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INTRODUCTION

Models that are nonseparable (i.e. not additively separable) in ob-
servables and unobservables are important for economics; see Matzkin
(2023) and references therein.

The observed variables are quantities of economic interest such as
prices.

Unobserved variables represent preferences and/or technology.

An example is demand, where the share of some good is

 = (1    1 2 )

where  are prices of goods,  is total expenditure, and 1 2  are
possibly infinite number of unobserved taste variables, e.g. Lewbel
(2001).



 = (1    1 2 )

Equivalent to stochastic revealed preference models of McFadden and
Richter (1971), McFadden (2005), Kitamura and Stoye (2018), when
choice is single valued.

Nonseparable models are also equivalent to treatment effect models
where 0 can represent potential outcomes.

In economic models it seems important to allow price effects, income
effects, and other effects to vary over individuals in general ways,
motivating interest in models that are not additively separable and
have general, multi-dimensional heterogeneity.



 = (1    1 2 )

Endogeneity, where there is correlation between observables and un-
observables, is often a problem.

Observables may be choice variables that are depend on preferences
and/or technology.

Observables may be determined by an equilibrium condition that de-
pends on preferences and/or technology.

Panel data can be used to identify and estimate counterfactual effects
when observables and unobservables are correlated.



A fundamental identifying assumption for panel data is that the con-
ditional distribution of unobserved heterogeneity in each time period,
conditional on regressors in all time periods, does depend on the
time period; see Chamberlain (1982, 1992), Manski (1987), Honore
(1992), Pesaran and Smith (1995), Abrevaya (2000), Chernozhukov,
Fernández-Val, Hahn, and Newey (2009, 2013), Graham and Powell
(2012), Pakes and Porter (2016), Shi, Shum, and Song (2018).

This assumption enables identification of counterfactual effects from
variation in observables over time.

In a linear model the linear projection version of this assumption
is equivalent to existence of an additive fixed effect and regressors
being uncorrelated with the idiosyncratic at all leads and lags, see
Chenozhkov et al. (2013).

In nonseparable models this condition is different than the corre-
lated random effects assumptions of Chamberlain (1980), Wooldridge
(2002,2005), Altonji and Matzkin (2005), Arellano and Bonhomme
(2012).



This condition is motivated by time stationarity of preferences and/or
technology.

Some time effects can be allowed through observables.

Some time stationarity is important for using variation in observables
over time to help identify counterfactual effects.



In this paper we use linear regression methods to estimate counter-
factual effects for nonseparable models under the time stationarity
condition.

We approximate a smooth nonseparable model by a linear model with
coefficients that depend only on the heterogeneity and so inherit the
time stationarity property, giving regression coefficients that do not
vary over time.

We estimate each individual’s coefficients by individual ridge regres-
sion to regularize for possible singularity (i.e. nonidentification) or
near singularity of the second moment matrix of individual specific
regressors.

We estimate average effects by debiasing the average linear combi-
nations of individual ridge regression coefficients.



The debiased average ridge estimator is an empirical Bayes estimator
of a common prior mean.

It varies between the linear fixed effects estimator and the average of
individual specific least squares effects as the ridge regularization 

varies between ∞ and 0

Its conditional expectation is the true conditional effect if coefficients
do not vary over individuals.

In general its expectation is a weighted average of individual effects
with matrix weights varying by the strength of identification of the
individual effects.



The use of this estimator is motivated by an approximation where
number  of time periods grows with the number of individuals .

As in Chernozhukov et al. (2009, 2013) the identified set may shrink
quickly as  grows with 

As the number of regressors also grows with  the approximation error
from a linear regression for each individual should also shrink quickly.

These two features enable accurate large sample inference about ef-
fects of interest for nonseparable models using the debiased average
ridge estimator.

We bypass the need for identification and inference methods under
partial identification.



Importantly, we also provide ways of checking the extent of partial
identification in practice to help determine whether the large  theory
applies.

We provide quantile plots of the ratio of size of regularized and true
linear combinations.



