## Skill Supply and the Organization of Production

Tommaso Porzio<sup>1</sup> Federico Rossi<sup>2</sup>

<sup>1</sup>Columbia

<sup>2</sup>Warwick

August 2023

# Occupational Structure and Development



# Occupational Structure and Development



## Occupational Structure - Secondary Educated



#### This Project

#### 1. Occupational accounting

- Schooling accounts for most variation in organizational structure across countries and over time
- New cohorts drive most of changes over time

#### 2. Evidence on link between schooling and occupational choice

- Exploit variation across cohorts
- ▶ ↑ schooling  $\rightarrow \downarrow$  own account work, ↑ wage employment

#### 3. Occupational choice model

- Structural counterpart of occupational accounting
- Implications for development accounting

Related Literature

#### Outline

- 1. Data and Definitions
- 2. Occupational Accounting
- 3. Cohort-level Evidence
- 4. Model



#### Data

► Micro data from labor force surveys/censuses (IPUMS International)

▶ 206 cross-sections from 70 countries

► Cover large part of the income distribution (from Mali to Canada)

## Occupational Classification

#### (1) Managers

- Wage employed in managerial occupation (Legislators, senior officials and managers)
- Self-employed with employees reporting managerial occupation (small share)

#### (2) Wage Workers

Wage employed in non-managerial occupation

#### (3) Own Account Workers

- Self-employed without any employee
- ▶  $(1) + (2) \approx \text{Wage employed}$
- Exclude employers without managerial role (small share)

# Occupational Structure across Countries



Does schooling account for cross-country differences in occupational shares?

- $\sigma_{e,c}$  = share of labor force in country c with education  $e \in \{\text{No Primary, Primary, Secondary, Tertiary}\}$
- $S_{e,c}^{j}$  = share of edu group e employed in occupation j
- ▶ Overall employment share in *j*:

$$S_c^j = \sum_e \sigma_{e,c} S_{e,c}^j$$

▶ Accounting counterfactual with edu shares of country *R*:

$$S_c^{j,\mathsf{ACC}} = \sum_e \sigma_{e,R} S_{e,c}^j$$

$$Acc Share_c^j = \frac{\log S_c^{j,ACC} - \log S_c^j}{\log S_R^j - \log S_c^j}$$

- $\sigma_{e,c}$  = share of labor force in country c with education  $e \in \{\text{No Primary, Primary, Secondary, Tertiary}\}$
- $S_{e,c}^{j}$  = share of edu group e employed in occupation j
- ▶ Overall employment share in *j*:

$$S_c^j = \sum_e \sigma_{e,c} S_{e,c}^j$$

▶ Accounting counterfactual with edu shares of country *R*:

$$S_c^{j,\mathsf{ACC}} = \sum_e \sigma_{e,R} S_{e,c}^j$$

$$Acc Share_c^j = \frac{\log S_c^{j,ACC} - \log S_c^j}{\log S_R^j - \log S_c^j}$$

- $\sigma_{e,c}$  = share of labor force in country c with education  $e \in \{\text{No Primary, Primary, Secondary, Tertiary}\}$
- $S_{e,c}^{j}$  = share of edu group e employed in occupation j
- Overall employment share in j:

$$S_c^j = \sum_{e} \sigma_{e,c} S_{e,c}^j$$

▶ Accounting counterfactual with edu shares of country *R*:

$$S_c^{j,\mathsf{ACC}} = \sum_e \sigma_{e,R} S_{e,c}^j$$

$$Acc Share_c^j = \frac{\log S_c^{j,ACC} - \log S_c^j}{\log S_R^j - \log S_c^j}$$

- σ<sub>e,c</sub> = share of labor force in country c with education
   e ∈ {No Primary, Primary, Secondary, Tertiary}
- $S_{e,c}^{j}$  = share of edu group e employed in occupation j
- Overall employment share in j:

$$S_c^j = \sum_e \sigma_{e,c} S_{e,c}^j$$

Accounting counterfactual with edu shares of country R:

$$S_c^{j,\mathsf{ACC}} = \sum_e \sigma_{e,R} S_{e,c}^j$$

$$Acc Share_c^j = \frac{\log S_c^{j,ACC} - \log S_c^j}{\log S_R^j - \log S_c^j}$$

