfect matching

This Paper - New Method

- A new way to study wage determination taking advantage of
 - 1. Online job vacancy/ads data
 - 2. Machine learning algorithms
- Key idea: worker $\sim {\rm job}$

As firms document all the job characteristics to attract their ideal candidates, and post wage based on their valuation \rightarrow vacancy sample

Implicit presumptions: directed search & perfect matching

- Advantage:
 - 1. Vacancy data is more accessible & up-to-date
 - \rightarrow EE data is not always available, e.g. China
 - 2. Not only alternative but also ideal environment for studying firm effect & sorting
 - \rightarrow Pre-bargaining; Pre-mismatch
 - 3. Estimation is more flexible & parsimonious
 - ightarrow No restriction on connected set or exogenous mobility, less limited mobility bias
 - 4. Open the black box of worker effect in a data-driven way
 - \rightarrow See what are the important skills/tasks contributing to wage differential & sorting

0. Use 4m vacancy data from a Chinese job board (2013-2020) with full job description texts & posted wages

- 0. Use 4m vacancy data from a Chinese job board (2013-2020) with full job description texts & posted wages
- 1. ML part: Use basic supervised & unsupervised ML methods to explore the high-dimensional job-text data and to generate proxy variables for various skills&tasks
 - 1.1 Feature Selection
 - 1.2 Feature Clustering

- two methods (w/ & w/o human knowledge)

1.3 Dimensional Reduction

(Why basic? Interpretation + Performance)

- 0. Use 4m vacancy data from a Chinese job board (2013-2020) with full job description texts & posted wages
- 1. ML part: Use basic supervised & unsupervised ML methods to explore the high-dimensional job-text data and to generate proxy variables for various skills&tasks
 - 1.1 Feature Selection
 - 1.2 Feature Clustering

1.3 Dimensional Reduction

- two methods (w/ & w/o human knowledge)

(Why basic? Interpretation + Performance)

2. Econometrics part: Embed these proxy variables into the typical wage regression & variance decomposition and examine different wage components

- 0. Use 4m vacancy data from a Chinese job board (2013-2020) with full job description texts & posted wages
- 1. ML part: Use basic supervised & unsupervised ML methods to explore the high-dimensional job-text data and to generate proxy variables for various skills&tasks
 - 1.1 Feature Selection
 - 1.2 Feature Clustering

1.3 Dimensional Reduction

- two methods (w/ & w/o human knowledge)

(Why basic? Interpretation + Performance)

- 2. Econometrics part: Embed these proxy variables into the typical wage regression & variance decomposition and examine different wage components
- 3. Extensive analysis: Examine potential heterogeneity of skill prices & firm wage premium and the driver of inequality trend

1. At least for this market, our estimated shares of wage inequality components (45.0% job effect; 13.6% firm effect; 14.2% sorting) are consistent with the literature

- 1. At least for this market, our estimated shares of wage inequality components (45.0% job effect; 13.6% firm effect; 14.2% sorting) are consistent with the literature
- 2. Our approach shows a data-driven skill/task structure featured by different specificity levels
- 3. For the posted wage variations from job effect and firm-job sorting
 - Occupation-specific skills/tasks account for the major shares, esp. in high-skill occupation; Extensive/Intensive margin (Exp) are equally important
 - Education-related skills/tasks account for more shares in low-skill occupation
 - General skills, whether cognitive, interpersonal, or noncognitive, barely matter (here)

- 1. At least for this market, our estimated shares of wage inequality components (45.0% job effect; 13.6% firm effect; 14.2% sorting) are consistent with the literature
- 2. Our approach shows a data-driven skill/task structure featured by different specificity levels
- 3. For the posted wage variations from job effect and firm-job sorting
 - Occupation-specific skills/tasks account for the major shares, esp. in high-skill occupation; Extensive/Intensive margin (Exp) are equally important
 - Education-related skills/tasks account for more shares in low-skill occupation
 - General skills, whether cognitive, interpersonal, or noncognitive, barely matter (here)
- 4. Levels of skill prices & of firm wage premiums (& sorting) vary across occupations

- 1. At least for this market, our estimated shares of wage inequality components (45.0% job effect; 13.6% firm effect; 14.2% sorting) are consistent with the literature
- 2. Our approach shows a data-driven skill/task structure featured by different specificity levels
- 3. For the posted wage variations from job effect and firm-job sorting
 - Occupation-specific skills/tasks account for the major shares, esp. in high-skill occupation; Extensive/Intensive margin (Exp) are equally important
 - Education-related skills/tasks account for more shares in low-skill occupation
 - General skills, whether cognitive, interpersonal, or noncognitive, barely matter (here)
- 4. Levels of skill prices & of firm wage premiums (& sorting) vary across occupations
- 5. Increased posted wage variance in our data is largely driven by increased sorting, esp. from those occupation-specific skills/tasks

Roadmap

1. Introduction

2. Data

- 3. Econometric Setting
- 4. Machine Learning Vacancy
- 5. Main Results
- 6. A Short Cut
- 7. Extensive Analyses
- 8. Conclusion

Data: Basic Info

Lagou.com: the largest IT-centered online job board in China (mostly "cognitive jobs")

- Over 6 million vacancies between 2013 and 2020

 vacancy trend
- Mainly jobs in all occupations demanded by IT-producing/using firms: Computer, Design & Media, Business Operation, Financial & Law, Sales, Admin
 • occupation classification
- Like other vacancy data, biased to young/low-experienced and high education workers/jobs in large cities details & reliefs
- Vacancy information: job name, posted wage, location, requirements on education and experience, job task or skill description, job benefits, firm name, ... vacancy sample
- Final Sample after cleaning: 4 million vacancies sample cleaning summary statistics
 Potential concerns: various data/sample representativeness issues data/sample representativeness issues

Roadmap

1. Introduction

2. Data

3. Econometric Setting

4. Machine Learning Vacancy

5. Main Results

6. A Short Cut

7. Extensive Analyses

8. Conclusion

Posted Wage Regression

- Baseline: In $w_i = X_i\beta + \psi_j + \iota_t + \epsilon_i$
 - *w_i* is the mean of the posted wage scope
 - X_i is a vector of job characteristics, denote $\theta_i \equiv X_i \beta$
 - ψ_i is the firm effects
 - ι_t is the year effects
- Estimated β will be the market average prices of the job characteristics
- Estimated ψ_i will be the firm-specific wage premiums/discounts for any reasons

Posted Wage Regression

- Baseline: In $w_i = X_i\beta + \psi_j + \iota_t + \epsilon_i$
 - w_i is the mean of the posted wage scope
 - X_i is a vector of job characteristics, denote $\theta_i \equiv X_i \beta$
 - ψ_i is the firm effects
 - ι_t is the year effects
- Estimated β will be the market average prices of the job characteristics
- Estimated ψ_j will be the firm-specific wage premiums/discounts for any reasons
- $\hat{\beta}$ and $\hat{\psi}_j$ would be biased if $\operatorname{cov}(X_i, \epsilon_i) \neq 0$ and $\operatorname{cov}(\psi_j, \epsilon_i) \neq 0$

- var
$$(\ln w_i) = \underbrace{\operatorname{var}(\theta_i)}_{\text{Job Effect}} + \underbrace{\operatorname{var}(\psi_j)}_{\text{Firm Effect}} + \underbrace{2\operatorname{cov}(\theta_i, \psi_j)}_{\text{Firm-Job Sorting}} + \operatorname{var}(\varepsilon_i)$$

Education, Experience, Occupation \subset {Skills, Tasks}

- One way: *X* = {EDU, EXP, OCC} • results • compare with *X* = {EDU, EXP} • bias correction

Education, Experience, Occupation \subset {Skills, Tasks}

- One way: *X* = {EDU, EXP, OCC} results compare with *X* = {EDU, EXP} bias correction
- All are different subspaces of the full skill/task space
- In theory, an occupation is a subset in the skill/task space
 - A pre-defined bundle of different skills/tasks
 - Lack of within-occupation skill/task variations
- In practice, occupation info of vacancy data is generated by mapping job title or content to the official categories

 ccupation classification

Education, Experience, Occupation \subset {Skills, Tasks}

- One way: X = {EDU, EXP, OCC} results compare with X = {EDU, EXP} bias correction
- All are different subspaces of the full skill/task space
- In theory, an occupation is a subset in the skill/task space
 - A pre-defined bundle of different skills/tasks
 - Lack of within-occupation skill/task variations
- In practice, occupation info of vacancy data is generated by mapping job title or content to the official categories
 • occupation classification
- Below, we directly exploit all information in vacancy texts to create proxy variables for various skills/tasks
 - By doing this, we also show a data-driven skill/task structure

Roadmap

1. Introduction

2. Data

3. Econometric Setting

4. Machine Learning Vacancy

5. Main Results

6. A Short Cut

7. Extensive Analyses

8. Conclusion

Overview of ML Procedures Jump to Results

1. Feature Selection: 110,000+ \rightarrow 3100+

Transform vacancy documents **D** to an indicator matrix **C** ($N \times K$), where K = |V|; Run Lasso regression of $\ln w$ on **C** to shrink the entire vacancy text vocabulary set VV to a vocabulary subset V' (and **C** to **C**')

Lasso detail
 Lasso turning by BIC
 Lasso inference & sanity check

Overview of ML Procedures Jump to Results

1. Feature Selection: 110,000+ \rightarrow 3100+

Transform vacancy documents **D** to an indicator matrix **C** ($N \times K$), where K = |V|; Run Lasso regression of ln *w* on **C** to shrink the entire vacancy text vocabulary set *V V* to a vocabulary subset V' (and **C** to **C**')

2. Feature Clustering: 3100+ → 8 groups
Train a word embedding model (Word2Vec) on vacancy text D to obtain the embedding space representation for selected features: U' = {u_k} where k ∈ V';
Apply K-Means classifier to U' generate P (= 8) clusters {V'_p}^P_{p=1}
word embedding detail Adda driven skill & task space adda driven skill & task space

Overview of ML Procedures • Jump to Results

1. Feature Selection: 110,000+ \rightarrow 3100+

Transform vacancy documents **D** to an indicator matrix **C** ($N \times K$), where K = |V|; Run Lasso regression of ln *w* on **C** to shrink the entire vacancy text vocabulary set *V V* to a vocabulary subset V' (and **C** to **C**')