Three examples of this estimator are

1) Estimating average exact surplus and deadweight loss for consumer
demand, including an empirical example;

2) Estimating the effect of changing taxes on taxable income for
nonlinear budget sets, including an empirical example;

3) Estimating treatment and policy effects from panel data.

An extensive application to consumer demand using scanner data is
given.



In demand estimation panel data controls for endogeneity from im-
perfect market competition and from individual price indices for groups
of goods.

Also the methods allow for zero demand by simply including the ob-
servations a zero expenditure share outcome.

For expenditure share outcomes, with log of prices and total expendi-
ture as regressors, the individual ridge estimates shrink towards own
price elasticity −1 cross price elasticities 0 and expenditure elasticity
1

Average equivalent variation and deadweight loss for taxes on milk
and soda are estimated.

Also find that weak axiom of revealed preference is rejected for 95%
of individuals while most individuals are estimated to have negative
own price elasticities when time stationary preferences are allowed.



Asymptotic theory given for continuous regressors in linear model with
number of regressors much less than 

Asymptotic theory for a binary regressor is also given, where the iden-
tified set shrinks fast enough with  so that standard inference is
correct in large samples.

General result that combines continuous and discrete regressors is
under construction.



This paper differs from Chernozhukov Hausman, and Newey (2019)
in

1) The approximation of general nonseparable models.

2) Estimation of structural and causal effects, rather than just average
coefficients.

3) Asymptotic theory that allows for approximation of a general non-
separable model and nonidentification with fixed  with the identified
set shrinking fast enough with  so that inference is asymptotically
correct.

4) Providing measures of the extent of identification for applications.



THE MODEL AND EFFECTS OF INTEREST

Panel data, observations indexed by individual  and time period 

( = 1  ;  = 1   )

Outcome variable  and right hand side variable 

 is an unknown function of  and unobserved individual hetero-
geneity ,

 = ( )

For demand  is individual prices and expenditure and  is expen-
diture share.

Unobserved heterogeneity  represent preferences, technology, or
counterfactuals in a causal model;  may be infinite dimensional.

The function ( ) is unknown.



 = ( )

Nonseparable model in allowing for general functional interactions
between the observed variables  and unobserved heterogeneity 

Use conditional time stationarity of the  to identify and estimate
effects of changing  on 

Let  = (
0
1 

0
 )

0 be the vector of regressors for all time periods
and  = (

0
1  

0
 )
0 a possible realization of .

Time stationarity condition is

Assumption 1: The distribution of  conditional on  does not
depend on .



 = ( )

Assumption 1: The distribution of  conditional on  does not
depend on .

Time effects allowed when  is a function of , but need some re-
strictions for identification.

Taxable income example has time trend but reserve fuller discussion
of time effects for another time.



Parameters of interest are averages of ( ) over   for  6=


Example 1: Average policy and causal effects.

In the language of counterfactuals let (+
  ) be a potential out-

come at  = +
 and (− ) at  = − 

0 =
1



X
=1

[(+
  )− (−  )]

This is an average effect of changing  from − to +
 



Example 2: Average equivalent variation and deadweight loss bounds.

Important objects of interest for estimating welfare effects of taxes.

Here  is expenditure share of a commodity,  = ( )  is
price,  a vector of covariates including total expenditure  and
possibly prices of other goods.

Let − be initial price for individual  at time , ∆ be change in price,
 be a bound on the income effect over all individuals and () a
weight function.

Let  = (1   )0 be a  vector of (0 1) i.i.d. simulation draws.



A bound on equivalent variation averaged over time periods and in-
dividuals is

0 = [
1



X
=1

()( )]

( ) = exp(−(− +∆))×

∆


− +∆
(− +∆  )

By Hausman and Newey (2016) 0 is an upper (lower) bound on
weighted average of equivalent variation for a change from − to
− +∆ when  is a lower (upper) bound on the income effect for
every individual.

Corresponding average deadweight loss bound in paper.



Example 3: Average of heterogeneous taxable income elasticities

Structural economic model for taxable income  as function of bud-
get set and heterogeneity from Blomquist, Kumar, and Newey (2022).