- $\sigma_{e,c}$  = share of labor force in country c with education  $e \in \{\text{No Primary, Primary, Secondary, Tertiary}\}$
- $S_{e,c}^{j} = \text{share of edu group } e \text{ employed in occupation } j$
- Overall employment share in j:

$$S_c^j = \sum_e \sigma_{e,c} S_{e,c}^j$$

► Accounting counterfactual with edu shares of country *R*:

$$S_c^{j,ACC} = \sum_e \sigma_{e,R} S_{e,c}^j$$

Acc Share 
$$\frac{J_c}{J_c} = \frac{\log S_c^{J,ACC} - \log S_c^{J}}{\log S_R^{J} - \log S_c^{J}}$$







#### Other Empirical Results

Even larger role of education for changes over time Show

Large contribution of new cohorts Show

- ► Evidence of causal link: schooling → occupational choice
  - $\rightarrow$  Across cohorts,  $\uparrow$  schooling,  $\rightarrow$   $\downarrow$  own account,  $\uparrow$  wage employment Show
  - → School construction program in Indonesia: ↑ schooling, ↓ own account, ↑ wage employment Show



#### Evidence from INPRES

- ► INPRES → primary school construction program in Indonesia (1974-1978)
- As in Duflo (2001), exploit variation in
  - Intensity of program by district
  - Exposure across cohorts (only young enough fully treated)
- ▶ We estimate for individual *i* in cohort *c* and district *d*

$$y_{i,c,d} = \alpha_c + \eta_d + \sum_{k=1950}^{1977} \frac{\delta_k}{\delta_k} T_d \mathbb{1}(k=c) + \varepsilon_{i,c,d}$$

where  $T_d$  = number of built schools per pupil in district d

# Indonesia - Schooling Results



### Indonesia - Employment Results



# Indonesia - Employment Results





- Lucas (1978) with skill heterogeneity by education
- ▶ Mass  $\sigma_e$  of workers with education e
- ▶ Human capital  $h(e,x) = h_e x$ 
  - $h_e \rightarrow$  average skill by education
  - $x o idyosincratic ability, x \sim Pareto with mean 1 and shape <math>\alpha$
- Occupational choice
  - ▶ Own account: produce Z
  - ▶ Wage worker: supply h(e, x) efficiency units
  - Manager: hire I(h(e,x)) efficiency units and get profits from producing with

$$y = Ah(e, x) I [h(e, x)]^{\gamma}$$

- Lucas (1978) with skill heterogeneity by education
- ▶ Mass  $\sigma_e$  of workers with education e
- ▶ Human capital  $h(e,x) = h_e x$ 
  - $h_e \rightarrow$  average skill by education
  - $x o idyosincratic ability, x \sim Pareto with mean 1 and shape <math>\alpha$
- Occupational choice
  - ▶ Own account: produce Z
  - ▶ Wage worker: supply h(e, x) efficiency units
  - Manager: hire I(h(e,x)) efficiency units and get profits from producing with

$$y = Ah(e, x) I [h(e, x)]^{\gamma}$$

- Lucas (1978) with skill heterogeneity by education
- ▶ Mass  $\sigma_e$  of workers with education e
- Human capital  $h(e, x) = h_e x$ 
  - $h_e \rightarrow$  average skill by education
  - $x o idyosincratic ability, x o Pareto with mean 1 and shape <math>\alpha$
- Occupational choice
  - ▶ Own account: produce Z
  - ▶ Wage worker: supply h(e, x) efficiency units
  - Manager: hire I(h(e,x)) efficiency units and get profits from producing with

$$y = Ah(e, x) I [h(e, x)]^{\gamma}$$

- Lucas (1978) with skill heterogeneity by education
- Mass  $\sigma_e$  of workers with education e
- Human capital  $h(e, x) = h_e x$ 
  - $h_e \rightarrow$  average skill by education
  - $x o idyosincratic ability, x o Pareto with mean 1 and shape <math>\alpha$
- Occupational choice
  - ▶ Own account: produce Z
  - Wage worker: supply h(e, x) efficiency units
  - ▶ Manager: hire I(h(e,x)) efficiency units and get profits from producing with

