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Problem: Estimation of Individual Parameter

Object of interest: parameter 𝜃 in a potentially nonlinear model (can be anything).
For example – quarterly GDP nowcast for a fixed country, a multiplier, etc..
We have a panel of time series, but every unit i has its own 𝜃i .
Example: cross-country heterogeneity (Marcellino et al. 2003)

This is the problem of estimating a unit-specific parameter. Examples include forecasting
(e.g. Baltagi (2013); Zhang et al. (2014); Wang et al. (2019); Liu et al. (2020)), slopes
(Maddala et al., 1997; Wang et al., 2019), long-run effects (Pesaran and Smith, 1995;
Pesaran et al., 1999), etc.
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Using Panel Data

How to estimate 𝜃 with minimal MSE?

Answer depends on time series length T :
T large ⇒ just use data on unit of interest
If T is not large, individual estimator is not very precise.
In this case hope to use panel information to reduce estimation uncertainty without
incurring too much bias.

Interesting case: moderate T – when potential bias and variance are of the same
magnitude ← our paper.

C. Brownlees, V. Morozov
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Problem and Estimator Considered

In the paper we consider a heterogeneous M-estimation problem. Define the individual
estimator for unit i as

𝜃i = argmin
𝜃i∈Θi⊂Rp

T−1
T∑︁
t=1

m(𝜃i , z it)

Interest in estimating 𝜃1 with minimal MSE.

Note: in the paper we discuss 𝜇(𝜃1) for smooth 𝜇(·)

C. Brownlees, V. Morozov
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Unit Averaging Estimation Definition

Individual slope can be written

𝜃i = 𝜃0 + 𝜂i , E(𝜂i ) = 0

Every unit carries information about common mean 𝜃0. This information is valuable for
estimating 𝜃1 = 𝜃0 + 𝜂1. Bias-variance trade-off: using information on other units
reduces uncertainty about 𝜃0, but creates bias due to 𝜂i .

Idea: consider linear combinations of all units – unit averaging

𝜃1(w) =
N∑︁
i=1

wi𝜃i , wi ≥ 0,
N∑︁
i=1

wi = 1
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estimating 𝜃1 = 𝜃0 + 𝜂1. Bias-variance trade-off: using information on other units
reduces uncertainty about 𝜃0, but creates bias due to 𝜂i .

Idea: consider linear combinations of all units – unit averaging

𝜃1(w) =
N∑︁
i=1

wi𝜃i , wi ≥ 0,
N∑︁
i=1

wi = 1

Simple average of slopes – all bias, individual estimator 𝜃1 – all variance. Averaging
estimator – compromise
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Main Technique: Local Heterogeneity

Question: how to pick weights? To minimize the MSE, we need the MSE

No useful exact finite-sample results at such level of generality. Instead use an
approximation by assuming local heterogeneity:

𝜃i = 𝜃0 +
𝜂i√
T

Allows using asymptotic analysis techniques to approximate a finite-sample setting.
Intuitively: overall amount of information is fixed as T →∞. Bias remains bounded and
nontrivial. This creates a bias-variance trade-off asymptotically

Similar to frequentist model averaging approach (used by Hjort and Claeskens (2003);
Claeskens and Hjort (2008)) or Hansen (2016, 2017) for shrinkage estimators

C. Brownlees, V. Morozov
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Our Results: Theory and Application

Theoretical results: in a moderate-T/local heterogeneity regime:
Formally justified MSE approximation
Feasible weights that minimize an MSE estimator and asymptotic distribution of
averaging estimator
Analysis depending on behavior of N: fixed-N and large-N approximations

Application: does unit averaging work in simulations and in practice? Yes! We do
nowcasting quarterly GDP for Eurozone members.

Unit averaging AIC weights on average 5% better than individual estimation.
Our MSE-optimal weights on average 9% better.
Equal weights – average 50% worse

Unit averaging with smooth weights leads to improvements.

C. Brownlees, V. Morozov
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Asymptotic Distribution of Individual Estimators

Basic building block of averaging – things to be averaged.

Lemma

As T →∞, the individual estimators satisfy

√
T
(︁
𝜃i − 𝜃1

)︁
⇒ N(𝜂i − 𝜂1,V i ) = Z i

Z i are independent.