Isoelastic utility and a certain distribution for heterogeneity give

 = ( ) = 1() +
4X

=2

()

2() is taxable income elasticity for individual , 2 is log of slope
of last budget segment, 3 is the difference of logs of the slope of
the first and last segment, and 4 = .

Average taxable income elasticity is

0 = [2()] = [
1



X
=1

{( + 2 )− ( )}] 2 = (0 1 0 0)0



A general form for parameter of interest including Examples 1 - 3 is
for known functions +

 () and − (),

0 = [
1



X
=1

{+
 ()(

+
  ) +− ()(

−
  )}]

Example 1 is special case where +
 () = 1 and − () = −1.

Example 2 has − () = 0 and

+
 = (̄ +∆ )

+
 () = () exp(−(̄ +∆))∆


̄ +∆



Example 3 has +
 =  + 2, − = , +

 () = 1, and − () =

−1.



DEBIASED AVERAGE RIDGE ESTIMATTION

For now we bypass identification of 0 to focus on estimation.

Time stationarity of Assumption 1 is an "exclusion restriction" that is
sufficient for identification when certain rank conditions are satisfied.

As always rank conditions can be checked in the data and we will
return to this important problem in what follows.

Also we focus on large  inference where identified sets are small
enough that partial identification issues can be ignored.

Importantly, we also provide ways of checking the extent of identi-
fication in practice to help determine whether the large  theory is
good approximation.



Estimation is based on approximating the unknown, nonseparable
outcome function ( ) by a linear combination of a  × 1 vec-
tor of known functions () = (1 2()  ())0 (where we assume
throughout that 1() = 1).

The linear combination coefficients () = (1()  ())0 are un-
known functions that can depend nonparametrically on 

The approximation is

( ) ≈ ()
0()

Idea is that for  bounded and ( ) a smooth enough function
of  various approximation theorems (e.g. Jackson theorems) imply
that there are functions () not depending on  (e.g. power series)
and associated coefficients () where the approximation error is
small uniformly in  and 

Analogous approximation for demand functions in Hausman and Newey
(2016).



( ) ≈ ()
0()

Under time stationarity as in Assumption 1, for any ̃ that is con-
formable with and depends only on ,

[(̃ )|] ≈ [(̃)
0()|] = (̃)

0[()|]

= (̃)
0̄() ̄() := [()|]

Time stationarity implies ̄() does not depend on  i.e same coef-
ficients ̄() appear in the approximation for each time period 

There is corresponding approximation for the parameters of interest,
e.g. in Example 1:

[(+
  )− (−  )|] ≈ [{(+

 )− (− )}
0()|]

= {(+
 )− (− )}

0[()|]

= {(+
 )− (− }

0̄()



[(+
  )− (−  )|] ≈ {(+

 )− (− )}
0̄()

By iterated expectations

0 = [
1



X
=1

[(+
  )− (−  )|]] ≈ [

1



X
=1

{(+
 )− (− )}

0̄()]

= [0̄()]  =
1



X
=1

[(+
 )− (− )]

Thus, in Example 1 0 is approximately [0̄()] for  as given.

For the general parameter 0 the approximation is

0 ≈ [0̄()]  =
1



X
=1

{+
 ()(

+
 ) +− ()(

−
 )}



Smoothness of the outcome  = ( ) in  is not necessary for
a good approximation..

It is sufficient that

 = ̄( ) +  [|] = 0

where ̄( ) is smooth in 

In particular, a panel binary choice model will not generally be smooth
in regressors but the approximation still works if there are idiosyncratic
components of  with smooth densities

For example suppose  is binary with

 = 1(2  1) 1 i.i.d. and independent of  2

Then for the CDF  of 1 [|] = (2) = ̄( ) will be
smooth in  when the pdf of 1 is smooth.



0 ≈ [0̄()]  =
1



X
=1

{+
 ()(

+
 ) +− ()(

−
 )}

Can estimate 0 by replacing expectation by a sample average and
plugging in estimator of ̄()

The approximation implies

[|] ≈ [()
0()|] = ()

0̄()

Could try estimating ̄() from a linear regression of  = (1   )0
on  = [(1)  ( )]

0

Could be high multicollinearity, so regularize using ridge regression.