$$y = Ah(e, x)I[h(e, x)]^{\gamma}$$

# Occupational Choice



# Occupational Choice - Higher $h_e$



## Occupational Shares by Education

$$\begin{split} S_e^{\mathsf{Managers}} &= g_M \left( \frac{A/Z}{+} \right) \frac{h_e^{\alpha}}{h_e^{\alpha}} \\ S_e^{\mathsf{Wage Workers}} &= g_W \left( \frac{A/Z}{+} \right) \frac{h_e^{\alpha}}{h_e^{\alpha}} \\ S_e^{\mathsf{Own Account}} &= 1 - \left[ g_M \left( \frac{A/Z}{+} \right) + g_W \left( \frac{A/Z}{+} \right) \right] \frac{h_e^{\alpha}}{h_e^{\alpha}} \end{split}$$

- ▶  $\uparrow A/Z \rightarrow \uparrow$  wage employment for all edu groups
- ▶ Differences in  $h_e$  → differences in wage employment between edu groups

# Aggregate Occupational Shares

$$\begin{split} S^{\text{Managers}} &= g_{M} \left( A/Z \right) \sum_{e} \sigma_{e} h_{e}^{\alpha} \\ S^{\text{Wage Workers}} &= g_{W} \left( A/Z \right) \sum_{e} \sigma_{e} h_{e}^{\alpha} \\ S^{\text{Own Account}} &= 1 - \left[ g_{M} \left( A/Z \right) + g_{W} \left( A/Z \right) \right] \sum_{e} \sigma_{e} h_{e}^{\alpha} \end{split}$$

• Occupational Accounting  $\rightarrow$  change distribution of  $\sigma_e$  keeping A/Z fixed

#### Proposition

Accounting = equilibrium effect of changes in skill (education) supply

### Aggregate Occupational Shares

$$\begin{split} S^{\text{Managers}} &= g_{M} \left( A/Z \right) \sum_{e} \sigma_{e} h_{e}^{\alpha} \\ S^{\text{Wage Workers}} &= g_{W} \left( A/Z \right) \sum_{e} \sigma_{e} h_{e}^{\alpha} \\ S^{\text{Own Account}} &= 1 - \left[ g_{M} \left( A/Z \right) + g_{W} \left( A/Z \right) \right] \sum_{e} \sigma_{e} h_{e}^{\alpha} \end{split}$$

▶ Occupational Accounting  $\rightarrow$  change distribution of  $\sigma_e$  keeping A/Z fixed

#### Proposition

Accounting = equilibrium effect of changes in skill (education) supply



Breaking the Equivalence: Imperfect Substitutability



### Imperfect Substitutability

▶ Suppose own-account produce  $y_T$  and firms produce  $y_M$ 

$$U(c_T, c_M) = \left(c_T^{\frac{\eta}{\eta-1}} + c_M^{\frac{\eta}{\eta-1}}\right)^{\frac{\eta-1}{\eta}}$$

• Occupational shares  $(p_M = 1)$ 

$$\begin{split} S^{\text{Managers}} &= g_{M} \left( A/Z, \underset{+}{\textbf{p_{T}}} \right) \sum_{e} \sigma_{e} h_{e}^{\alpha} \\ S^{\text{Wage Workers}} &= g_{W} \left( A/Z, \underset{+}{\textbf{p_{T}}} \right) \sum_{e} \sigma_{e} h_{e}^{\alpha} \\ S^{\text{Own Account}} &= 1 - \left[ g_{M} \left( A/Z, \underset{+}{\textbf{p_{T}}} \right) + g_{W} \left( A/Z, \underset{+}{\textbf{p_{T}}} \right) \right] \sum_{e} \sigma_{e} h_{e}^{\alpha} \end{split}$$

