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Factor Models

X
(T×n)

= F
(T×r)

Λ∗′
(r×n)

+ e
(T×n)

Learn this structure ⇔ Estimate Λ∗ and F



Rotational Indeterminacy

X
(T×n)

= F
(T×r)

Λ∗′
(r×n)

+ e
(T×n)

Fix rotation of estimates Λ0,F 0, such that:

1. Λ0′Λ0

n = I

2. F 0′F 0

T = D, where D denotes a diagonal matrix

⇒ Estimates will be rotations of true loadings and factors.



Rotational Indeterminacy - A simple example

For a given t ,

• 3 observed outcomes: X1,X2,X3.

• 2 Factors F1, F2, with Fk ∼ N(0, I2)

• X follows simple factor structure with i .i .d . ei ∼ N(0,1), andX1

X2

X3

 =

1 0
1 1
0 1


[

F1

F2

]
+

e1

e2

e3

 .
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Rotational Indeterminacy - A simple example

Λ∗ =

1 0
1 1
0 1



Λ0 =

0.77 −0.61
1.60 −0.03
0.86 0.59





Rotational Indeterminacy - in practice

Stock and Watson [2002]:
“Because the factors are identified only up to a k × k matrix, detailed discussion
of the individual factors is unwarranted.”



This Paper

Main insight

Suppose Ioadings are "sparse" (there are local factors).

Then, individual loading vectors are identified.



Local Factors

Natural concept in many economic settings:

• Industry specific factors

• Country specific factors

• Character traits manifest in some but not all observational outcomes

These will be identified



The Main Idea



The Idea

1. Estimate the space spanned by the loading vectors

2. Find rotation that minimizes l0-norm of loadings

⇒ If true factor loadings are sparse, this will be the argmin.



The Idea

1. Estimate the space spanned by the loading vectors

2. Find rotation that minimizes l0-norm of loadings

In general, infeasible in practise



The Idea - feasible

1. Estimate the space spanned by the loading vectors

2. Find rotation that minimizes l1-norm of loadings

⇒ If true factor loadings are sparse, this will be the argmin.



An example with two factors



Exemplary DGP

X
(224×207)

= F
(224×2)

Λ∗T

(2×207)
+ e

(224×207)
(1)

• Ft
i.i.d .∼ N(0,ΣF ), with

ΣF =

[
1.0 0.3
0.3 1.0

]
.

• Either λ∗
ik

i.i.d .∼ U(0.1,2.9), or λ∗
ik = 0, such that

Λ∗ =

[
λ∗

1:120,1 0
0 λ∗

(n+1)−120:n,2

]
.



True loading matrix Λ∗



Estimation of Λ∗

Under standard regularity conditions, obtain estimates λ0
•1, λ

0
•2, such that

λ0
•1 = H11λ

∗
•1 + H12λ

∗
•2 + op(1)

λ0
•2 = H21λ

∗
•1 + H22λ

∗
•2 + op(1),

(2)

where H is an unknown non-singular rotation matrix (e.g. Bai 2003).

In population, λ0
•1 and λ0

•2 are linear combinations of the true loading vectors λ∗
•1 and λ∗

•2.



Observation 1

Linear combinations of sparse loading vectors are generally dense

Let λ0
•1 = H11λ

∗
•1 + H12λ

∗
•2 with H11,H12 ̸= 0. Then, generally λ0

i1 ̸= 0 for i = 1, . . . ,n.



PCA estimate Λ0

Compare to Λ∗:



PCA estimate Λ0

Compare to Λ∗:



Observation 2

There exists a linear combination of the estimated loading vectors that is sparse

There must exist weights w1 and w2, such that λ∗
•1 = w1λ

0
•1 + w2λ

0
•2. But then, if λ∗

•1 is
sparse, there must exist a linear combination of λ0

•1 and λ0
•2 that is sparse.



Finding the sparse rotation

Our proposal

Find rotation that minimizes ℓ1-norm across rotations of Λ0.



ℓ1-norm of loadings across all rotations

∥λ•k∥1 = ∥sin(θ)λ0
•1 + cos(θ)λ0

•2∥1 as a function of θ.

Proposed estimate ⇒ λ̃•1 = sin(θ̃1)λ
0
•1 + cos(θ̃1)λ

0
•2

λ̃•2 = sin(θ̃2)λ
0
•1 + cos(θ̃2)λ

0
•2



ℓ1-norm of loadings across all rotations

∥λ•k∥1 = ∥sin(θ)λ0
•1 + cos(θ)λ0

•2∥1 as a function of θ.