- 2. Feature Clustering: 3100+ → 8 groups
 Train a word embedding model (Word2Vec) on vacancy text D to obtain the embedding space representation for selected features: U' = {u_k} where k ∈ V';
 Apply K-Means classifier to U' generate P (= 8) clusters {V'_p}^P_{p=1}
 word embedding detail A data driven skill & task space a data driven skill & task space
- Dimensional Reduction: 3100+ → 8 × 3 = 24 Use PLS to transform each C'_p ≡ {c_k}, k ∈ V'_p into a low dimensional representation Ξ_p (N × Q; Q = 3) and obtain {Ξ_p}^P_{p=1}

dimensional reduction detail

1st step: extract the useful information in vacancy text

- First we transform the vacancy text into an indicator matrix C with dimension N × K where each entry c_{ik} is an indicator of a token (word/phrase) k in vacancy i and the total vocabulary set is V
- Then we use (regularized linear) Lasso regression (L1 penalization):

$$\hat{\zeta} = \arg\min_{\zeta} \sum_{i=1}^{N} \left(\ln w_i - \sum_{k=1}^{K} c_{ik} \zeta_k \right)^2 + \lambda \sum_{k=1}^{K} |\zeta_k|$$

Feature Selection: Tune Lasso • Overview

- Following the suggestion in the literature, we use BIC as the criterion to gauge the hyperparameter λ : min BIC $(\lambda) = \frac{\|\ln \mathbf{w} \mathbf{C}\hat{\zeta}_{\lambda}\|^2}{\sigma^2} + \hat{d}f_{\lambda}\log N$
- The estimation results 700-3100 features (V') with nonzero coefficients

	Pooled	Computer	Design₋ Media	Admin
λ^*	332.0	190.3	238.5	155.0
MSE	.162	.149	.142	.100
R^2	.566	.494	.461	.418
BIC/N	.446	.527	.561	.613
df	3,144	1,922	929	691
К	109,123	51,602	39,306	24,896
Ν	3,999,005	1,330,001	561,236	277,932

Feature Selection: Inference and Interpretation on Lasso Results

Overview

- In general, features selected and their coefficients in high-dimensional penalized model are not interpretable due to multicollinearity and flexibility
- Inference via subsampling (10x10) shows that our selected features/tokens are rather robust (small confidence interval)
 subsampling results
- Interpretation on coefficients are still forbidden, but now we can inspect important features to see if they make some intuitive sense
 top positive tokens
 top negative tokens

Feature Clustering: Word Embedding • Overview

2nd step: examine what are these selected features (beyond eyeballing)

- Indicator matrix **C** tells nothing about the meaning of the words
- We train a word embedding model, Word2Vec (CBOW), to learn the relationship between tokens
 - it maps each word to a latent vector space (with dimension H = 100), which best predicts the probability of a word given the context (adjacent words)
- The result is a $K \times H$ embedding weight matrix **U**, where each row of the matrix, \mathbf{u}_k , is the representation vector of the word k in the latent embedding space
- We only use the part of the selected features: $U' \equiv \{u_k\}$ where $k \in V'$

Feature Clustering: K-Means Clustering . .

- We now can use unsupervised clustering algorithms to cluster our selected features
- We use K-Means classifier, which finds the centroids for the clusters $\{V'_p\}$ in the embedding space to minimize the sum of within-cluster Euclidean distances: $\arg\min_{\{V'_1, V'_2, ...,, V'_p\}} \sum_{p=1}^{P} \sum_{k \in V'_p} \left\| \mathbf{u}_k - \frac{1}{|V'_p|} \sum_{j \in V'_p} \mathbf{u}_j \right\|^2$
- *P* is the predetermined cluster numbers, and we set P = 8 (arbitrary)
- Visualization of clustering results in 2D (through t-SNE only for demonstration):
 - Pooled
 Computer
 Design & Media
 Admin

Feature Clustering: Skill/Task Structure • Overview

A data-driven skill/task structure shows layers of specificity • specificity • specificity

- 0. Compensation (V_c')
- 1. General skills (V'_g)
 - Cognitive: e.g. logic, self-learning
 - Interpersonal: e.g. communication, extrovert
 - Non-cognitive: e.g. hard working, responsibility
- 2. Education-related or -extensive skills (V'_{e})
 - e.g. education level, college majors, certificates, fundamental occupational skills, basic field experience
- 3. Occupation-specific skills and tasks (V'_{s1}, \ldots, V'_{s5})
 - e.g. c++, python, graphic design, logistic management, audit, business negotiation, client responding, ...

(way more granular than cognitive/social/... dimension or traditional occ dimension)

Dimension Reduction • Overview

3rd step: further reduce the dimension of these features

- Instead of PCA (unsupervised), we use partial least squares (PLS) (supervised) regression which uses the covariance of the predictive and target variables
- Transform the indicator matrix $\mathbf{C}'_p \equiv {\mathbf{c}_k}$, $k \in V'_p$ of each cluster p into a low dimensional representation Ξ_p ; Set reduced dimension Q = 3 (arbitrary)
- Thus for each occupation, we now have 8 proxy matrices (linear combination) $\Xi_1, \Xi_2, \ldots, \Xi_8$ corresponding to 8 clusters V'_1, V'_2, \ldots, V'_8
- OLS regressions show that they preserve over 95% predictive power (R^2) of the Lasso regression

Roadmap

1. Introduction

2. Data

- 3. Econometric Setting
- 4. Machine Learning Vacancy

5. Main Results

6. A Short Cut

7. Extensive Analyses

8. Conclusion
Proxy Variables on Skills & Tasks

- Under our construction, $\{\Xi_g, \Xi_e, \Xi_{s1}, \dots, \Xi_{s5}\}$ proximate to a full set of skills/tasks required in the vacancy that are predictive for posted wage
- Our final specification of job controls: $X = \{X_{ext}, X_{int}\}$
 - $X_{ext} \equiv \{EDU, \Xi_g, \Xi_e, \Xi_{s1}, \dots, \Xi_{s5}\}$, (extensive margin)
 - $X_{int} \equiv \{EXP\}$ (intensive margin) \rightarrow compare R2
- We further split X_{ext} into three groups:
 - Most general group: Ξ_g
 - Medium specific group: $\Xi_m \equiv \{EDU, \Xi_e\}$
 - Most specific group: $\Xi_s \equiv \{\Xi_{s1}, \dots, \Xi_{s5}\}$

Variance Decomposition

Variance Decomposition

Variance Decomposition

18/29

Variance Decomposition: Robustness

- Limited mobility bias is limited as long as firms have enough number of vacancies
 bias correction
- Education or Experience composition does not drive our results conditional on EXP & EDU
- Switching Ξ_4 from Ξ_s to Ξ_m has strongest impact on Admin sample $\Box_m = \{EDU, \Xi_4\}$
- Can still largely replicate the results in Deming and Kahn (2018) replicate DK app
- Non-wage compensation terms selected by Lasso largely because they can predict job and firm effects add Ξ₀ into regression
- Estimated firm wage premium are positively correlated with firm size (conditional on sorting) and accounted by firm location, consistent with the literature firm FE regression
- Mean residuals by firm-job cells show that the linear (additive separability) assumption seems to be a worse approximation in pooled sample residual distribution

Roadmap

1. Introduction

2. Data

- 3. Econometric Setting
- 4. Machine Learning Vacancy

5. Main Results

6. A Short Cut

7. Extensive Analyses

8. Conclusion

A Shortcut

- Occupation is itself a concept born from skill/task specificity, though too coarse
- Bonhomme et al. (2019) suggests another way to solve the finite sample bias: estimating latent firm groups: $\min_{\mathfrak{t}_1,...,\mathfrak{t}_j,H_1,...,H_g} \sum_{j=1}^J n_j \int \left(\widehat{F}_j(y) - H_{\mathfrak{t}_j}(y)\right)^2 d\mu(y)$
- Here we can also use our embedding space representation to classify latent job groups:
 - First, for each vacancy: $\mathbf{z}_i = \sum_{k \in V_i} \mathbf{u}_k = (z_{i1}, \dots, z_{iH})$
 - Then, $\min_{\{\iota_1,...,\iota_l,G_1,...,G_{\mathfrak{L}}\}} \sum_{i=1}^{l} \sum_{h=1}^{H} (z_{ih} G_{\iota_i}(h))^2$
 - This can be seen as a way to generate occupations with arbitrary number $\ensuremath{\mathfrak{L}}$

A Shortcut

Work Types and Posted Wage by Firm Types

Roadmap

1. Introduction

2. Data

- 3. Econometric Setting
- 4. Machine Learning Vacancy

5. Main Results

6. A Short Cut

7. Extensive Analyses

8. Conclusion

Firm Wage Premium Varies Across Occupations

- Shares of firm effect and sorting (job effect) are larger (smaller) in high-skill occupation than low skill occupation, despite of more features compare shares
- We also find for low-skilled occupations have estimated firm effects less consistent with the firm effects estimated in high-skilled occupation
 compare firm FE

Occupational Specific Specification

- Allow for firm wage premiums varying across major occupations $\ln w_i = X_i \beta + \psi_i^o + \iota_t + \epsilon_i$
 - Also compare with $\ln w_i = X_i\beta + \psi_j + o_i + \iota_t + \epsilon_i$

	Benchmark		$\psi_j\equiv\hat{\psi}_j$	$+ \hat{o}_i$	$\psi_j\equiv\hat{\psi}^o_i$		
	Comp.	Share	Comp.	Share	Comp.	Share	
Var(In <i>w</i>)	.362	-	.362	-	.360	-	
$Var(\theta_i)$.163	.450	.141	.391	.136	.378	
$Var(\epsilon_i)$.098	.272	.096	.265	.088	.245	
$Var(\psi_i)$.049	.136	.056	.156	.065	.182	
$2 \operatorname{Cov}(\theta_i, \psi_j)$.051	.142	.068	8.188.070		.196	
Obs	3998840		39988	340	3926231		
Firm	86165		8616	55	300079		

mean residual distribution

Occupational Specific Specification

- Allow for firm wage premiums varying across major occupations $\ln w_i = X_i \beta + \psi_i^o + \iota_t + \epsilon_i$
 - Also compare with $\ln w_i = X_i\beta + \psi_j + o_i + \iota_t + \epsilon_i$
- Allow for skill prices varying across major occupations