#### Proposition

If  $\eta < \infty$ , accounting overstates changes in occupational shares

### Imperfect Substitutability

▶ Suppose own-account produce  $y_T$  and firms produce  $y_M$ 

$$U(c_T, c_M) = \left(c_T^{\frac{\eta}{\eta-1}} + c_M^{\frac{\eta}{\eta-1}}\right)^{\frac{\eta-1}{\eta}}$$

• Occupational shares  $(p_M = 1)$ 

$$\begin{split} S^{\text{Managers}} &= g_{M} \left( A/Z, \underset{+}{\textbf{p_{T}}} \right) \sum_{e} \sigma_{e} h_{e}^{\alpha} \\ S^{\text{Wage Workers}} &= g_{W} \left( A/Z, \underset{+}{\textbf{p_{T}}} \right) \sum_{e} \sigma_{e} h_{e}^{\alpha} \\ S^{\text{Own Account}} &= 1 - \left[ g_{M} \left( A/Z, \underset{+}{\textbf{p_{T}}} \right) + g_{W} \left( A/Z, \underset{+}{\textbf{p_{T}}} \right) \right] \sum_{e} \sigma_{e} h_{e}^{\alpha} \end{split}$$

#### Proposition

If  $\eta < \infty$ , accounting overstates changes in occupational shares

## An Exploratory Calibration

- Calibrate model for low-income countries
- Pick A/Z,  $\alpha$ ,  $\gamma$ ,  $h_e$  to match
  - Wage employment shares by education
  - Worker per manager ratio
  - Managerial wage premium
- Counterfactual → high-income edu shares

## Results - Low Income Countries

|                                | Elasticity of Substitution $(\eta)$ |      |      |      |          |  |  |
|--------------------------------|-------------------------------------|------|------|------|----------|--|--|
|                                | 1                                   | 2    | 4    | 8    | $\infty$ |  |  |
| Wage Employed (Data)           | 0.37                                | 0.37 | 0.37 | 0.37 | 0.37     |  |  |
| Wage Employed (Counterfactual) | 0.37                                | 0.41 | 0.46 | 0.51 | 0.66     |  |  |
| Accounting Share               | -0.01                               | 0.11 | 0.24 | 0.36 | 0.67     |  |  |

#### Results - Low Income Countries

|                                | Elasticity of Substitution $(\eta)$ |      |      |      |          |  |
|--------------------------------|-------------------------------------|------|------|------|----------|--|
|                                | 1                                   | 2    | 4    | 8    | $\infty$ |  |
| Wage Employed (Data)           | 0.37                                | 0.37 | 0.37 | 0.37 | 0.37     |  |
| Wage Employed (Counterfactual) | 0.37                                | 0.41 | 0.46 | 0.51 | 0.66     |  |
| Accounting Share               | -0.01                               | 0.11 | 0.24 | 0.36 | 0.67     |  |

▶ Benchmark → education explains 2/3 of differences in wage employment

#### Results - Low Income Countries

|                                | Elasticity of Substitution $(\eta)$ |      |      |      |          |  |  |
|--------------------------------|-------------------------------------|------|------|------|----------|--|--|
|                                | 1                                   | 2    | 4    | 8    | $\infty$ |  |  |
| Wage Employed (Data)           | 0.37                                | 0.37 | 0.37 | 0.37 | 0.37     |  |  |
| Wage Employed (Counterfactual) | 0.37                                | 0.41 | 0.46 | 0.51 | 0.66     |  |  |
| Accounting Share               | -0.01                               | 0.11 | 0.24 | 0.36 | 0.67     |  |  |

- Lagakos et al (2023)  $\to$  correlation between relative price of 8 traditional goods (haircuts, shoe repairs...) and GDP suggests  $\eta \approx$  4
- $\rightarrow$  education explains 1/4 of differences in wage employment

## Implications for Development Accounting



## Wage Gaps Understate Human Capital Gaps

•  $\pi_e$  = average earnings of wage employed in edu group e

#### Proposition

```
\pi_e = \pi for all e. Details
```

- lacktriangle Differential selection on ability ightarrow no education premium among wage employed
- ▶ General point → wage gaps among wage employed understate human capital gaps
- Development accounting understates role of education
- → In progress: harmonization of data on self-employment income/consumption to quantify this Cross-Sector Returns