Proposed estimate ⇒ λ̃•1 = sin(θ̃1)λ
0
•1 + cos(θ̃1)λ

0
•2

λ̃•2 = sin(θ̃2)λ
0
•1 + cos(θ̃2)λ

0
•2



Rotated estimate Λ̃

Compare to Λ∗:



Rotated estimate Λ̃

Compare to Λ∗:



Second contribution: Testing for the presence of local factors

Intuition:

1. If no local factors present: No sparse rotation exists

2. If local factors present: Sparse rotation exists



Number of small loadings in λ•k = sin(θ)λ0
•1 + cos(θ)λ0

•2

Example DGP:

“Dense" DGP:

• “small” : |λik | < 1/log(n)



Number of small loadings in λ•k = sin(θ)λ0
•1 + cos(θ)λ0

•2

Example DGP:

“Dense" DGP:

• “small” : |λik | < 1/log(n)



Testing for the presence of local factors

Example DGP:

“Dense" DGP:

• Horizontal dashed red line represents critical value.



Testing for the presence of local factors

Example DGP:

“Dense" DGP:

• θ̃1 and θ̃2 correspond to minima of the ℓ1-norm.



Second contribution: Testing for the presence of local factors

1. Find the most sparse rotation in the loading space, λ̃•1

• Feasible using the ℓ1-rotation criterion from earlier

2. Count the number of small loadings in λ̃•1

3. Compare it to the number of small loadings that could reasonably be expected under
a “dense” loading matrix



Theory



The Main Result

1. Start with orthonormal basis of factor space.
• Can take any

√
n consistent estimate.

2. Find rotation that minimizes l1-norm of loadings
• Holding l2-norm constant

⇒ If there are (approximately) local factors, their loading vectors will be an argmin.



The Main Result

Formal defition of a “local factor” in paper is slightly stronger than having a sparse loading
vector

Further assume

1. loading vectors are not too close to collinear

2. we have access to a
√

n-consistent initial estimate Λ0.



The Main Result

min
R•k

∥
r∑

l=1

λ0
•lRlk∥1 such that R′

•kR•k = 1. (3)

Theorem 1

Suppose Fk is a local factor and the conditions stated in the paper hold.Then, there exists
a local minimum of (3) at R̄•k , with λ̄•k = Λ0R̄•k , such that

λ̄ik = λ∗
ik + Op(n−1/4) (4)



Applications

• International stock returns

• Panel of US macroeconomic indicators



The Data

• Daily stock returns across 6 regions

• 687 observations of 272 stocks

Stock index Number of stocks

Frankfurt 30
London 75
New York 97
Paris 38
Tel Aviv 22

• 8 Factors (Bai and Ng 2002)

• Test suggests local factors are present



Rotated Loading matrix

Figure 1: Columns 1-4 of Λ̃ Figure 2: Columns 5-8 of Λ̃

Order of geographical regions: Frankfurt, London, New York, Paris, Tel Aviv



Interpretation of individual factors

Factor Region Sector

1 Middle East
2 US
3 US
4 Global Natural Resources (Oil and Mining)
5 Germany, France
6 Germany, France, UK
7 Germany, France, UK
8 UK



Conclusion

• New method to simplify loading matrix that produces more interpretable estimates
(easy to implement!)

• Existing heuristics (e.g. VARIMAX) lack theoretical justification (and perform worse in
our simulations)

• We prove that ℓ1-criterion can identify individual loading vectors of local factors

• Sparsity assumption is testable

• Develop criterion to test for presence of local factors



Thank you!



The key assumptions (r = 2)

Let Ak denote the support of λ∗
•k .

1. Some factors are local, where a factor Fk is local if:
a) A significant number of entries in λ∗

•k are equal to zero (e.g. |Ak | ≤ αn for some
α ∈ [0,1)).

b) No other factor affects only a subset of Ak : Al ̸⊂ Ak∀l ̸= k

2. The loading vectors are not too close to collinearity on their joint support.



When is factor Fk local?

✓ ✓

✗ ✓

✗ ✓



The key assumptions (r = 2)

Let Ak denote the support of λ∗
•k .

1. Some factors are local, where a factor Fk is local if:
a) A significant number of entries in λ∗

•k are equal to zero (e.g. |Ak | ≤ αn for some
α ∈ [0,1)).

b) No other factor affects only a subset of Ak : Al ̸⊂ Ak∀l ̸= k

2. The loading vectors are not too close to collinearity on their joint support.



Loading vectors far from collinear

• Ensures no sparse linear combination exists of two dense vectors



Existing Criteria

max
R:R′R=I

Q(Λ0R) = Q(Λ) =
r∑

k=1

 n∑
i=1

λ4
ik − c

n

 n∑
i=1

λ2
ik

2
 . (5)

Value of c Criterion

0 Quartimax (Carroll 1953)
1 Varimax (Kaiser 1958)

r/2 Equamax (Saunders 1962)



Comparison of criteria

(Pseudo-)Norms across rotations:

• ℓ0-norm (large, red circles)

• ℓ1-norm (blue crosses)

• ℓ2-norm (small, grey circles)

• ℓ4-norm (green squares)

• ℓ∞-norm (yellow diamonds).
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