Benchmark $\psi_i \equiv \hat{\psi}_i + \hat{O}_i$ $\psi_i \equiv \hat{\psi}_i^o$ $\theta_i \equiv X \hat{\beta}_o$ Comp. Share Share Share Share Comp. Comp. Comp. Var(In W) .362 .362 .360 .361 --_ _ .450 .378 .470 $Var(\theta_i)$.163 .141 .391 .136 .170 $Var(\epsilon_i)$.098 .272 .096 .265 .088 .245 .092 .255 .136 .182 .136 $Var(\psi_i)$.049 .056 .156 .065 .049 $2 \operatorname{Cov}(\theta_i, \psi_i)$.051 .142 .068 .188 .070 .196 .050 .139 Ohs 3998840 3998840 3926231 3998840 Firm 86165 86165 300079 86165

 $\ln w_i = \sum_o \mathbb{1}_{[i \in o]} X_i \beta_o + \psi_j + \iota_t + \epsilon_i$

mean residual distribution

Shares Across Occupations

Shares Across Occupations

Posted Wage Variance Trend

Posted Wage Variance Trend Drivers $\phi_{ij} = \psi_{ij}^{2}$ new skills 2014-2016 2017-2018 2019-2020 Comp. Share Share Comp. Comp. Share .377 Var(In W) .326 .357 -. $\{ EDU, EXP, \Xi_2, \ldots, \Xi_8 \}$ Panel A: X = $Var(\theta_i)$.149 .455 .163 .457 .157 .417 $Var(\epsilon_i)$.096 .294 .092 .258 .094 .249 .148 $Var(\psi_i)$.048 .050 .141 .059 .157 .033 .103 .051 .177 $2 \operatorname{Cov}(\theta_i, \psi_i)$.144 .067 Panel B: Decompose θ Terms .109 $Var(X_{int})$.039 .121 .043 .120 .041 .069 .212 .071 .198 .180 Var(X_{ext}) .068 $2 \operatorname{Cov}(X_{int}, X_{ext})$.040 .123 .049 .139 .048 .128 .011 .035 .018 .051 .022 .059 $2 \operatorname{Cov}(X_{int}, \psi_i)$.022 .067 .033 .093 .118 $2 \operatorname{Cov}(X_{ext}, \psi_i)$.044 Panel C: Further Decompose X_{ext} Terms $Var(\Xi_q)$.002 .001 .003 .001 .002 .001 $Var(\Xi_m)$.005 .016 .006 .017 .006 .015 $Var(\Xi_s)$.039 .120 .039 .109 .037 .098 $2 \operatorname{Cov}(\Xi_{\alpha}, \Xi_{m})$.002 .006 .002 .005 .002 .004 $2 \operatorname{Cov}(\Xi_a, \Xi_s)$.007 .021 .006 .016 .006 .015

 $2 \operatorname{Cov}(\Xi_m, \Xi_s)$

 $2 \operatorname{Cov}(\Xi_a, X_{int})$

 $2 \operatorname{Cov}(\Xi_m, X_{int})$

 $2 \operatorname{Cov}(\Xi_s, X_{int})$

 $2 \operatorname{Cov}(\Xi_a, \psi_i)$

 $2 \operatorname{Cov}(\Xi_m, \psi_i)$

 $2 \operatorname{Cov}(\Xi_s, \psi_i)$

Obs

Firm

.015

.004

.009

.028

.002

.007

.014

930149

41750

.046

.011

.027

.085

.005

.020

.043

.018

.004

.011

.034

.002

.010

.022

1494468

62907

.049

.010

.032

.096

.006

027

060

.017

.004

.011

.034

.003

.011

.030

1565866

53662

.045

.010

.090

.008

030

080

Roadmap

1. Introduction

2. Data

- 3. Econometric Setting
- 4. Machine Learning Vacancy

5. Main Results

6. A Short Cut

7. Extensive Analyses

8. Conclusion

Take-Away Message

- 1. Vacancy data + ML \sim EE data + AKM
- 2. Specificity is (still) an important dimension to think about multidimensional skill/task space
- 3. Occ-specific & Exp-related skill/task variations are the most important for wage inequality & firm-worker sorting
- 4. Firms do pay differently for similar-looking jobs, but also varying across occupations
- 5. Increased posted wage variances in our data is largely due to increased firm-job sorting

Appendix

Data Concerns & Reliefs Grack Intro Grack Data

- Vacancy data may be selective or less representative
 - Vacancy data is incline to young and more educated workers, esp. here
 - Not all jobs on the internet or different post frequency than job composition
 - Ideal match but not real match results
 - Only entry wage thus missing (re-)bargaining, discrimination, promotion, rent-sharing, revealing of worker ability or matching productivity, ...

(Valid issue for all vacancy data; Partially justified in the literature; Extent is an empirical question; Can improve with better data and adjust composition; Better fit liquid labor market; Not all bad for estimation)

- Our wage measure incorporates variation in hours
 - One might worry that wage variation could be thus over-estimated
 - One might worry that those efficient compensations are solely compensating more working hours

(Often additional pay for overtime hours; Variation is limited comparing to wage; Inequality is often considered on overall compensation level; Need to think hour and wage as a package)

Trends on Collected Vacancies

A Sample Vacancy (Back Intro) (Back Data

Job Title IOS开发工程师 18k-22k		
深圳 / 经验1年以下 / 本科及以上 / web前端 / 全职 内容资讯 短辺類 Basic Job Info	☆ 收蔵 日下线	監 完善在线简历 ① 上传附件简历
字节跳动 2018-09-10 发布于拉勾网 Post Info		
查看原职位详情 ~		

职位诱惑: 六脸一金 弹性工作 免费三都 帮补 和度补贴 带	Job Benefits 新休留 扁平管理 要升空间 团队复用好
职位描述:	
J	ob Description and Regirement
职位职责:	
1、负责产品迭代改进及移动新产品的开发;	
2、参与 APP 性能、体验优化及质量监控评估体系建设	1
3、参与客户端基础组件及架构设计,推进研发效率;	
4、参与 hybrid 容器搭建, 插件、React Native 等动;	态技术调研。
职位要求:	
1、本科及以上学历, 计算机相关专业;	
2、热爱计算机科学和互联网技术,对移动产品有浓厚外	(趣)
3、扎实的数据结构和算法基础;精通至少一门编程语言	「, 包括但不限于: Objective-C、Swift、C、C++、
Java;	
4、熟悉 iOS平台原理, 具备将产品逻辑抽象为技术方案	间能力;
5、关注用尸体验,能够积极把技术转化到用尸体验改进	EE:
6、对新技术保持热情,具备良好的分析、解决问题的制	动。
工作地址	
深圳 - 南山区 - 广东省深圳市南山区南海大道2163号3	Hatth Mork Address 查看地图

hd	学节解动	Firm Info 字节跳动 💈
88	内容资讯》	豆视频
~	D轮及以上	
R	2000人以	F
ធ	http://ww	w.bytedance.com

Sample Cleaning

- Drop vacancies with not full-time jobs, outlier wages, job descriptions less than 20 words, nonChinese content
- Drop vacancies in 2013
- Drop vacancies from firms with less than 10 posts and from all the locations that have less than 1000 vacancies
- Drop duplicated vacancies based on job descriptions and education and experience requirements
- Drop vacancies with occupations not in selected major occupations

Data: Occupation Classification Back Data

- No ready-for-use occupation classification
- Match to a set of selected 6-digit occupations ("minor") in six 2-digit occupations ("major") in U.S. SOC 2018
- Key idea: an occupation is defined by a bundle of skills and tasks
- 1st step: for each occupation choose several exclusive keywords, and find the set of just-match vacancies as the "learning" sample
- 2nd step: use the "learning" group to train a Naive Bayes classifier based on the job titles and job descriptions
- 3rd step: apply the trained classifier to both the "unknown" sample and the "learning" sample <a>confusion matrix

Confusion Matrix of Occupation Assignment

Scientist -0.03000.0077 001 D 1000 04 VM 011 D 022D 001 D 001 D 001 D 000 D 000 D 100 D 10 D 1 Support 4.03650.04940.0011 2228 1 1614 1054 1014 1014 1014 1003 10.000 000 0018 0014 0014 0014 002 10 002 10 000 01396 000 10 103 004 10 002 10 0 Designer, & diale citie of a cost cost and a cost and a cost of a Developer of 1997 1318 0248 0057 0080 0240 1091 CAMPAGE AND ADDRESS AND ADDRES Setting to a 15 th a 17 th a 1 - th a 10 - th a 10 - th a 17 th a 10 - th a 17 th a 10 - th a 17 th a 10 - th a 10 -We A ON TO THE OWN FOR THE OWN FOWN FOR THE OWN Designed & ANNE ON RE ON RECOMPTION FOR BOOK FOR MARK 11 TO WHAT OUT FOR BOOK FOR BOOK FOR BOOK ON RECOMPTION FOR WY CY 6. 000 00.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 Modia di asteri asteri contri contri contri contri contratori asteri asteri anteri anteri anteri anteri anteri 00070 0070 00500 00030 01440 012 D 00390 00270 00070 Francel Hamager 6, 02 420 032 W 0.02 The rest is a state of the rest in the rest of the res Texter 4 1000 0128 0010 0010 0010 0010 0000 0010 0100 0100 0100 0100 0010 00270 02740 00070 00070 00070 00070 001400 00140 01140 00170 00440 00240 00070 00070 00070 00070 00070 00070 00070 10310 00140 00010 00040 00040 01210 03999 031440 04810 00240 00410 00110 00040 00050 00540 0026 10110 0178 0548 00440 00220 00800 00540 0038 COLUMN DIST. D FOOT SOTTO STATE OF THE DESIGN FOR THE ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS A 140 0020 0090 0090 0090 0000 0000 0060 0000 0000 Ergineer # 0.018 0.018 0.0010 0.0010 0.0010 0.0010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.0000 0430 04660 0563