Important: T →∞ is taken in the local approximation sense. Amount of information is
each time series is limited and not growing.
Local asymptotic approximation reduces the intractable finite sample problem to the first
two moments – bias and variance. These are exactly the components of interest for
analyzing the MSE
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MSE of Individual Estimators

From the above lemma, we get that

Lemma

Local asymptotic approximation to the MSE of using 𝜃i as an estimator for 𝜃1 is

LA-MSE
(︁
𝜃i

)︁
= (𝜂i − 𝜂1)

2 + V i

Controlled by distance (𝜂i − 𝜂1) from unit 1 and individual variances V i . Differences
between units – ground for trade-off

C. Brownlees, V. Morozov
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MSE of Unit Averaging Estimator: Local Asymptotic Approximation

Theorem

Let {wN} satisfy (1)
∑︀N

i=1 wi N = 1, wj N = 0 for j > N, (2) wN converges to some
weights w such that such that wi ≥ 0 and

∑︀∞
i=1 wi ≤ 1.

Then as N,T →∞ jointly

T ×MSE
(︁
𝜃N(wN)

)︁
→

(︃ ∞∑︁
i=1

wi𝜂i − 𝜂1

)︃2

+
∞∑︁
i=1

w2
i V i =: LA-MSE (w).

Note: the limit weights w may sum to less than 1. Example: equal weights wN :
wiN = N−1I{i ≤ N}. wN converges uniformly to w = 0 (this is the mean group
estimator)

C. Brownlees, V. Morozov
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Towards Optimal Weights

The population MSE-optimal weights are just the minimizer of LA-MSE.

However, these are infeasible for two reasons
1 LA-MSE depends on unknown individual parameters {𝜂i}∞i=1 and variances Vi

2 N is not infinite

C. Brownlees, V. Morozov
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Estimating Unknown Parameters

The unknown variances V i are usually straightforward to estimate.

More complex situation for 𝜂i :
1 It cannot be consistently estimated.

Intuition: locality in T essentially emulates T fixed, and 𝜂i are parameters which
can only be estimated from individual time series. However, under locality the
amount information in each time series is finite and not growing.

2 Next best thing: use asymptotically unbiased estimators:
√
T
(︁
𝜃i − 𝜃1

)︁
⇒ N (𝜂i − 𝜂1,V i + V 1) = Z i − Z 1,

√
T

(︃
𝜃1 −

1
N

N∑︁
i=1

𝜃i

)︃
⇒ N(𝜂1,V 1) = Z 1 + 𝜂1.
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Two Averaging Regimes I

Second problem: N is finite in practice. Two options for dealing with the infinite sums in
LA-MSE:

1 Treat N as fixed at some value N̄. Then

LA-MSE (w) =

⎛⎝ N̄∑︁
i=1

wi𝜂i − 𝜂1

⎞⎠2

+
N̄∑︁
i=1

w2
i V i

Appropriate when the number of cross-sectional units is not large. More generally,
when every unit can potentially have a non-negligible weight

14/33



Two Averaging Regimes II

2 Treat N is large/growing. Then mechanically some units must have small weights.
Let N̄ units have potentially non-negligible weights (N̄ ≤ N), put these units first.
Suppose the weights of other units satisfy wi N = o(N−1/2). Then units beyond N̄
do not contribute to variance, but contribute to bias:

LA-MSE (w) =

⎛⎝ N̄∑︁
i=1

wi𝜂i − 𝜂1

⎞⎠2

+
N̄∑︁
i=1

w2
i V i

+

⎛⎝⎛⎝1−
N̄∑︁
i=1

wi

⎞⎠𝜂1 − 2
N̄∑︁
i=1

wi (𝜂i − 𝜂1)

⎞⎠⎛⎝1−
N̄∑︁
i=1

wi

⎞⎠𝜂1 .

Potentially all weight mass placed beyond N̄, but each weight individually negligible
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Feasible Optimal Weights

Regardless of the adopted approach, let ̂LA-MSE be the corresponding LA-MSE .
Define the fixed-N/large-N minimum MSE weights as

ŵ N̄ = argmin ̂LA-MSE (w) ,

where the minimum is taken over N̄-vectors w such that wi ≥ 0 and

1 Fixed-N:
∑︀N̄

i=1 wi = 1

2 Large-N:
∑︀N̄

i=1 wi ≤ 1
This is a strictly convex quadratic program.