#### Conclusions

- 1. Large accounting role of education for differences in organization of production
- 2. Schooling gives comparative advantage for working in firms
- 3. Simple model where accounting maps into structural effects
- 4. Development accounting understates role of education
- → Next steps: more data to discipline (3) and (4)

### Accounting for Education - Over Time

Estimate for country c, education group e, year t and occupation j

$$S_{c,e,t}^{j} = \alpha + \sum_{k=1}^{2} \beta_k \log y_{i,t}^{k} + \gamma_c + \delta_{c,e} + \varepsilon_{c,i,t}$$

lacktriangle Display predicted values with and without country imes education dummies

Back

## Accounting for Cohort Effects

▶ Estimate for cohort *c*, in country *i*, year *t* and occupation *j* 

$$S_{c,i,t}^{j} = \alpha + \sum_{k=1}^{2} \beta_k \log y_{i,t}^{k} + \gamma_i + \delta_{i,c} + \zeta' X_{c,i,t} + \varepsilon_{c,i,t}$$

where  $X_{c,i,t}$  includes controls for age (restricted to be flat around 50)

Display predicted values with and without cohort effects



## Occupational Structure Within Sectors





# Agriculture



## Manufacturing





## Services



## Occupational Structure Within Sectors





# Occupational Choice (Z = 0)



# Occupational Choice (Z = 0)



## Occupational Shares in Partial Equilibrium

Aggregate occupational shares

$$S^{ ext{Managers}} = g_M \left( egin{aligned} w \\ - \end{array} 
ight) \sum_{e} \sigma_e oldsymbol{h}_e^{lpha} \ S^{ ext{Wage Workers}} = 1 - g_M \left( egin{aligned} w \\ - \end{array} 
ight) \sum_{e} \sigma_e oldsymbol{h}_e^{lpha} \ \end{array}$$

- ▶ In equilibrium cannot have both  $S^{\text{Managers}} \uparrow$  and  $S^{\text{Wage Workers}} \downarrow$
- w adjusts  $\rightarrow$  Structural effect  $\neq$  Occupational accounting

# Labor Market Equilibrium (Z = 0)



# Labor Market Equilibrium (Z = 0)



# Labor Market Equilibrium (Z = 0)



### Occupational Accounting < Structural Effect

Compare accounting counterfactual (ignoring own-account)

$$S_c^{j,\mathsf{ACC}} = \sum_e \sigma_{e,R} S_{e,c}^j$$

with model-based counterfactual  $S_c^{j, \text{MODEL}}$ 

#### Proposition

Suppose 
$$\sum_{e} \sigma_{e,R} h_{e,c} > \sigma_{e,c} h_{e,c}$$
. Then, 
$$S_c^{Manager,ACC} > S_c^{Manager,MODEL}$$
 
$$S_c^{Wage\ Worker,ACC} < S_c^{WageWorker,MODEL}$$

No own account → no increase in labor supply

## Fixed Managerial Pool

- Mass M of managers, each with human capital normalised to 1 (isomorphic to A)
- Human capital endowments as in baseline case
- Occupational choice
  - Own account  $\rightarrow$  produce Z
  - ▶ Wage worker  $\rightarrow$  supply h(e, x) efficiency units

# Occupational Choice (Fixed Managerial Pool)



# Occupational Choice (Fixed Managerial Pool)



### Occupational Shares

Aggregate occupational shares

$$S^{ ext{Wage Workers}} = g_W \left( egin{aligned} w \\ + \end{array} \right) \sum_e \sigma_e oldsymbol{h}_e^{lpha} \ S^{ ext{Own Account}} = 1 - g_W \left( egin{aligned} w \\ + \end{array} \right) \sum_e \sigma_e oldsymbol{h}_e^{lpha} \ \end{array}$$