Data: Summary Statistics - back

	Pooled		Major Occupation						
	-	Computer	Design_	Business_	Financial_	Sales	Admin		
			Media	Operations	Legal				
Vacancy #	3,999,005	1,330,001	561,236	1,162,404	214,661	452,771	277,932		
- share	1.00	.33	.14	.29	.05	.11	.07		
Avg # Words	108.91	104.26	103.05	115.60	110.69	120.31	95.09		
Wage (1k CNY):									
- Mean	13.64	17.38	10.68	14.19	11.95	10.21	6.32		
- SD	9.24	9.79	6.31	9.52	9.19	6.53	3.90		
Firm:									
- #	86,330	67,369	68,092	78,244	41,285	58,847	59,016		
- Avg Posts	46.32	19.74	8.24	14.86	5.20	7.69	4.71		
 Median Posts 	20.0	9.0	4.0	6.0	2.0	3.0	2.0		
Firm Size (share):									
15	.03	.03	.05	.02	.02	.03	.03		
- 15-50	.18	.17	.25	.16	.15	.19	.20		
- 50-150	.23	.21	.26	.22	.22	.23	.26		
- 150-500	.21	.21	.21	.22	.23	.20	.23		
- 500-2000	.15	.16	.12	.16	.18	.15	.14		
- 2000+	.20	.23	.11	.22	.21	.19	.13		
Education (share):									
 Vocational College 	.33	.24	.38	.29	.27	.51	.52		
- Bachelor	.54	.66	.47	.61	.63	.22	.24		
- Master/Doctor	.01	.02	.00	.01	.03	.00	.00		
 Not Specified 	.12	.08	.15	.09	.07	.27	.23		
Experience (share):									
- 0	.22	.12	.21	.16	.25	.48	.50		
- 1-3	.37	.33	.48	.37	.36	.31	.38		
- 3-5	.31	.41	.25	.33	.26	.16	.10		
- 5-10	.11	.14	.05	.14	.13	.05	.03		

Data: Summary Statistics - back

	Pooled			Major Occupation			
	-	Computer	Design_	Business_ Financial_		Sales	Admin
			Media	Operations	Legal		
Vacancy #	3,999,005	1,330,001	561,236	1,162,404	214,661	452,771	277,932
- share	1.00	.33	.14	.29	.05	.11	.07
Avg # Words	108.91	104.26	103.05	115.60	110.69	120.31	95.09
Wage (1k CNY):							
- Mean	13.64	17.38	10.68	14.19	11.95	10.21	6.32
- SD	9.24	9.79	6.31	9.52	9.19	6.53	3.90
Firm:							
- #	86,330	67,369	68,092	78,244	41,285	58,847	59,016
- Avg Posts	46.32	19.74	8.24	14.86	5.20	7.69	4.71
 Median Posts 	20.0	9.0	4.0	6.0	2.0	3.0	2.0
Firm Size (share):							
15	.03	.03	.05	.02	.02	.03	.03
- 15-50	.18	.17	.25	.16	.15	.19	.20
- 50-150	.23	.21	.26	.22	.22	.23	.26
- 150-500	.21	.21	.21	.22	.23	.20	.23
- 500-2000	.15	.16	.12	.16	.18	.15	.14
- 2000+	.20	.23	.11	.22	.21	.19	.13
Education (share):							
 Vocational College 	.33	.24	.38	.29	.27	.51	.52
- Bachelor	.54	.66	.47	.61	.63	.22	.24
 Master/Doctor 	.01	.02	.00	.01	.03	.00	.00
 Not Specified 	.12	.08	.15	.09	.07	.27	.23
Experience (share):							
- 0	.22	.12	.21	.16	.25	.48	.50
- 1-3	.37	.33	.48	.37	.36	.31	.38
- 3-5	.31	.41	.25	.33	.26	.16	.10
- 5-10	.11	.14	.05	.14	.13	.05	.03

37/29

Variance Decomposition • Back

	Pooled		Compu	uter	Design.	Media	Admin	
	Comp.	Share	Comp.	Comp. Share		Share	Comp.	Share
Var(In <i>w</i>)	.360	-	.279	-	.251	-	.164	-
Panel A: X={ED	J, EXP}							
$Var(\theta_i)$.102	.283	.052	.188	.053	.212	.050	.307
Within-Firm:								
$Var(\theta_i - \overline{\theta}_i)$.072	.199	.037	.133	.036	.144	.033	.204
$Var(\epsilon_i)$.132	.367	.089	.318	.078	.310	.061	.371
Between-Firm:								
$Var(\bar{\theta}_j)$.030	.084	.015	.055	.017	.068	.017	.102
$Var(\psi_i)$.076	.212	.102	.365	.086	.342	.041	.253
$2 \operatorname{Cov}(\bar{\theta}_i, \psi_i)$.049	.137	.036	.130	.034	.136	.011	.069
Panel B: X={EDU	J, EXP, C	CC } (Ch	ange from Panel		A)			
$Var(\theta_i)$	+.045	+.124	+.012	+.044	+.008	+.031	+.002	+.013
Within-Firm:								
$Var(heta_i - ar{ heta}_j)$	+.031	+.087	+.012	+.043	+.004	+.015	+.002	+.010
$Var(\epsilon_i)$	031	087	012	043	004	015	002	010
Between-Firm:								
$Var(\bar{\theta}_j)$	+.013	+.037	+.000	+.002	+.004	+.017	+.001	+.005
$Var(\hat{\psi}_j)$	012	033	006	021	007	028	001	008
$2 \operatorname{Cov}(\bar{\theta}_j, \psi_j)$	001	003	+.005	+.018	+.003	+.012	+.001	+.005
Obs	39988	340	13252	260	548808		260364	
Firm	8616	55	6262	28	55664		41448	

Variance Bias Correction • Back

	Poole	ed	Compu	uter	Design_Media		Adm	in	
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share	
Var(In <i>w</i>)	.360	-	.279	-	.251	-	.164	-	
Panel A: Plug	-In								
$Var(\theta_i)$.102	.283	.052	.188	.053	.212	.050	.307	
$Var(\epsilon_i)$.132	.367	.089	.318	.078	.310	.061	.371	
$Var(\psi_i)$.076	.212	.102	.365	.086	.342	.041	.253	
$2 \operatorname{Cov}(\theta_j, \psi_j)$.049	.137	.036	.130	.034	.136	.011	.069	
Panel B: Hom	oscedas	ticity Co	rrection	(Change	from Pa	nel A)			
$Var(\theta_i)$	000	+.000	+.000	+.000	+.000	+.000	000	+.000	
$Var(\epsilon_i)$	+.003	+.009	+.004	+.016	+.009	+.035	+.011	+.070	
$Var(\psi_j)$	003	008	004	04016009035		035	011	070	
$2 \operatorname{Cov}(\theta_j, \psi_j)$	+.000	+.000	000	+.000	000	.000 +.000 +		+.000	
Panel C: KSS	(Leave-C	Out) Corr	ection (C	Change f	rom Pane	el A)			
$Var(\theta_i)$	000	+.000	+.000	+.000	000	+.000	000	+.000	
$Var(\epsilon_i)$	+.003	+.007	+.004	+.014	+.007	+.029	+.010	+.060	
$Var(\psi_i)$	003	007	004	015	007	028	010	060	
$2 \operatorname{Cov}(\theta_j, \psi_j)$	+.000	+.001	000	+.000	+.000	+.000	000	+.000	
Obs	39988	340	13252	260	5488	08	260364		
Firm	8616	55	6262	28	5566	64	4144	18	

Variance Decomposition • Back

	Poole	ed	Computer		Design.	Media	Admin	
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>W</i>)	.360	-	.279	-	.251	-	.164	-
Panel A: X={ED	J, EXP}							
$Var(\theta_i)$.102	.283	.052	.188	.053	.212	.050	.307
Within-Firm:								
$Var(\theta_i - \overline{\theta}_i)$.072	.199	.037	.133	.036	.144	.033	.204
$Var(\epsilon_i)$.132	.367	.089	.318	.078	.310	.061	.371
Between-Firm:								
$Var(\bar{\theta}_i)$.030	.084	.015	.055	.017	.068	.017	.102
$Var(\psi_i)$.076	.212	.102	.365	.086	.342	.041	.253
$2 \operatorname{Cov}(\bar{\theta}_j, \psi_j)$.049	.137	.036	.130	.034	.136	.011	.069
Panel B: X={EDU	J, EXP, C	CC }						
$Var(\theta_i)$.146	.407	.065	.232	.061	.243	.052	.320
Within-Firm:								
$Var(heta_i - ar{ heta}_j)$.103	.286	.049	.176	.040	.159	.035	.214
$Var(\epsilon_i)$.101	.280	.077	.275	.074	.295	.059	.361
Between-Firm:								
$Var(\bar{\theta}_i)$.044	.121	.016	.057	.021	.085	.017	.107
$Var(\psi_j)$.064	.179	.096	.344	.079	.314	.040	.245
$2 \operatorname{Cov}(ar{ heta}_j,\psi_j)$.048	.134	.041	.148	.037	.148	.012	.074
Obs	39988	340	13252	260	5488	08	260364	
Firm	8616	55	6262	28	5566	54	4144	8

Confidence Intervals on Lasso Coefficients via Subsampling (Pooled)

Back

Confidence Intervals on Lasso Coefficients via Subsampling (Computer) (Back)

Confidence Intervals on Lasso Coefficients via Subsampling (Design & Media)

Confidence Intervals on Lasso Coefficients via Subsampling (Admin)

▲ Back

Feature Selection: Top Features (Positive)