Let  = 0  = (0 ),   0; does not regularize constant.

A ridge regression estimator of ̄() is

̂ = ( + )
−10



We also debias to mitigate shrinkage bias from the ridge regulariza-
tion.

Let  denote a square T-dimensional matrix with 0 as its first row
and its other rows being corresponding rows of the identity matrix.

Also, let

 = ( + )
−1 (1)

Estimator of 0 is

̂ = ̄0( )−1 ̄ =
1



X
=1

  =
1



X
=1

  =
1



X
=1

̂

(2)
An estimator ̂ for the asymptotic variance of

√
(̂ − 0) can be

obtained via delta method as

̂ =
1



X
=1

̂
2
  ̂ = (−̄)0( )−1+̄0( )−1[̂−( )−1]



Example 3 illustrates that parameters of interest may include elements
of 0 = [].

Like choosing  to be unit vectors and stacking these unit vectors
into an identity matrix, leading to  being an identity matrix.

Debiased average ridge estimators ̂ of [̄()] and ̂ of the asymp-
totic variance  of

√
(̂ − 0) are then given by

̂ = ( )−1
1



X
=1

̂ ̂ =
1



X
=1

̂̂
0
 ̂ = ( )−1(̂ −̂)



PROPERTIES OF THE ESTIMATORS

The average slope has some properties that help in interpreting it.

Property A: The debiased average slope is an empirical Bayes esti-
mator of a common prior mean for Gaussian likelihood and prior with
variance 1; the debiased average slope can also be interpreted as
the limit of a iterative procedure where the prior mean is updated to
be the previous debiased average.

Property B: As  goes to infinity the coefficients in ̂ of nonconstant
variables converges to the fixed effects estimator.

This result is consistent with 1 being the variance of the prior dis-
tribution of the slope coefficients.

As the prior variance shrinks the common prior for the slopes domi-
nates the Bayes estimator and makes the estimated coefficients not
vary over individuals.



The structural/causal effect estimator also has interesting basic bias
mitigation properties.

First, for any  the estimator is unbiased when ̄() does not vary
with .

Property C: If ̄() =  does not vary with  then [̂|1 ] = 

Matrix weighting by  is important for this property.

The second bias mitigation property is

Property D: If  is nonsingular for every observation  then as  −→ 0

[̂|1 ] −→
1



X
=1

̄()

This is minimal property for a regularization method.



It is important to understand the nature of ̂ when ̄() does vary
with  and when  is singular for some observations .

Nonsingularity of  is the rank condition for identification of ̄(),
as usual for regression coefficients, so singular  means that ̄()

is not identified.

Consequently the linear combination 0̄() is not identified either,
except in the exceptional case that  is orthogonal to the null space
of .

Nevertheless, ̂ still estimates an identified object that may be of
interest.



Consider the simple example of one time varying regressor and the
object of interest is the average across individuals of the coefficient
of that variable.

We suppose that the outcome variable is given by

 = 1 + 2 ∗2

We consider the average ridge estimator where  = (0 ).

Because the first diagonal element of this matrix is zero the slope
estimator ̂2 for observation  will be the ridge estimator from a
regression of  − ̄ on 2 − ̄2.

Then for ̃ =
P
=1(2 − ̄2)

2 , standard ridge calculations give

[̂2|] =  ∗ ̄2()  =
̃

̃ + 




Averaging across  then gives

[̂2|1 ] =

P
=1̄2()P

=1


This is a weighted average of ̄2() where the weight is zero if ̄2()

is not identified (i.e. 2 does not vary over time ) and where more
weight is given to observations where ̃ is larger.

The limit as  −→ 0 is the average of ̄2() over observations where
̃  0.



In general,

[̂|1 ] =
1



X
=1

 ̄()

0 = ̄0( )−1

 = ( + )
−1

The regularized linear combination coefficients  have a known form
that can be shown to be a projection of a transformation of the true
ones on the orthogonal complement of the null space of 

Not necessarily 0 when  is singular and not between zero and one.



Comparing  and  across observations does give a way of evaluating
extent of identification.