▶ Structural effect  $\neq$  Occupational accounting if w changes

# Labor Market Equilibrium (Fixed Managerial Pool)



# Labor Market Equilibrium (Fixed Managerial Pool)



### Occupational Accounting < Structural Effect

Compare accounting counterfactual

$$S_c^{j,\mathsf{ACC}} = \sum_e \sigma_{e,R} S_{e,c}^j$$

with model-based counterfactual  $S_c^{j, \text{MODEL}}$ 

#### Proposition

Suppose 
$$\sum_{e} \sigma_{e,R} h_{e,c} > \sigma_{e,c} h_{e,c}$$
. Then, 
$$S_c^{Wage\ Worker,ACC} > S_c^{WageWorker,MODEL}$$
 
$$S_c^{Own\ Account,ACC} < S_c^{OwnAccountMODEL}$$

Fixed managerial pool → no increase in labor demand



## Accounting for Cohort Effects

- Cohort-level dataset on occupational shares
- Separately by income group, estimate for cohort c, in country i, year t and occupation j

$$S_{c,i,t}^j=\alpha+\beta_t+\gamma_i+\delta_{i,c}+\zeta'X_{c,i,t}+\varepsilon_{c,i,t}$$
 where  $\zeta'X_{c,i,t}=\zeta_1(a-50)^2+\zeta_2(a-50)^3$  and  $a=t-c$ 

Display estimated cohort effects Back

## Cohort Effects - Managers





#### Related Literature

- Development and the Organization of Production: Gollin (2007), Guner et al (2008), Restuccia and Rogerson (2008), Buera et al (2015), Poschke (2013, 2018, 2022), Hjort et al (2022)
- Human Capital and Structural Transformation: Caselli and Coleman (2001), Galor (2005), Herrendorf and Schoellman (2018), Buera et al (2022), Porzio et al (2022)
- Human Capital and Development Accounting: Hall and Jones (1999), Caselli (2005), Jones (2014), Hendricks and Schoellman (2018, 2022), Rossi (2022)

Back

#### Related Literature

- Development and the Organization of Production: Gollin (2007), Guner et al (2008), Restuccia and Rogerson (2008), Buera et al (2015), Poschke (2013, 2018, 2022), Hjort et al (2022)
  - Mostly on frictions and technological change
  - This project → the role of skills
- Human Capital and Structural Transformation: Caselli and Coleman (2001), Galor (2005), Herrendorf and Schoellman (2018), Buera et al (2022), Porzio et al (2022)
- Human Capital and Development Accounting: Hall and Jones (1999), Caselli (2005), Jones (2014), Hendricks and Schoellman (2018, 2022), Rossi (2022)



#### Related Literature

- Development and the Organization of Production: Gollin (2007), Guner et al (2008), Restuccia and Rogerson (2008), Buera et al (2015), Poschke (2013, 2018, 2022), Hjort et al (2022)
- Human Capital and Structural Transformation: Caselli and Coleman (2001), Galor (2005), Herrendorf and Schoellman (2018), Buera et al (2022), Porzio et al (2022)
  - Emphasizes cross-sector differences in skill intensity
  - This project → skills and occupational structure (within sectors)
- Human Capital and Development Accounting: Hall and Jones (1999), Caselli (2005), Jones (2014), Hendricks and Schoellman (2018, 2022), Rossi (2022)



#### Related Literature

- Development and the Organization of Production: Gollin (2007), Guner et al (2008), Restuccia and Rogerson (2008), Buera et al (2015), Poschke (2013, 2018, 2022), Hjort et al (2022)
- Human Capital and Structural Transformation: Caselli and Coleman (2001), Galor (2005), Herrendorf and Schoellman (2018), Buera et al (2022), Porzio et al (2022)
- ► Human Capital and Development Accounting: Hall and Jones (1999), Caselli (2005), Jones (2014), Hendricks and Schoellman (2018, 2022), Rossi (2022)
  - Relies on wages to discipline productivities
  - This project → skill-based sorting into wage employment