	Pooled			Computer			Design_Media			Admin		
	token	coef	feq	token	coef	feq	token	coef	feq	token	coef	feq
1	14th month pay	.152	.014	15th month pay	.181	.010	14th month pay	.193	.011	undergraduate	.161	.014
2	three meals	.143	.014	three meals	.148	.014	lead	.155	.025	undergraduate	.157	.156
З	large platform	.131	.019	14th month pay	.140	.017	three meals	.129	.015	president	.120	.014
4	master degree	.126	.015	master degree	.109	.027	c++	.121	.017	ceo	.117	.010
5	lead	.107	.041	lead	.089	.038	crisis	.113	.011	build	.117	.016
é	c++	.092	.051	golang	.080	.017	games	.098	.180	lead	.105	.017
7	algorithm	.082	.061	guru	.079	.047	europe & america	.090	.011	government	.103	.030
8	guru	.082	.028	deep learning	.078	.022	engine	.090	.046	high salary	.089	.018
5	famous	.079	.019	famous	.070	.014	4a	.090	.014	translation	.083	.012
1	0 machine learning	.077	.016	high salary	.070	.018	six insurance & one fund	.086	.046	bachelor degree	.082	.018
1	1 formation	.076	.013	maestro	.068	.012	finance	.084	.016	strategy	.077	.015
1	2 undergraduate	.074	.319	overseas	.067	.010	undergraduate	.078	.238	large scale	.076	.030
1	3 overseas	.072	.026	go	.065	.027	listed company	.076	.021	landing	.070	.018
1	4 react	.072	.020	c++	.064	.144	finance	.076	.031	project management	.067	.011
1	5 development	.071	.374	algorithm	.064	.164	outsourcing	.074	.012	overseas	.066	.021
1	6 undergraduate	.066	.029	react	.064	.061	guru	.070	.022	background	.064	.032
1	7 high salary	.063	.028	machine learning	.061	.045	overseas	.068	.024	develop	.063	.097
1	8 landing	.060	.067	landing	.061	.037	journalists	.068	.011	13th month pay	.063	.019
1	9 strategy	.057	.047	development	.059	.776	13th month pay	.068	.023	unified recruitment	.058	.031
2	0 live streaming	.056	.014	audio & video	.058	.012	c4d	.066	.021	budget	.057	.021
2	1 listed company	.055	.027	unified recruitment	.054	.044	famous	.065	.023	major	.055	.019
2	2 large scale	.055	.072	beijing	.053	.012	unity	.065	.043	decoration	.055	.016
2	3 responsibilities	.055	.048	live streaming	.052	.011	high salary	.064	.016	resources	.053	.043
2	4 shuttle	.054	.018	recommend	.052	.023	management	.063	.010	promote	.051	.029
2	5 finance	.054	.070	management	.051	.016	3d	.063	.106	finance	.051	.036
2	6 six insurance & one fund	.053	.055	ai	.051	.015	large scale	.063	.043	english	.050	.054
2	7 python	.052	.066	stock	.049	.025	performance	.063	.016	business negotiations	.048	.010
2	8 director	.052	.022	undergraduate	.048	.365	unified recruitment	.059	.019	optimization	.046	.079
2	9 unified recruitment	.051	.042	salary	.048	.049	undergraduate	.059	.023	responsibilities	.046	.035
З	0 hive	.051	.013	supplementary	.045	.019	ip	.057	.017	integrated planning	.046	.02845/29
Feature Selection: Top Features (Negative)

Pooled				Computer			Design_Media			Admin		
	token	coeff	feq	token	coeff	feq	token	coeff	feq	token	coeff	feq
1	freshmen	155	.018	graduates	205	.013	freshmen	188	.017	five insurance	070	.052
2	five insurance	136	.030	five insurance	197	.016	internship	133	.011	graduates	061	.082
3	graduates	128	.033	vocational college	134	.072	five insurance	132	.033	vocational school	059	.038
4	vocational major	100	.036	social insurance	121	.012	graduates	132	.030	freshmen	057	.048
5	two-day weekend	098	.166	vocational major	119	.030	two-day weekend	090	.176	internship	056	.012
6	vocational college	094	.148	two-day weekend	115	.147	recent graduate	072	.026	interns	053	.017
7	assistant	079	.011	recent graduate	106	.011	vocational college	070	.144	two-day weekend	051	.214
8	customer service	075	.030	test cases	067	.068	social insurance	068	.023	player	046	.024
9	social insurance	073	.028	installation	067	.048	vocational major	066	.041	mandarin	046	.172
10	accounting	071	.019	th	066	.014	ltd.	059	.012	women	038	.015
11	accommodation	067	.016	computer	065	.011	any major	055	.011	social insurance	037	.060
12	administration	067	.027	after sales	061	.011	humanization	055	.019	qq	037	.036
13	commissioner	063	.011	young	060	.013	comics	053	.014	easy	035	.043
14	taobao	059	.015	five insurance & one fund	059	.273	cad	052	.010	website	033	.032
15	assistance	058	.164	business trip	051	.030	photoshop	049	.235	cleaning	030	.015
16	ps	056	.029	records	048	.015	cdr	047	.012	health	029	.024
17	ltd.	056	.012	hardworking	048	.015	website	047	.180	clerks	029	.014
18	installation	055	.020	holidays	046	.059	assistance	046	.131	attendance	029	.104
19	photoshop	052	.039	clients	046	.078	ps	045	.142	e-commerce	029	.031
20	careful	050	.032	easy	043	.017	hardworking	044	.023	input	028	.044
21	hardworking	050	.032	software testing	043	.047	anime	044	.019	shift	028	.013
22	verification	048	.011	wechat	041	.042	easy	044	.033	answer the phone	027	.101
23	human resources	047	.032	.net	041	.034	contact	042	.011	administration	027	.256
24	website	047	.090	patience	040	.023	editor	039	.204	perfect attendance award	026	.032
25	any major	047	.020	website	039	.101	artwork	038	.032	apply for the job	025	.018
26	humanization	046	.012	focused	038	.011	forum	038	.034	mobile	025	.013
27	excel	046	.047	network equipment	037	.016	taobao	038	.024	hardworking	025	.055
28	mandarin	045	.027	bug	036	.053	young	038	.034	join	024	.041
29	explanation	044	.013	works	035	.023	commission	037	.017	games	024	.039
30	young	044	.025	holiday	034	.037	clients	037	.096	front desk	023	.088
31	contact	044	.010	dividend	034	.012	wechat	037	.172	department manager	023	.014+6/29

Feature Clustering: Visualization (Pooled)

Feature Clustering: Visualization (Computer)

Feature Clustering: Visualization (Design_Media)

Feature Clustering: Visualization (Admin)

Feature Clustering: Visualization (Business Operation)

Feature Clustering: General vs Specific 🚥

Variance Bias Correction • Back

	Poole	ed	Compu	uter	Design.	Media	Adm	in
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>w</i>)	.362	-	.281	-	.253	-	.164	-
Panel A: Plug	-In							
$Var(\theta_i)$.163	.450	.082	.291	.084	.331	.067	.408
$Var(\epsilon_i)$.096	.267	.071	.252	.065	.255	.050	.304
$Var(\psi_i)$.051 .141		.074	.263	.062 .243		.035	.216
$2 \operatorname{Cov}(\theta_i, \psi_j)$.051	.142	.054	.193	.043	.171	.012	.072
Panel B: Hom	moscedasticity Co		rrection	(Change	from Pa	nel A)		
$Var(\theta_i)$	+.000 +.000		000	+.000	000	+.000	+.000	+.001
$Var(\epsilon_i)$	+.002	+.006	+.004	+.012	+.007	+.029	+.009	+.057
$Var(\psi_j)$	002	006	004	012	007	029	009	057
$2 \operatorname{Cov}(\theta_i, \psi_j)$	000	+.000	+.000	+.001	000	+.000	000	002
Panel C: KSS	(Leave-C	Out) Corr	ection (C	Change f	rom Pane	el A)		
$Var(\theta_i)$	000	+.000	+.000	+.000	+.000	+.000	000	001
$Var(\epsilon_i)$	+.002	+.005	+.003	+.012	+.006	+.024	+.008	+.048
$Var(\psi_j)$	002	005	003	012	006	024	008	048
$2 \operatorname{Cov}(\theta_i, \psi_j)$	+.000	+.000	+.000	+.001	+.000	+.002	+.000	+.001
Obs	39988	340	13252	260	5488	08	2603	64
Firm	8616	55	6262	28	5566	64	4144	18

	Pooled		Compu	uter	Design.	Media	Admin	
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>w</i>)	.305	-	.407	-	.226	-	.097	-
Panel A: $X = \{EE$	OU, EXP,	Ξ2,,3	E ₈ }					
$Var(\theta_i)$.079	.258	.069	.169	.036	.159	.014	.146
$Var(\epsilon_i)$.115	.377	.111	.273	.084	.372	.049	.512
$Var(\psi_j)$.068	.222	.138	.339	.075	.333	.029	.298
$2 \operatorname{Cov}(\theta_i, \psi_j)$.044	.143	.089	.219	.033	.145	.005	.047
Panel B: Decomp	ose θ Ter	ms						
$Var(X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$Var(X_{ext})$.079	.258	.069	.169	.036	.159	.014	.146
$2 \operatorname{Cov}(X_{int}, X_{ext})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(X_{int}, \psi_j)$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.044	.143	.089	.219	.033	.145	.005	.047
Panel C: Further I	Decompo	ose X _{ext} ·	Terms					
$Var(\Xi_g)$.001	.004	.001	.003	.001	.005	.000	.002
$Var(\Xi_m)$.005	.018	.010	.024	.004	.016	.003	.031
$Var(\Xi_s)$.047	.153	.036	.087	.021	.094	.007	.068
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.004	.001	.004	.001	.002	.000	.004
$2 \operatorname{Cov}(\Xi_g, \Xi_s)$.006	.021	.003	.008	.003	.012	.001	.009
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.018	.058	.017	.043	.007	.032	.003	.032
$2 \operatorname{Cov}(\Xi_g, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_m, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_s, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_g, \psi_j)$.003	.010	.005	.013	.002	.008	.000	.002
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.008	.027	.024	.060	.006	.029	.002	.022
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.032	.106	.059	.146	.024	.108	.002	.023
Ohe	8581	17	1///1	22	10/10	60	1202	11

Conditional On EXP=1-3 (Back

	Pooled		Compu	Computer		Media	Admin	
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>w</i>)	.204	-	.195	-	.140	-	.104	-
Panel A: $X = \{EC$	OU, EXP,	Ξ2,,3	E ₈ }					
$Var(\theta_i)$.062	.302	.034	.174	.022	.158	.027	.259
$Var(\epsilon_i)$.081	.396	.064	.331	.057	.407	.049	.468
$Var(\psi_i)$.043	.213	.068	.348	.048	.343	.024	.235
$2 \operatorname{Cov}(\theta_i, \psi_j)$.018	.088	.029	.147	.013	.095	.004	.036
Panel B: Decomp	ose θ Ter	ms						
$Var(X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$Var(X_{ext})$.062	.302	.034	.174	.022	.158	.027	.259
$2 \operatorname{Cov}(X_{int}, X_{ext})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(X_{int}, \psi_i)$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.018	.088	.029	.147	.013	.095	.004	.036
Panel C: Further	Decompo	ose X _{ext} ·	Terms					
$Var(\Xi_g)$.001	.003	.000	.002	.000	.002	.000	.001
$Var(\Xi_m)$.005	.024	.004	.020	.002	.013	.005	.051
$Var(\Xi_s)$.036	.177	.021	.106	.016	.116	.013	.126
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.006	.000	.002	.000	.001	.000	.005
$2\operatorname{Cov}(\Xi_g,\Xi_s)$.005	.023	.002	.009	.001	.006	.001	.012
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.014	.068	.007	.036	.003	.020	.007	.066
$2 \operatorname{Cov}(\Xi_g, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_m, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_s, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_g, \psi_i)$.001	.005	.001	.007	.000	.003	.000	.000
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.006	.031	.009	.046	.005	.034	.003	.031
$2 \operatorname{Cov}(\Xi_s, \psi_i)$.011	.052	.018	.094	.008	.058	.001	.005
Ohe	1/157/	(30	4320	77	2544	56	8803	20