C. Brownlees, V. Morozov
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Asymptotic Properties for Minimum MSE Weights

We show that
1 ̂LA-MSE converges to a quadratic function of Z i (⇐

√
T (𝜃i − 𝜃1)).

2 The feasible weights converge to the minimizer of that limiting function
3 The minimum MSE unit averaging estimator weakly converges to a randomly

weighted sum of normals – a non-standard distribution.
In the appendix to the paper we discuss how to construct a correctly-sized confidence
interval on the basis of the unit averaging estimator with minimum MSE weights.

Minimum MSE weights solve the ideal population problem of minimizing MSE + some
zero-mean noise + some bias that preserves the ranking between units in terms of
variance (bias is the price of the sample problem always being positive-definite, may be
removed)

C. Brownlees, V. Morozov
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Minimal MSE Weights In a Large T Setting

It is natural to minimize ̂LA-MSE is natural even in a non-local setting with growing
amount of information:

1 For all i with 𝜃i ̸= 𝜃1, the bias estimators
√
T (𝜃i − 𝜃1) will diverge

2 Variance terms remain bounded.
⇒ Procedure will place asymptotically zero weight on all units with 𝜃i ̸= 𝜃1.

Parallels a similar result in model averaging where (see Fang et al. (2022))

C. Brownlees, V. Morozov
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Simulation: Setup

Dynamic panel DGP, similar to the empirical application:

yit = 𝜆iyit−1 + 𝛽ixit + uit

𝜆i = E(𝜆i ) + 𝜂i , E(𝜆i ) = 0

We compare performance of minimum MSE weights compared to AIC/BIC (Buckland
et al., 1997), mean group (equal weights), MMA Hansen (2007)
We conduct simulations for the one-step ahead forecast for y , coefficients 𝜆1 and 𝛽1, and
the long-run effect of a change in x : 𝛽1/(1− 𝜆)1

C. Brownlees, V. Morozov

Unit Averaging for Heterogeneous Panels
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Empirical Application: GDP Nowcasting

Empirical application – nowcasting GDP for founding members of the Eurozone + UK.
Natural application for unit averaging:

1 Evidence of significant cross-country heterogeneity (Marcellino et al., 2003)
2 Partial pooling of data may improve performance (Garcia-Ferrer et al., 1987;

Hoogstrate et al., 2000)
We follow standard practices in nowcasting literature (e.g. Schumacher (2016)):

1 We account for delays in data publication (“ragged edge”) and different possible
times in the quarter for nowcasting (“vintages”).

2 Nowcasting using factor unrestricted MIDAS (Foroni et al., 2015). Factors
estimated by EM-PCA (Stock and Watson, 1999).

3 Factors estimated using real, financial, and survey data (up to ≈ 160 vars/country)
4 Estimation is done using a rolling window.

C. Brownlees, V. Morozov

Unit Averaging for Heterogeneous Panels
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Empirical Application: Summary of Results

Unit averaging works!
1 Using smooth data-dependent averaging weights (minimum MSE and AIC) leads to

improvement in nowcasting performance.
AIC: 5% improvement on average.
mMSE: 9% improvement on average.

2 Using MMA and equal (mean group) weights does not lead to improvements.
Equal weights: 50% worse on average (no forecast combination puzzle)

3 Averaging is most beneficial for smaller T – magnitude of improvement is shrinking
as sample size increases. This is intuitive: averaging estimators converge to the
individual estimator

4 Gains from averaging are heterogeneous across countries

C. Brownlees, V. Morozov

Unit Averaging for Heterogeneous Panels
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Figure: Distribution of MSEs across countries. MSE relative to individual estimator. Split by
different averaging strategies and estimation window size (quarters). Nowcasting done at
selected positions relative to end of quarter

26/33



27/33

Motivation and Setup MSE Optimal Weights Simulation Application Conclusions References

Conclusions

If T is moderate, there is bias-variance tradeoff in using other units.
We propose and study an averaging estimator that uses all units in the panel
We characterize a local asymptotic approximation to the MSE of averaging. There
are two key regimes of averaging depending on magnitude of N
Minimum MSE solve the population MSE minimization problem + rank-preserving
bias + mean-zero noise.
Unit averaging with deterministic weights: asymptotic normality. With random
weights: randomly weighted sum of normals.
Estimator performs favorable in simulations.
Empirical application to GDP nowcasting: there are are gains from using unit
averaging, especially minimum MSE weights.

C. Brownlees, V. Morozov
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