## Occupational Choice - Low Education Group



## Occupational Choice - High Education Group



### Occupational Shares in General Equilibrium

Occupational shares by education

$$S_e^{ ext{Managers}} = g \left( A/Z \right) h_e^{lpha}$$
 $S_e^{ ext{Wage Workers}} = \lambda g \left( A/Z \right) h_e^{lpha}$ 
 $S_e^{ ext{Own Account}} = 1 - (1 + \lambda) g \left( A/Z \right) h_e^{lpha}$ 

were  $\lambda = \lambda(\alpha, \gamma)$  is a constant

▶  $\uparrow A/Z \rightarrow \uparrow$  wage employment across all edu groups

Back

### Fixing Edu Shares

Consider accounting counterfactual

$$S_c^{j,\mathsf{ACC}} = \sum_e \sigma_{e,c} S_{e,R}^j$$

• Assume  $\alpha, \gamma, \{h_e\}_{e=1}^E$  common across countries

#### Proposition

$$S_c^{j,ACC} = S_c^{j,MODEL}$$
 for each occupation  $j$  if  $A_R/Z_R = A_P/Z_P$ .

ightarrow Occupational transformation by education group captures effects of uneven tech change

Back

## **Development Accounting**

•  $\pi_e$  = average earnings of wage employed in edu group e

$$\pi_e = \frac{S_e^W}{S_e^W + S_e^M} w h_e E[x | \bar{x}_W^e \leqslant x \leqslant \bar{x}_M^e] + \frac{S_e^M}{S_e^W + S_e^M} \Lambda h_e^{\frac{1}{1-\gamma}} E[x^{\frac{1}{1-\gamma}} | x \geqslant \bar{x}_M^e]$$

#### **Development Accounting**

•  $\pi_e$  = average earnings of wage employed in edu group e

$$\pi_{e} = \underbrace{\frac{S_{e}^{W}}{S_{e}^{W} + S_{e}^{M}}}_{\text{Constant}} wh_{e}E[x|\bar{x}_{W}^{e} \leqslant x \leqslant \bar{x}_{M}^{e}] + \underbrace{\frac{S_{e}^{M}}{S_{e}^{W} + S_{e}^{M}}}_{\text{Constant}} \Lambda h_{e}^{\frac{1}{1-\gamma}} E[x^{\frac{1}{1-\gamma}}|x \geqslant \bar{x}_{M}^{e}]$$

Worker and managerial shares scale up proportionally across edu groups

#### **Development Accounting**

•  $\pi_e$  = average earnings of wage employed in edu group e

$$\bar{\pi}_{e} = \frac{S_{e}^{W}}{S_{e}^{W} + S_{e}^{M}} w \underbrace{h_{e} E[x | \bar{x}_{W}^{e} \leq x \leq \bar{x}_{M}^{e}]}_{\text{Constant}} + \frac{S_{e}^{M}}{S_{e}^{W} + S_{e}^{M}} \Lambda \underbrace{h_{e}^{\frac{1}{1-\gamma}} E[x^{\frac{1}{1-\gamma}} | x \geqslant \bar{x}_{M}^{e}]}_{\text{Constant}}$$

▶ Higher  $h_e \to \text{lower thresholds } \bar{x}_W^e$  and  $\bar{x}_M^e \to \text{lower average } x$  conditional on wage employment

Back

## Cross-Sector Returns to Schooling





#### Two Special Cases

- 1. No own account option (Z = 0)
  - $\rightarrow \uparrow w$  counteracts increase in labor demand Show
- 2. Fixed pool of managers
  - $\rightarrow \downarrow w$  counteracts increase in labor supply Show

#### Occupational Accounting over Time

Does schooling account for changes in occupational shares over time?

# Occupational Accounting - Brazil



# Occupational Accounting - Brazil



# Occupational Accounting Over Time - All Countries





## Occupational Accounting Over Time - All Countries



Show Regression

#### Occupational Structure by Cohort

Which cohorts drive changes in the occupational structure?