Conditional On EXP=3-5 (Back

	Pooled		Compu	Computer		Media	Admin	
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>w</i>)	.202	-	.167	-	.162	-	.192	-
Panel A: $X = \{EE$	DU, EXP,	Ξ2,,3	E ₈ }					
$Var(\theta_i)$.043	.212	.020	.121	.021	.129	.047	.246
$Var(\epsilon_i)$.079	.390	.055	.332	.060	.368	.085	.442
$Var(\psi_i)$.054	.266	.065	.392	.061	.374	.049	.254
$2 \operatorname{Cov}(\theta_i, \psi_j)$.027	.132	.026	.156	.021	.129	.013	.067
Panel B: Decomp	ose θ Ter	ms						
$Var(X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$Var(X_{ext})$.043	.212	.020	.121	.021	.129	.047	.246
$2 \operatorname{Cov}(X_{int}, X_{ext})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(X_{int}, \psi_i)$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(X_{ext}, \psi_i)$.027	.132	.026	.156	.021	.129	.013	.067
Panel C: Further I	Decompo	ose X _{ext} ·	Terms					
$Var(\Xi_g)$.000	.002	.000	.000	.000	.000	.001	.004
$Var(\Xi_m)$.004	.019	.002	.013	.001	.008	.010	.054
$Var(\Xi_s)$.026	.129	.013	.080	.016	.096	.024	.125
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.004	.000	.001	.000	.001	.001	.005
$2 \operatorname{Cov}(\Xi_g, \Xi_s)$.003	.015	.001	.005	.001	.009	.002	.009
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.009	.044	.004	.023	.002	.014	.011	.056
$2 \operatorname{Cov}(\Xi_g, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_m, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_s, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_g, \psi_i)$.001	.007	.001	.006	.001	.007	.000	.000
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.007	.035	.007	.041	.005	.030	.007	.038
$2 \operatorname{Cov}(\Xi_s, \psi_i)$.018	.090	.018	.109	.015	.092	.006	.029
Obs	12220	72	5330	40	127/	17	172/	17

Conditional On EDU=C

	Pooled		Compu	uter	Design.	Media	Admin	
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>w</i>)	.244	-	.211	-	.200	-	.106	-
Panel A: $X = \{EE$	OU, EXP,	Ξ2,,3	E ₈ }					
$Var(\theta_i)$.111	.454	.072	.342	.066	.330	.033	.307
$Var(\epsilon_i)$.085	.349	.064	.303	.059	.293	.046	.428
$Var(\psi_j)$.038	.154	.052	.245	.047	.234	.024	.229
$2 \operatorname{Cov}(\theta_i, \psi_j)$.011	.044	.023	.109	.028	.142	.003	.028
Panel B: Decomp	ose θ Ter	ms						
$Var(X_{int})$.033	.135	.028	.134	.024	.119	.010	.095
$Var(X_{ext})$.046	.188	.026	.122	.024	.121	.013	.122
$2 \operatorname{Cov}(X_{int}, X_{ext})$.032	.130	.018	.085	.018	.090	.010	.091
$2 \operatorname{Cov}(X_{int}, \psi_j)$.005	.021	.014	.065	.012	.062	.002	.015
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.005	.022	.009	.044	.016	.080	.001	.013
Panel C: Further I	Decompo	ose X _{ext} ·	Terms					
$Var(\Xi_g)$.001	.004	.000	.002	.000	.001	.000	.003
$Var(\Xi_m)$.002	.010	.001	.005	.001	.005	.001	.008
$Var(\Xi_s)$.028	.114	.019	.092	.018	.090	.009	.084
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.004	.000	.001	.000	.001	.000	.001
$2 \operatorname{Cov}(\Xi_g, \Xi_s)$.005	.019	.002	.009	.002	.008	.001	.007
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.009	.037	.003	.013	.003	.017	.002	.020
$2 \operatorname{Cov}(\Xi_g, X_{int})$.003	.012	.001	.006	.001	.005	.001	.005
$2 \operatorname{Cov}(\Xi_m, X_{int})$.005	.022	.002	.011	.003	.013	.002	.014
$2 \operatorname{Cov}(\Xi_s, X_{int})$.023	.096	.014	.068	.014	.072	.008	.072
$2 \operatorname{Cov}(\Xi_g, \psi_j)$.001	.003	.001	.004	.001	.003	000	.003
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.001	.005	.002	.010	.002	.011	.001	.008
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.004	.015	.007	.031	.013	.066	.001	.008
Obs	13021	1/1	3083	3.0	1083	01	1275	A7

Conditional On EDU=B (Back

	Pooled		Compu	uter	Design.	Media	Admin	
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>w</i>)	.313	-	.244	-	.244	-	.223	-
Panel A: $X = \{EE$	U, EXP,	Ξ2,,3	E ₈ }					
$Var(\theta_i)$.129	.411	.063	.259	.085	.349	.101	.455
$Var(\epsilon_i)$.094	.299	.070	.287	.071	.291	.073	.326
$Var(\psi_i)$.052	.166	.070	.286	.054	.220	.037	.166
$2 \operatorname{Cov}(\theta_i, \psi_j)$.039	.124	.041	.167	.035	.142	.010	.045
Panel B: Decomp	ose θ Ter	ms						
$Var(X_{int})$.043	.138	.027	.113	.036	.145	.036	.160
$Var(X_{ext})$.052	.165	.022	.091	.026	.108	.036	.163
$2 \operatorname{Cov}(X_{int}, X_{ext})$.034	.108	.014	.056	.023	.095	.030	.133
$2 \operatorname{Cov}(X_{int}, \psi_j)$.014	.044	.013	.054	.016	.067	.008	.036
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.025	.081	.028	.113	.018	.075	.002	.009
Panel C: Further I	Decompo	ose X _{ext} ·	Terms					
$Var(\Xi_g)$.001	.003	.000	.001	.000	.001	.001	.004
$Var(\Xi_m)$.002	.006	.001	.004	.001	.004	.002	.009
$Var(\Xi_s)$.034	.110	.017	.069	.020	.080	.025	.112
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.003	.000	.001	.000	.001	.000	.001
$2 \operatorname{Cov}(\Xi_g, \Xi_s)$.005	.016	.001	.005	.002	.007	.003	.012
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.009	.027	.003	.011	.003	.014	.005	.023
$2 \operatorname{Cov}(\Xi_g, X_{int})$.003	.009	.001	.003	.001	.006	.002	.008
$2 \operatorname{Cov}(\Xi_m, X_{int})$.005	.015	.002	.007	.003	.013	.005	.022
$2 \operatorname{Cov}(\Xi_s, X_{int})$.026	.084	.011	.045	.019	.077	.023	.103
$2 \operatorname{Cov}(\Xi_g, \psi_j)$.002	.006	.001	.005	.001	.005	001	.005
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.003	.010	.004	.015	.003	.011	.003	.013
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.020	.064	.023	.093	.014	.058	.000	.002
Obs	21/25	:03	8635	23	2/81	13	5578	26

If $\Xi_m \equiv \{ \mathsf{EDU}, \underline{\Xi}_3, \underline{\Xi}_4 \}$ (Back

,	Pooled		Computer		Design_Media		Adm	in
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In w)	.362	-	.281	-	.253	-	.164	-
Panel A: $X = \{EC$	DU, EXP,	Ξ2,,	E ₈ }					
$Var(\theta_i)$.163	.450	.082	.291	.084	.330	.067	.409
$Var(\epsilon_i)$.098	.272	.074	.264	.071	.279	.058	.353
$Var(\psi_i)$.049	.136	.071	.251	.056	.219	.027	.168
$2 \operatorname{Cov}(\theta_i, \psi_j)$.052	.142	.054	.193	.043	.170	.012	.072
Panel B: Decomp	ose θ Ter	ms						
$Var(X_{int})$.042	.115	.028	.099	.030	.119	.016	.096
$Var(X_{ext})$.072	.199	.035	.126	.030	.117	.030	.184
$2 \operatorname{Cov}(X_{int}, X_{ext})$.049	.136	.019	.067	.024	.094	.021	.129
$2 \operatorname{Cov}(X_{int}, \psi_j)$.017	.048	.017	.060	.018	.072	.004	.025
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.034	.094	.037	.133	.025	.099	.008	.047
Panel C: Further I	Decompo	ose X _{ext}	Terms					
$Var(\Xi_{m{g}})$.001	.003	.000	.001	.000	.001	.000	.002
$Var(\Xi_m)$.017	.048	.007	.026	.006	.025	.018	.109
$Var(\Xi_s)$.022	.062	.014	.051	.011	.045	.003	.019
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.004	.010	.001	.003	.001	.004	.002	.011
$2\operatorname{Cov}(\Xi_g,\Xi_s)$.005	.012	.001	.005	.001	.004	.001	.003
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.023	.064	.011	.039	.009	.037	.007	.041
$2 \operatorname{Cov}(\Xi_g, X_{int})$.004	.011	.001	.004	.001	.005	.001	.006
$2 \operatorname{Cov}(\Xi_m, X_{int})$.020	.054	.006	.022	.011	.042	.017	.102
$2 \operatorname{Cov}(\Xi_s, X_{int})$.026	.071	.011	.041	.012	.047	.003	.020
$2 \operatorname{Cov}(\Xi_g, \psi_j)$.002	.007	.002	.007	.001	.005	.000	.001
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.014	.040	.015	.052	.012	.048	.007	.040
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.017	.048	.021	.075	.012	.046	.001	.007
Obc	20000	2/0	13253	240	5/88	ng	2603	61

If $\Xi_m \equiv \{ \mathsf{EDU}, \underline{\Xi}_3, \underline{\Xi}_4, \underline{\Xi}_5 \}$ (Back)

