Transparency in sequential common-value trade

Andre Speit and Justus Preusser EEA-ESEM 2023

Introduction

- Consider a decentralized market for a single common-value good.
- Buyers arrive sequentially.
- Implications of market transparency?

Introduction

- Consider a decentralized market for a single common-value good.
- Buyers arrive sequentially.
- Implications of market transparency?
- This paper:
 - 1. Seller is initially uninformed and makes price offers.
 - 2. Buyers with private signals arrive sequentially.
 - 3. Players learn about value from rejected price offers.
- Large frictionless market: With commitment, full surplus extraction.
- Compare three regimes:
 - Seller's time-on-the-market and past offers are public.
 - Public time, private offers.
 - Neither time nor offers are public.

Introduction

- Consider a decentralized market for a single common-value good.
- Buyers arrive sequentially.
- Implications of market transparency?
- This paper:
 - 1. Seller is initially uninformed and makes price offers.
 - 2. Buyers with private signals arrive sequentially.
 - 3. Players learn about value from rejected price offers.
- Large frictionless market: With commitment, full surplus extraction.
- Compare three regimes:
 - Seller's time-on-the-market and past offers are public.
 - Public time, private offers.
 - Neither time nor offers are public.
- In extreme regimes, there exists an equilibrium with full surplus extraction.
- In intermediate regime, buyers may enjoy rents in all equilibria.

- Fuchs, Öry, and Skrzypacz (2016), Hörner and Vieille (2009), Kaya and Liu (2015), Kaya and Roy (2022a,b, 2023), and Kim (2017)
 - These papers: long-lived player informed, short-lived players uninformed and make offers.
 - This paper: all initially uninformed, long-lived seller makes offers.
- Vairo and Dworczak (2023).
 - Pre- vs. post-trade transparency.
- Kakhbod and Song (2022).
 - Pooling equilibria with informed long-lived player.

Model

- One seller with one unit of indivisible good. Reservation value 0.
- Set of potential buyers is $\mathbb{N}.$
- Buyers have common valuation $v \in \{v_{\ell}, v_h\}$, where $0 < v_{\ell} < v_h$.
- π_0 : prior probability of $v = v_h$.
- $v_0 = \pi_0 v_h + (1 \pi_0) v_\ell$: prior expected value. v_0 is maximal surplus from trade.
- Initially, all players are uninformed about v.
- Buyers have conditionally iid. signals from finite set S.
- f_{ω} : pmf. of signals in state ω .
- Signals have full support and MLRP holds:
 - $\frac{f_h(s)}{f_\ell(s)}$ is increasing in *s*.

Trade protocol

- Periods indexed by $i \in \mathbb{N}$.
- In period *i*, the seller and buyer *i* are active.
- Timing in period *i*:
 - 1. The seller sets TIOLI price p_i .
 - 2. Buyer *i* arrives to market with probability $\lambda \in (0, 1)$. Learns p_i and s_i . Then decides whether to accept p_i .
 - 3. Note: Buyer *i* does not know past prices or signals, but knows the period is *i*.
 - 4. Game stops if buyer *i* accepts. Games moves to next period if *i* does not arrive or rejects.
 - 5. Arrivals unobservable to others, independent of v and signals, and independent across agents.
- No discounting or search costs.
- Consider PBE where trade happens with non-zero probability in each period.

Preliminaries

- Seller's pure strategy is sequence of prices.
- Suppose buyers believe that seller plays pure strategy (p_i)_i.
 Suppose seller plays (p_i)_i.
- By MLRP, buyer *i*'s valuation increases in s_i .
- Thus $(p_i)_i$ induces sequence $(\sigma_i)_i$ of signal cutoffs:
 - Buyer *i* accepts p_i if and only if $s_i \ge \sigma_i$.
- Let $x_i(\sigma_i)$ be indicator for *i* arriving to market and $s_i \ge \sigma_i$.
- Therefore:

$$p_i \leq \mathbb{E}[v|x_1(\sigma_1) = \ldots = x_{i-1}(\sigma_{i-1}) = 0, s_i = \sigma_i].$$

• Buyer *i*'s posterior valuation conditional on trading:

$$\mathbb{E}[v|x_1(\sigma_1)=\ldots=x_{i-1}(\sigma_{i-1})=0, s_i\geq\sigma_i].$$

• Necessary condition for full surplus extraction: No buyer enjoys information rents:

$$\mathbb{E}[v|x_1(\sigma_1) = \ldots = x_{i-1}(\sigma_{i-1}) = 0, s_i = \sigma_i] \\ = \mathbb{E}[v|x_1(\sigma_1) = \ldots = x_{i-1}(\sigma_{i-1}) = 0, s_i \ge \sigma_i].$$

- Let $\overline{s} = \max S$.
- By the MLRP, full surplus extraction requires $\sigma_i = \bar{s}$ for all *i*.
- Benchmark: If the seller can commit, or if prices are public, then then equilibrium is unique and the seller extracts the full surplus.
- What if prices are private and the seller cannot commit?