Here we consider quantile plots ofvuut0 



0
 ( = 1  )

Could and we will consider other measures of discrepancy between 
and 

Important to be able to look at the data and evaluate the extent of
nonidentification condition (i.e. rank condition not being satisfied).



Graham and Powell (2012) considered average effects only keeping
observations where det() was large enough.

Their average coefficients are unbiased when ̄() is constant but
average effects are not.

When estimating average effects it seems good to regularize in a way
specific to 0 of interest, as ridge does.

Also, their regularization has a different purpose, to provide consis-
tent asymptotically normal estimates with continuous regressors and
number of regressors equal to number of time periods.

Our interest in regularization is to allow discreteness in regressors
while bypassing partial identification and assessing the extent of iden-
tification in applications.



APPLICATION TO CONSUMER DEMAND

We estimate demand for types of goods with completely flexible spec-
ifications of heterogeneity and functional form.

We model demand at an intermediate level of multi-stage budgeting,
that is demand for a type of good in a bundle of multiple types.

Modeling type demand provides valid estimates of welfare and policy
effects under preference separability conditions, e.g. see Deaton and
Muellbauer (1980).

Very common in practice to impose some separability, such as exclud-
ing labor supply and intertemporal choice when modeling demand.

Nonparametric separability seems parsimonious, directed approach
when evaluating policy involving a type of consumer good, like a tax
on soda, rather than imposing logit demand with random coefficients
on many specific goods.



Apply to estimating demand for groceries using the Nielsen retail scan-
ner data to construct price indices, and using the Nielsen Homescan
Panel to track purchases and household characteristics.

The empirical work is researchers’ own analyses calculated (or derived) based in part
on data from Nielsen Consumer LLC and marketing databases provided through the
NielsenIQ Datasets at the Kilts Center for Marketing Data Center at The University
of Chicago Booth School of Business; the conclusions drawn from the NielsenIQ
data are those of the researcher(s) and do not reflect the views of NielsenIQ;
NielsenIQ is not responsible for, had no role in, and was not involved in analyzing
and preparing the results reported herein.

The data include 3396 households from Houston-area zip in the years
2007-2014.

We restrict our analysis to the 2864 households included for at least
12 months.



We model monthly expenditure .

We construct price indices based on monthly total expenditures per
good type, and on the quantity purchased per month.

We model 15 good types: soda, milk, soup, water, butter, cookies,
eggs, orange juice, ice cream, bread, chips, salad, yogurt, coffee, and
cereal.

As in Burda, Harding, and Hausman (2008, 2012) we chose these
groups because they made up a relatively large proportion of total
grocery expenditure.



The price index for each good type is a weighted geometric average of
the actual purchase prices (expenditure divided by quantity) over all
purchases made by the household in the month, with weights equal
to the proportion of expenditure on a specific item associated with a
unique item code.

The price index is

ln() =
X
=1

 ln()

 denotes a particular item code,  is the number of codes for the
 type of good,  is the proportion of expenditure on commodity
 that is spent on code  and  is expenditure on code  divided
by quantity of code  for a month.

This is a Tornqvist price index which was shown by Diewert (1976)
to be exact for a quadratic utility specification and a second order
approximation to the exact price index for any utility.



Deaton and Muellbauer (1980, pp 132-133) showed that with weak
separability this price index appears in share equations for a Rotter-
dam demand specification (i.e. log quantity as a linear function of
log prices and log expenditure) and indicate that it leads to a good
approximation when prices within a group tend to move together.

Including zero expenditures makes it necessary to impute price indices
for time periods where an individual purchased none of a particular
good.

If a household had purchased the good before, then price indices are
imputed as the most recent price faced by the household in a past
purchase.

Rarely, a good is never purchased prior to a given month, in which
case its imputed price is the average price of from nearby stores where
purchases are made.



We checked for differences in results between using all households and
the 2864 that were present for at least a year and found no statistically
significant differences, suggesting attrition and selection bias do not
play a large role in this data.

We checked time stationarity and by comparing fixed effects elasticity
estimates with and without quarterly time dummies and found very
small differences in elasticities.

Including time dummies made less difference for 2010-2014 (after
great recession) so used just those years.