-		Pooled		Compu	uter	Design.	Media	Admin	
		Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
	Var(In <i>w</i>)	.362	-	.281	-	.253	-	.164	-
	Panel A: $X = \{EE$	DU, EXP,	Ξ2,,	E ₈ }					
	$Var(\theta_i)$.163	.450	.082	.291	.084	.331	.066	.405
	$Var(\epsilon_i)$.098	.272	.074	.264	.071	.279	.058	.352
	$Var(\psi_j)$.049	.136	.071	.251	.056	.219	.027	.168
	$2 \operatorname{Cov}(\theta_i, \psi_j)$.051	.142	.054	.194	.043	.171	.012	.070
	Panel B: Decomp	ose θ Ter	ms						
	$Var(X_{int})$.042	.115	.028	.099	.030	.119	.016	.096
	$Var(X_{ext})$.072	.199	.035	.125	.030	.118	.029	.180
	$2 \operatorname{Cov}(X_{int}, X_{ext})$.049	.136	.019	.067	.024	.094	.021	.129
	$2 \operatorname{Cov}(X_{int}, \psi_j)$.017	.048	.017	.060	.018	.072	.004	.025
	$2 \operatorname{Cov}(X_{ext}, \psi_j)$.034	.094	.038	.134	.025	.099	.007	.046
	Panel C: Further	Decompo	ose X _{ext}	Terms					
	$Var(\Xi_g)$.001	.002	.000	.001	.000	.001	.000	.001
	$Var(\Xi_m)$.021	.057	.015	.055	.008	.033	.020	.122
	$Var(\Xi_s)$.018	.051	.007	.024	.010	.038	.002	.011
	$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.004	.011	.002	.005	.001	.005	.002	.012
	$2 \operatorname{Cov}(\Xi_g, \Xi_s)$.004	.011	.001	.003	.001	.004	.000	.002
	$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.024	.066	.010	.037	.010	.038	.005	.032
	$2 \operatorname{Cov}(\Xi_g, X_{int})$.004	.011	.001	.004	.001	.005	.001	.006
	$2 \operatorname{Cov}(\Xi_m, X_{int})$.022	.062	.012	.041	.013	.050	.018	.109
	$2 \operatorname{Cov}(\Xi_s, X_{int})$.023	.063	.006	.022	.010	.039	.002	.014
	$2\operatorname{Cov}(\Xi_g,\psi_j)$.002	.007	.002	.007	.001	.005	.000	.001
	$2 \operatorname{Cov}(\Xi_m, \psi_j)$.017	.047	.025	.089	.014	.053	.007	.041
	$2 \operatorname{Cov}(\Xi_s, \psi_j)$.015	.041	.011	.038	.010	.041	.001	.003
	Obc	2008	2/0	13250	260	5/199	ng	2603	61

Compensation Explain Wage Variance Through Job and Firm Effects

Back

In $w_i = X_i\beta + \psi_j + \delta_i + \iota_t + \epsilon_i$, where $\delta_i \equiv \Xi_{1,i}\beta^c$

1) .									
	Pool	ed	Compu	uter	Design.	Media	Admin		
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share	
Var(In <i>w</i>)	.362	-	.281	-	.254	-	.164	-	
Panel A: $\delta_i \equiv 3$	$\Xi_{1,i}\beta^c$								
$Var(\theta_i)$.158	.437	.079	.282	.082	.324	.063	.385	
$Var(\delta_i)$.002	.004	.001	.003	.001	.002	.001	.006	
$Var(\epsilon_i)$.097	.269	.074	.262	.070	.277	.057	.349	
$Var(\psi_i)$.046	.128	.066	.234	.052	.207	.026	.161	
$2 \operatorname{Cov}(\theta_i, \psi_i)$.049	.137	.051	.181	.041	.160	.011	.066	
$2 \operatorname{Cov}(\delta_i, \theta_i)$.006	.017	.005	.018	.004	.015	.004	.027	
$2 \operatorname{Cov}(\delta_i, \psi_j)$.003	.008	.006	.021	.004	.014	.001	.006	
Panel B: Deco	mpose 2	$Cov(\delta_i, \theta$	i)						
$2 \operatorname{Cov}(\delta_i, X_{\theta})$.002	.006	.002	.007	.002	.007	.002	.011	
$2 \operatorname{Cov}(\delta_i, \tilde{\Xi})$.004	.011	.003	.011	.002	.009	.003	.016	
$2 \operatorname{Cov}(\delta_i, \Xi_g)$.000	.001	.000	.001	.000	.001	.000	.001	
$2 \operatorname{Cov}(\delta_i, \Xi_m)$.002	.004	.001	.003	.001	.004	.002	.012	
$2 \operatorname{Cov}(\delta_i, \Xi_s)$.002	.006	.002	.007	.001	.005	.001	.003	
Obs	39988	340	13252	260	5488	08	260364		
Firm	86165		6262	28	5566	64	41448		

Firm Wage Premium: Difference Between Occupations • robustness • Back

Firm Wage Premium: Firm Size and Firm Location • robustness • Back

		Pooled		Computer				Design_Mec	lia	Admin		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
fsize.15-50	.019**	.018**	.023**	.011+	.013*	.019**	.022**	.013**	.020**	.006	.005	.005
	(.004)	(.003)	(.003)	(.006)	(.005)	(.004)	(.005)	(.005)	(.004)	(.006)	(.006)	(.006)
fsize.50-150	.042**	.037**	.050**	.037**	.032**	.038**	.050**	.033**	.045**	.020**	.018**	.021**
	(.004)	(.003)	(.003)	(.006)	(.005)	(.004)	(.005)	(.005)	(.004)	(.006)	(.006)	(.005)
fsize.150-500	.067**	.057**	.067**	.072**	.054**	.051**	.086**	.058**	.063**	.035**	.031**	.030**
	(.004)	(.004)	(.003)	(.006)	(.005)	(.005)	(.005)	(.005)	(.004)	(.006)	(.006)	(.006)
fsize.500-2000	.095**	.078**	.085**	.108**	.074**	.066**	.127**	.087**	.086**	.050**	.043**	.040**
	(.005)	(.004)	(.004)	(.007)	(.006)	(.005)	(.006)	(.006)	(.005)	(.007)	(.007)	(.006)
fsize.2000+	.121**	.102**	.120**	.140**	.084**	.082**	.161**	.107**	.108**	.064**	.055**	.058**
	(.005)	(.005)	(.004)	(.008)	(.007)	(.006)	(.007)	(.007)	(.006)	(.008)	(.008)	(.007)
Job Effect ($\bar{\theta}$)		.287**	.201**		.643**	.498**		.391**	.292**		.118**	.063**
		(.004)	(.003)		(.007)	(.006)		(.006)	(.005)		(.008)	(.008)
const	.146**	-1.115**	633**	.222**	-2.684**	-1.905**	030**	-1.759**	-1.208**	.024**	478**	166**
	(.003)	(.016)	(.015)	(.005)	(.030)	(.027)	(.004)	(.028)	(.024)	(.006)	(.036)	(.033)
Location FE			\checkmark			\checkmark			\checkmark			\checkmark
Adj. R ²	.016	.096	.377	.016	.168	.436	.022	.100	.390	.006	.014	.229
No. Obs	86165	86165	86165	62628	62628	62628	55664	55664	55664	41448	41448	41448

Firm Wage Premium: Difference Between Occupations

Firm Wage Premium: Firm Size and Firm Location • Back

	Pooled		Computer				Design_Me	dia	Admin			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
fsize.15-50	.019**	.018**	.023**	.012	.011	.014+	.049**	.035**	.045**	032	039	034
	(.004)	(.004)	(.003)	(.010)	(.009)	(.008)	(.011)	(.010)	(.008)	(.038)	(.034)	(.033)
fsize.50-150	.044**	.038**	.050**	.043**	.034**	.032**	.083**	.058**	.073**	023	038	035
	(.004)	(.004)	(.003)	(.010)	(.009)	(.007)	(.010)	(.010)	(.008)	(.038)	(.034)	(.033)
fsize.150-500	.069**	.059**	.068**	.079**	.053**	.043**	.127**	.087**	.094**	009	032	032
	(.004)	(.004)	(.003)	(.010)	(.009)	(.008)	(.011)	(.010)	(.009)	(.038)	(.034)	(.033)
fsize.500-2000	.099**	.081**	.086**	.119**	.070**	.053**	.176**	.121**	.120**	.015	014	019
	(.005)	(.004)	(.004)	(.011)	(.009)	(.008)	(.012)	(.011)	(.009)	(.038)	(.035)	(.033)
fsize.2000+	.125**	.105**	.121**	.154**	.077**	.065**	.213**	.140**	.134**	.028	005	006
	(.005)	(.005)	(.004)	(.011)	(.010)	(.008)	(.013)	(.012)	(.010)	(.038)	(.035)	(.034)
Job Effect ($\bar{\theta}$)		.284**	.200**		.793**	.622**		.479**	.395**		.262**	.171**
		(.004)	(.003)		(.009)	(.008)		(.010)	(.009)		(.020)	(.018)
const	.148**	-1.101**	630**	176**	-3.946**	-3.018**	.157**	-1.931**	-1.488**	.175**	919**	468**
	(.003)	(.016)	(.015)	(.010)	(.042)	(.037)	(.010)	(.046)	(.040)	(.038)	(.079)	(.073)
Location FE			\checkmark			\checkmark			\checkmark			\checkmark
Adj. R ²	.017	.096	.381	.025	.243	.515	.053	.190	.473	.014	.062	.292
No. Obs	84023	84023	84023	30658	30658	30658	13871	13871	13871	5592	5592	5592

Mean Residual for Work-Firm cells

Occupational Specific Skill Prices

	Benchmark		$X_e \beta_o$		$\tilde{\Xi}\beta_{o}$		Xβo		$X\beta_o, \psi_i^o$	
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>w</i>)	.362	-	.362	-	.361	-	.361	-	.359	-
Panel A: $X = \{ EDU, EXP, \Xi_2,, \Xi_8 \}$										
$Var(\theta_i)$.163	.450	.166	.459	.169	.469	.170	.470	.141	.393
$Var(\epsilon_i)$.098	.272	.095	.262	.092	.256	.092	.255	.085	.237
$Var(\psi_i)$.049	.136	.050	.137	.049	.136	.049	.136	.063	.175
$2 \operatorname{Cov}(\theta_i, \psi_j)$.051	.142	.051	.142	.050	.139	.050	.139	.072	.201
Panel B: Decompose θ Terms										
$Var(X_{int})$.042	.115	.053	.146	.040	.111	.048	.134	.039	.108
$Var(X_{ext})$.072	.199	.055	.152	.080	.221	.063	.175	.058	.162
$2 \operatorname{Cov}(X_{int}, X_{ext})$.049	.136	.058	.161	.049	.136	.058	.161	.044	.123
$2 \operatorname{Cov}(X_{int}, \psi_i)$.017	.048	.019	.053	.017	.048	.017	.048	.022	.061
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.034	.094	.032	.089	.033	.092	.033	.091	.050	.141
Obs	39988	340	39988	340	39988	340	39988	340	39262	231
Firm	8616	55	8616	55	8616	55	8616	55	3000	79