A profitable deviation

- Consider candidate equilibrium where seller extracts surplus.
- So, buyers believe that seller induces cutoff s̄ in each period, and prices are

$$\bar{p}_i = \mathbb{E}[v|x_1(\bar{s}) = \ldots = x_{i-1}(\bar{s}) = 0, s_i = \bar{s}].$$

• For
$$s^* \neq \overline{s}$$
, let

$$p_1^* = \mathbb{E}[v|s_1 = s^*].$$

 p_1^* is highest price that induces s^* as period 1 cutoff. Note: Buyer 1 does not update on seller's action.

• Consider deviation from $(\bar{p}_1, \bar{p}_2, \bar{p}_3, \ldots)$ to $(p_1^*, \bar{p}_2, \bar{p}_3, \ldots)$.

A profitable deviation

- Consider deviation from $(\bar{p}_1, \bar{p}_2, \bar{p}_3, \ldots)$ to $(p_1^*, \bar{p}_2, \bar{p}_3, \ldots)$.
- Deviation induces cutoffs $(s^*, \bar{s}, \bar{s}, \ldots)$.
- Prices are:
 - $\mathbb{E}[v|s_1 = s^*]$ for i = 1.
 - $\mathbb{E}[v|x_1(\overline{s}) = x_2(\overline{s}) = \ldots = x_{i-1}(\overline{s}) = 0, s_i = \overline{s})]$ for $i \ge 2$.
- Compare to posterior valuations of buyers conditional on trading at cutoffs (s*, s̄, s̄,...).
 - $\mathbb{E}[v|s_1 \ge s^*]$ for i = 1.
 - $\mathbb{E}[v|x_1(s^*) = x_2(\overline{s}) = \ldots = x_{i-1}(\overline{s}) = 0, s_i = \overline{s})]$ for $i \ge 2$.
- Buyer 1 gets information rent.
- For i ≥ 2, buyer i overpays if rejection of s* induces more pessimistic belief than rejection of s̄.

Let (g_h, g_ℓ) be continuous, strictly positive densities on [0, 1] with MLRP. Consider a sequence of finite approximations $(S_k, f_{h,k}, f_{\ell,k})_{k \in \mathbb{N}}$ of (g_h, g_ℓ) .

Proposition

If k is sufficiently large and the signal structure is $(S_k, f_{h,k}, f_{\ell,k})$, then there is no equilibrium where the seller extracts the full surplus v₀.

Equilibrium existence

- Equilibrium exists (in possibly mixed strategies) in nearby game where:
 - Seller announces cutoffs.
 - Intermediaries set prices on behalf of seller to implement cutoffs.
- Equilibrium also exists in nearby game where seller sets prices and sends cheap-talk messages.
- In these equilibria, off-path posterior valuations bounded by most pessimistic posterior valuations that can be induced by cutoff sequence.
- If signals are binary (|S| = 2), there is a unique equilibrium with such bounded posteriors. In it, the seller extracts the full surplus.

- Now suppose:
 - Number *n* of buyers is finite.
 - Seller incurs costs c > 0 for soliciting new buyer.
 - Order of arrivals chosen randomly by Nature and unobserved.
- As n→∞ and c→ 0, then profit converges to full surplus along at least one sequence of equilibria.
- Under a restriction on off-path posterior valuations, if |S| = 2, then profit converges to full surplus along all sequences of equilibria.

- With multi-unit supply, new belief dynamics possible (Bose et al., 2006; Kaya and Roy, 2022b).
- Welfare-optimal information structure with search frictions?
- Strategic entry of buyers / solicitation by seller?
- Effects of pre-trade transparency with multiple sellers (Vairo and Dworczak, 2023)?

References

- Bose, Subir, Gerhard Orosel, Marco Ottaviani, and Lise Vesterlund (2006). "Dynamic monopoly pricing and herding". In: *The RAND Journal of Economics* 37.4, pp. 910–928.
- Fuchs, William, Aniko Öry, and Andrzej Skrzypacz (2016).
 - "Transparency and distressed sales under asymmetric information".
 - In: Theoretical Economics 11.3, pp. 1103–1144.
- Hörner, Johannes and Nicolas Vieille (2009). "Public vs. private
 - offers in the market for lemons". In: Econometrica 77.1, pp. 29-69.
- Kakhbod, Ali and Fei Song (2022). "Public vs. Private offers with informed and forward-looking dealers".
- Kaya, Ayca and Qingmin Liu (2015). "Transparency and price formation". In: *Theoretical Economics* 10.2, pp. 341–383.

- Kaya, Ayça and Santanu Roy (2022a). "Market screening with limited records". In: *Games and Economic Behavior* 132, pp. 106–132.
- 📄 (2022b). "Price Transparency and Market Screening".
- 💼 (2023). "Repeated Trading: Transparency and Market Structure".
- Kim, Kyungmin (2017). "Information about sellers' past behavior in the market for lemons". In: *Journal of Economic Theory* 169, pp. 365–399.
- Vairo, Maren and Piotr Dworczak (2023). "What type of transparency in OTC markets?"