The frequency of household-month observations with zero total ex-
penditures varies by good: for some goods, particularly milk and soda,
most households record purchases each month, while other goods,
such as orange juice and ice cream, are purchased more infrequently.

Zero purchases could be related to good storage, which we do not
model.

Our empirical results are for goods with low frequency of zero pur-
chases, namely soda and milk.



The model allows preferences to vary over time as familiar from dis-
crete choice panel data, where there is idiosyncratic data

WARP fails to hold for 95% of individuals for 15 goods considered
over 60 months, which could happen because of time variation in
preference

Minimal regularization of individual specific demands have negative
own price effect for 65% of observations and only 1.5 percent for soda
and 2.3 percent for milk would reject a one sided test of downward
sloping demand.

These results are consistent with utility maximization with time vary-
ing preferences.

Average equivalent variation and deadweight loss are valid in this
case.



Table 1: Soda Consumer Surplus Estimates (Linear)
Upper Bounds Lower Bounds

Income Quantiles Income Quantiles
λ Upper Lower All Upper Lower All

1000 11.78 10.56 10.5 11.78 10.56 10.5
(0.464) (0.551) (0.22) (0.464) (0.551) (0.22)

100 11.78 10.56 10.5 11.78 10.56 10.5
(0.464) (0.551) (0.22) (0.464) (0.551) (0.22)

10 11.8 10.56 10.51 11.8 10.56 10.51
(0.465) (0.551) (0.219) (0.465) (0.551) (0.219)

1 11.85 10.58 10.56 11.85 10.58 10.56
(0.466) (0.55) (0.219) (0.466) (0.55) (0.219)

0.05 11.92 10.61 10.61 11.92 10.61 10.61
(0.469) (0.551) (0.22) (0.469) (0.551) (0.22)

0.005 11.93 10.63 10.63 11.93 10.63 10.63
(0.47) (0.552) (0.22) (0.47) (0.552) (0.22)

0.0005 11.93 10.64 10.63 11.93 10.64 10.63
(0.47) (0.552) (0.22) (0.47) (0.552) (0.22)

5× 10−5 11.93 10.64 10.63 11.93 10.64 10.63
(0.47) (0.552) (0.22) (0.47) (0.552) (0.22)

Table 2: Soda Consumer Surplus Estimates (Quadratic)
Upper Bounds Lower Bounds

Income Quantiles Income Quantiles
λ Upper Lower All Upper Lower All

1000 12.08 10.66 10.69 12.08 10.66 10.69
(0.471) (0.556) (0.22) (0.471) (0.556) (0.22)

100 12.08 10.66 10.69 12.08 10.66 10.69
(0.471) (0.556) (0.22) (0.471) (0.556) (0.22)

10 12.07 10.66 10.69 12.07 10.66 10.69
(0.471) (0.556) (0.22) (0.471) (0.556) (0.22)

1 12.02 10.65 10.68 12.02 10.65 10.68
(0.47) (0.554) (0.22) (0.47) (0.553) (0.22)

0.05 11.98 10.66 10.67 11.98 10.66 10.67
(0.471) (0.552) (0.22) (0.471) (0.552) (0.22)

0.005 11.96 10.67 10.66 11.96 10.67 10.66
(0.47) (0.552) (0.22) (0.47) (0.552) (0.22)

0.0005 11.94 10.67 10.66 11.94 10.67 10.66
(0.47) (0.552) (0.22) (0.47) (0.552) (0.22)

5× 10−5 11.93 10.68 10.66 11.93 10.68 10.66
(0.47) (0.553) (0.22) (0.47) (0.553) (0.22)

1



Table 3: Soda Consumer Surplus Estimates (Cubic)
Upper Bounds Lower Bounds

Income Quantiles Income Quantiles
λ Upper Lower All Upper Lower All

1000 11.98 10.64 10.64 11.98 10.64 10.64
(0.467) (0.553) (0.219) (0.467) (0.553) (0.219)

100 11.97 10.64 10.64 11.97 10.64 10.64
(0.467) (0.553) (0.219) (0.467) (0.553) (0.219)