## Wage Employment by Cohort - Brazil 2010



# Wage Employment by Cohort - All Countries





## Occupational Structure Accounting - Cohort Effects





## Occupational Structure Accounting - Cohort Effects



Show Regression

## Cohort Effects & Schooling - All Countries



#### 1. Regression with Trends across Cohorts

▶ Estimate for cohort *c*, in country *i*, year *t* and occupation *j* 

$$S_{c,i,t}^j = \alpha + \beta \mathsf{YrsSch}_{c,i} + \gamma_t + \delta_i + \theta_i^1 c + \theta_i^2 c^2 + \zeta' X_{c,i,t} + \varepsilon_{c,i,t}$$

- ► Cohort-level trends → slow-moving factors affecting schooling and occupational choices
- $\triangleright$   $X_{c,i,t}$  includes controls for age
- Restriction: age effects flat around 50 (robust to alternatives)

#### Results

|                                                      | Own       | Wage     |          |
|------------------------------------------------------|-----------|----------|----------|
|                                                      | Account   | Workers  | Managers |
| Years of Schooling                                   | -0.035*** | 0.028*** | 0.007*** |
|                                                      | (0.001)   | (0.001)  | (0.001)  |
| N                                                    | 8155      | 8155     | 8155     |
| Age Controls                                         | Yes       | Yes      | Yes      |
| Country $\times$ Year FE                             | Yes       | Yes      | Yes      |
| ${\sf Country}  \times  {\sf Cohort}   {\sf Trends}$ | Yes       | Yes      | Yes      |

- ${}^{\blacktriangleright}$   $\Delta$  Years of schooling  $\approx$  8 between and High-Income and Low-Income
  - $\rightarrow$  own account  $\downarrow$  28%, wage workers  $\uparrow$  22%, managers  $\uparrow$  6% in low-income when closing schooling gap



#### 2. Evidence from INPRES

- ► INPRES → primary school construction program in Indonesia (1974-1978)
- ▶ As in Duflo (2001), exploit variation in
  - Intensity of program by district
  - Exposure across cohorts (only young enough fully treated)
- ▶ We estimate for individual *i* in cohort *c* and district *d*

$$y_{i,c,d} = \alpha_c + \eta_d + \sum_{k=1950}^{1977} \frac{\delta_k}{\delta_k} T_d \mathbb{1}(k=c) + \varepsilon_{i,c,d}$$

where  $T_d$  = number of built schools per pupil in district d

## Indonesia - Schooling Results



## Indonesia - Employment Results





## Indonesia - Employment Results



# Educational Profiles - Managers



# Educational Profiles - Wage Employed



#### Educational Profiles - Own Account



#### Education Distribution across Countries





### Occupational Shares in Partial Equilibrium

Aggregate occupational shares

$$\begin{split} S^{\text{Managers}} &= g_{M} \begin{pmatrix} w \\ - \end{pmatrix} \sum_{e} \sigma_{e} h_{e}^{\alpha} \\ S^{\text{Wage Workers}} &= g_{W} \begin{pmatrix} w \\ + \end{pmatrix} \sum_{e} \sigma_{e} h_{e}^{\alpha} \\ S^{\text{Own Account}} &= 1 - \left[ g_{M} \begin{pmatrix} w \\ - \end{pmatrix} + g_{W} \begin{pmatrix} w \\ + \end{pmatrix} \right] \sum_{e} \sigma_{e} h_{e}^{\alpha} \end{split}$$

- ▶ Occupational Accounting  $\rightarrow$  changes distribution of  $\sigma_e$  keeping w fixed
- Structural effect  $\neq$  Occupational accounting if w changes

## Labor Market Equilibrium



# Labor Market Equilibrium: ↑ Education



# Labor Market Equilibrium: ↑ Education



## Occupational Accounting = Structural Effect

- ▶ Consider change in educational shares to  $\sigma_{e,R}$
- ► Compare accounting counterfactual Fixing Edu Shares

$$S_c^{j,\mathsf{ACC}} = \sum_e \sigma_{e,R} S_{e,c}^j$$

with model-based counterfactual  $S_c^{j,MODEL}$ 

#### Proposition

$$S_c^{j,ACC} = S_c^{j,MODEL}$$
 for each occupation j.

→ More educated workforce creates both supply and demand for wage labour