Work Types and Posted Wage by Firm Types

A Shortcut

Work Types and Posted Wage by Firm Types

Shares Across Occupations

Mean Residual for Work-Firm cells

Pooled

Computer

Design_Media

Admin

Posted Wage Variance Trend Drivers (ψ_i^o) \triangleleft

	2014-2	2016	2017-2	2018	2019-2020		
	Comp.	Share	Comp.	Share	Comp.	Share	
Var(In <i>w</i>)	.322	-	.354	-	.373	-	
Panel A: $X = \{EE$	OU, EXP,	Ξ2,,1	E ₈ }				
$Var(\theta_i)$.119	.370	.139	.392	.132	.354	
$Var(\epsilon_i)$.086	.266	.082	.231	.083	.223	
$Var(\psi_j)$.064	.199	.066	.186	.076	.203	
$2 \operatorname{Cov}(\theta_i, \psi_j)$.053	.165	.068	.191	.082	.220	
Panel B: Decomp	ose θ Ter	ms					
$Var(X_{int})$.038	.117	.041	.115	.039	.104	
$Var(X_{ext})$.048	.148	.054	.153	.052	.138	
$2 \operatorname{Cov}(X_{int}, X_{ext})$.034	.105	.044	.124	.041	.111	
$2 \operatorname{Cov}(X_{int}, \psi_j)$.017	.053	.024	.067	.028	.075	
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.036	.112	.044	.124	.054	.144	
Panel C: Further Decompose $X_{\theta xt}$ Terms							
$Var(\Xi_g)$.001	.003	.001	.002	.001	.002	
$Var(\Xi_m)$.005	.014	.006	.016	.005	.013	
$Var(\Xi_s)$.025	.079	.028	.078	.026	.071	
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.004	.002	.005	.001	.004	
$2 \operatorname{Cov}(\Xi_g, \Xi_s)$.005	.015	.005	.014	.005	.013	
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.011	.034	.014	.039	.013	.036	
$2 \operatorname{Cov}(\Xi_g, X_{int})$.003	.009	.003	.009	.003	.009	
$2 \operatorname{Cov}(\Xi_m, X_{int})$.008	.024	.011	.030	.010	.026	
$2 \operatorname{Cov}(\Xi_s, X_{int})$.023	.072	.030	.084	.029	.077	
$2 \operatorname{Cov}(\Xi_g, \psi_i)$.003	.009	.003	.008	.004	.010	
$2 \operatorname{Cov}(\Xi_m, \psi_i)$.009	.028	.012	.034	.013	.036	
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.024	.075	.029	.083	.037	.099	
Obs	8883	45	1431781		1516033		
Firm	112096		1675	23	134233		

Posted Wage Variance Trend Drivers $(X\beta_o, \psi_i^o)$ $(X\beta_i, \psi_i^o)$

	2014-2016		2017-2	2018	2019-2020		
	Comp.	Share	Comp.	Share	Comp.	Share	
Var(In <i>W</i>)	.322	-	.354	-	.373	-	
Panel A: $X = \{EE$	DU, EXP,	Ξ2,,1	E ₈ }				
$Var(\theta_i)$.124	.384	.143	.405	.140	.376	
$Var(\epsilon_i)$.083	.258	.079	.223	.081	.216	
$Var(\psi_j)$.062	.192	.063	.179	.073	.195	
$2 \operatorname{Cov}(\theta_i, \psi_j)$.059	.183	.068	.193	.077	.208	
Panel B: Decomp	ose θ Ter	ms					
$Var(X_{int})$.036	.113	.039	.111	.037	.100	
$Var(X_{ext})$.051	.158	.060	.168	.060	.160	
$2 \operatorname{Cov}(X_{int}, X_{ext})$.036	.113	.044	.125	.043	.116	
$2 \operatorname{Cov}(X_{int}, \psi_j)$.015	.046	.023	.065	.026	.070	
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.044	.137	.045	.127	.051	.137	
Panel C: Further	Decompo	ose X _{ext}	Terms				
$Var(\Xi_g)$.001	.002	.001	.002	.001	.002	
$Var(\Xi_m)$.004	.013	.005	.015	.005	.013	
$Var(\Xi_s)$.031	.095	.033	.033 .092		.089	
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.003	.001	.003	.001	.004	
$2 \operatorname{Cov}(\Xi_g, \Xi_s)$.002	.006	.005	.013	.007	.018	
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.010	.033	.016	.044	.014	.037	
$2 \operatorname{Cov}(\Xi_g, X_{int})$.002	.007	.003	.008	.003	.008	
$2 \operatorname{Cov}(\Xi_m, X_{int})$.007	.023	.010	.028	.009	.023	
$2 \operatorname{Cov}(\Xi_s, X_{int})$.026	.082	.032	.089	.032	.085	
$2 \operatorname{Cov}(\Xi_g, \psi_j)$.005	.015	.003	.008	.001	.003	
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.010	.031	.011	.032	.013	.036	
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.029	.091	.031	.088	.037	.099	
Obs	8883	45	1431781		1516033		
Firm	1120	96	167523		134233		

New Skills/Tasks (Back)

	2014-2016		2017-2	018	2019-2020		
	Comp.	Share	Comp.	Share	Comp.	Share	
Var(In w)	.326	-	.357	-	.376	-	
Panel A: $X = \{EDU$	J, EXP, Ξ	2,,Ξ4	3}				
$Var(\theta_i)$.148	.455	.163	.456	.156	.415	
$Var(\epsilon_i)$.096	.294	.092	.257	.093	.248	
$Var(\psi_j)$.048	.148	.051	.142	.060	.159	
$2 \operatorname{Cov}(\theta_i, \psi_j)$.034	.103	.052	.145	.067	.178	
Panel B: Decompo	se θ Tern	าร					
$Var(X_{int})$.040	.121	.043	.120	.041	.108	
$Var(X_{ext})$.069	.211	.071	.198	.068	.180	
$2 \operatorname{Cov}(X_{int}, X_{ext})$.040	.122	.049	.138	.048	.127	
$2 \operatorname{Cov}(X_{int}, \psi_j)$.012	.035	.018	.052	.023	.060	
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.022	.067	.033	.093	.044	.118	
Panel C: Further D	ecompos	e X _{ext} Te	erms				
$Var(\Xi_{new})$.000	.000	.001	.002	.001	.002	
$Var(\Xi_{gm})$.008	.024	.008	.023	.008	.021	
$Var(\Xi_s)$.038	.117	.035	.099	.033	.087	
$2 \operatorname{Cov}(\Xi_{new}, \Xi_{gm})$.001	.002	.001	.004	.002	.004	
$2 \operatorname{Cov}(\Xi_{new}, \Xi_s)$.001	.004	.003	.009	.003	.009	
$2 \operatorname{Cov}(\Xi_{gm}, \Xi_s)$.021	.063	.022	.060	.021	.056	
$2 \operatorname{Cov}(\Xi_{new}, X_{int})$.001	.002	.002	.005	.002	.005	
$2 \operatorname{Cov}(\Xi_{gm}, X_{int})$.012	.038	.015	.042	.014	.038	
$2 \operatorname{Cov}(\Xi_s, X_{int})$.027	.083	.033	.092	.032	.084	
$2 \operatorname{Cov}(\Xi_{new}, \psi_j)$.001	.002	.002	.005	.002	.006	
$2 \operatorname{Cov}(\Xi_{gm}, \psi_j)$.008	.026	.012	.034	.015	.039	
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.013	.040	.019	.054	.027	.073	
Obs	9301	49	14944	168	1565866		
Firm	4175	50	62907		53662		

Deming & Kahn (2018) • Back

Job Skills	Keywords and Phrases					
	Deming & Kahn (2018)	Chinese Correspondents				
Cognitive	Problem solving, research, analytical, critical thinking, math, statistics	解决,问题,研究,分析,批判,思考,数学,统计				
Social	Communication, teamwork, collaboration, negotiation, presentation	交流,沟通,讨论,演示,展示,合作,团队,协作				
	Matched Keyword	s and Phrases in V'				
	V_g , $V_{ m e}$	<i>V</i> _{<i>s</i>1} ,, <i>V</i> _{<i>s</i>5}				
Cognitive	分析判断(analysis & judgment); 思 考(reflections); 独立思考(independent thinking); 解决问题(problem solving); 数学(mathematics); 研究生(graduate students); 研究者(researchers); 统计学(statistics); 认真思考(think carefully)	統计(statistics); 統计分析(statistical analysis); 问 题解答(question answers); 商业分析(business analysis); 行业研究(industry research); 业务分 析(business analysis); 关键问题(key issues); 分 析(analysis); 分析报告(analysis report); 功能分 析(functional analysis); 可行性研究(feasibility study); 解决(solutions); 解决方案(solutions); 问 题(question); 市场分析(market analysis); 数据分 析(data analysis); 深入分析(in-depth analysis); 深入研究(in-depth research); 研究(research); 兼 容性问题(compatibility issues); 定位问 题(positioning issues); 疑难问题(difficult questions); 系统分析(system analysis); 面向对象 分析(object-oriented analysis)				
Social	交流(communication); 人际沟通(interpersonal communication); 协作(collaboration); 合 作(cooperation); 团队(team); 团队精神(team spirit); 沟通(communication); 沟通交 流(communication);学术交流(academic exchange)	合作项目(cooperation projects); 沟通了 解(communication & understanding); 合作 方(partners)				

Deming & Kahn (2018) • Back

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Cognitive	.045	.054	.027	.047	.013	.032	.011	.033
	(.000)	(.001)	(.000)	(.001)	(.000)	(.001)	(.000)	(.001)
Social	.035	.041	.030	.045	.020	.033	.025	.041
	(.001)	(.001)	(.001)	(.001)	(.000)	(.001)	(.001)	(.001)
Both required		012		026		024		029
		(.001)		(.001)		(.001)		(.001)
Ξ_g, Ξ_m			\checkmark	\checkmark			\checkmark	\checkmark
Ξ_s					\checkmark	\checkmark	\checkmark	\checkmark
Education FE	\checkmark							
Experience FE	\checkmark							
Occupation FE	\checkmark							
Year FE	\checkmark							
Adj. R ²	.582	.582	.604	.604	.636	.636	.641	.641