10 11.97 10.64 10.64 11.97 10.64 10.64
(0.467) (0.552) (0.219) (0.467) (0.552) (0.219)

1 11.96 10.64 10.65 11.96 10.64 10.65
(0.468) (0.551) (0.219) (0.468) (0.551) (0.219)

0.05 11.95 10.66 10.65 11.95 10.66 10.65
(0.47) (0.552) (0.22) (0.47) (0.552) (0.22)

0.005 11.94 10.67 10.66 11.94 10.67 10.66
(0.47) (0.552) (0.22) (0.47) (0.552) (0.22)

0.0005 11.93 10.68 10.66 11.93 10.68 10.66
(0.47) (0.552) (0.22) (0.47) (0.552) (0.22)

5× 10−5 11.92 10.69 10.66 11.92 10.68 10.66
(0.471) (0.552) (0.221) (0.471) (0.552) (0.221)

2



Table 3: Soda Deadweight Loss Estimates (Cubic)
Upper Bounds Lower Bounds

Income Quantiles Income Quantiles
λ Upper Lower All Upper Lower All

1000 0.4385 0.4047 0.3944 0.4383 0.4046 0.3942
(0.0202) (0.0242) (0.0105) (0.0202) (0.0242) (0.0105)

100 0.4382 0.4044 0.3941 0.438 0.4042 0.3939
(0.0202) (0.0242) (0.0105) (0.0202) (0.0242) (0.0105)

10 0.4357 0.4017 0.3918 0.4354 0.4015 0.3916
(0.0199) (0.024) (0.0104) (0.0199) (0.024) (0.0104)

1 0.4302 0.3947 0.3867 0.4299 0.3946 0.3865
(0.0193) (0.0238) (0.0101) (0.0193) (0.0238) (0.0101)

0.05 0.4264 0.3851 0.3819 0.4261 0.385 0.3817
(0.0193) (0.024) (0.0102) (0.0193) (0.024) (0.0102)

0.005 0.4303 0.3803 0.3795 0.43 0.3801 0.3793
(0.0207) (0.0254) (0.011) (0.0207) (0.0254) (0.011)

0.0005 0.4394 0.3818 0.381 0.4391 0.3816 0.3808
(0.0247) (0.0278) (0.0126) (0.0247) (0.0278) (0.0126)

5× 10−5 0.4427 0.3804 0.3822 0.4425 0.3802 0.382
(0.0279) (0.0291) (0.0142) (0.0279) (0.0291) (0.0142)
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Table 3: Milk Consumer Surplus Estimates (Cubic)
Upper Bounds Lower Bounds

Income Quantiles Income Quantiles
λ Upper Lower All Upper Lower All

1000 9.135 7.018 7.58 9.135 7.018 7.58
(0.341) (0.329) (0.137) (0.341) (0.329) (0.137)

100 9.133 7.018 7.58 9.133 7.018 7.58
(0.341) (0.328) (0.137) (0.341) (0.328) (0.137)

10 9.123 7.026 7.582 9.123 7.026 7.582
(0.341) (0.327) (0.137) (0.341) (0.327) (0.137)

1 9.113 7.056 7.59 9.113 7.056 7.59
(0.34) (0.326) (0.137) (0.34) (0.326) (0.137)

0.05 9.135 7.076 7.606 9.135 7.076 7.606
(0.341) (0.326) (0.138) (0.341) (0.326) (0.138)

0.005 9.149 7.075 7.613 9.149 7.075 7.613
(0.343) (0.326) (0.138) (0.343) (0.326) (0.138)

0.0005 9.145 7.071 7.603 9.145 7.071 7.603
(0.345) (0.326) (0.139) (0.345) (0.326) (0.139)

5× 10−5 9.15 7.062 7.595 9.15 7.062 7.595
(0.347) (0.327) (0.139) (0.347) (0.327) (0.139)
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Table 3: Milk Deadweight Loss Estimates (Cubic)
Upper Bounds Lower Bounds

Income Quantiles Income Quantiles
λ Upper Lower All Upper Lower All

1000 0.2003 0.1648 0.1685 0.2002 0.1647 0.1684
(0.0136) (0.0119) (0.00758) (0.0136) (0.0119) (0.00758)

100 0.2002 0.1643 0.1684 0.2002 0.1643 0.1683
(0.0135) (0.0118) (0.00752) (0.0135) (0.0118) (0.00752)

10 0.1984 0.1605 0.1663 0.1984 0.1605 0.1663
(0.0129) (0.0113) (0.00713) (0.0129) (0.0113) (0.00713)

1 0.1868 0.1458 0.155 0.1867 0.1458 0.155
(0.012) (0.0105) (0.00663) (0.012) (0.0105) (0.00663)

0.05 0.1588 0.1224 0.1324 0.1587 0.1224 0.1324
(0.0159) (0.0157) (0.00891) (0.0159) (0.0157) (0.00891)

0.005 0.148 0.1174 0.1241 0.148 0.1174 0.124
(0.0267) (0.024) (0.0135) (0.0267) (0.024) (0.0135)

0.0005 0.1585 0.1254 0.1344 0.1585 0.1254 0.1344
(0.0419) (0.034) (0.0198) (0.0419) (0.034) (0.0198)

5× 10−5 0.1574 0.1412 0.1435 0.1574 0.1412 0.1435
(0.0519) (0.0439) (0.0251) (0.0519) (0.0439) (0.0251)
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Figure 2: Quantile Plot, Soda
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Figure 3: Quantile Plot, Milk
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Figure 4: Quantile Plot, Soda
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Figure 5: Quantile Plot, Milk
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APPLICATION TO HETEROGENOUS TAXABLE INCOME
ELASTICITY

Model is

 = ( ) = 1() +
6X

=2

()

where  is log taxable income, 2() is taxable income elasticity for
individual , 2 is log of slope of last budget segment, 3 is the
difference of logs of the slope of the first and last segment, 4 is log
of intercept (nonlabor income) of first segment, 5 is difference of
log of interecept of last and first segments, and 6 = .

The time trend allows for individual specific productivity growth.

Data is PSID.

Report results in following table and graph.



Lambda Non-debised 
slope 
elasticity 

Debised 
slope 
elasticity 

Standard 
Error 

Non-debised 
income 
elasticity 

Debised 
income 
elasticity 

Standard 
Error 

0 0.780617 0.787642 0.415832 0.01345 0.007462 0.062251 
1.00E-07 0.677571 0.685251 0.37199 0.001554 0.001543 0.053651 
1.00E-06 0.597343 0.605638 0.288264 0.007321 0.007399 0.035524 
1.00E-05 0.474162 0.486876 0.205531 0.026225 0.027226 0.02018 

0.0001 0.34046 0.368166 0.148268 0.016726 0.020582 0.014406 
0.001 0.295437 0.3787 0.107041 -0.0011 0.001402 0.010159 

0.01 0.220099 0.531998 0.093561 -0.00267 -0.00328 0.009117 
0.1 0.09549 0.759263 0.091503 -0.00083 0.003373 0.009558 
0.2 0.067323 0.847766 0.094317 -0.00053 0.006233 0.009713 
0.3 0.053496 0.898555 0.097036 -0.00041 0.007672 0.009782 
0.4 0.044842 0.93253 0.099342 -0.00034 0.008516 0.009827 
0.5 0.038785 0.957175 0.10128 -0.00029 0.009057 0.009861 

1 0.023564 1.021592 0.107563 -0.00018 0.010123 0.009993 
2 0.013386 1.066017 0.113199 -0.0001 0.010501 0.010166 
3 0.009376 1.083669 0.115836 -7.2E-05 0.010553 0.010268 
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SUMMARY

We give linear estimators of structural and causal effects in nonsep-
arable panel data.

These estimators are based on linear random coefficients approxima-
tions to nonseparable models.

Via regularization these estimators bypass partial identification when
there are many time periods.

Importantly, we give ways of quantifying the extent of partial identi-
fication in applications.

Large sample theory is given for large  and 

We find little sensitivity of the results to the degree of approximation
in applications to estimation of average welfare effects and to average
taxable income elasticities with heterogeneity.




