Financial Intermediation and Aggregate Demand: A Sufficient Statistics Approach

Yu-Ting Chiang ¹ Piotr Zoch ²

¹St Louis Fed

²University of Warsaw and GRAPE

August 29, 2023

Views in this paper do not necessarily represent those of the Federal Reserve Bank of St. Louis or the Federal Reserve System.

Introduction

How does the financial sector transmit policies to agg. demand?
Framework: nests financial interm. models + HH heterogeneity Financial sector: issues liquid assets to finance illiquid capital
Sufficient statistics: elasticities of liquidity supply w.r.t. returns
Application: asset purchases vs. tax cuts (Wall Street vs. Main Street)

Model comparison: output responses differ by orders of magnitude due to implicit assumptions about the elasticities.

Result: given our estimates of the elasticities for the U.S, response to tax cuts is stronger.

Model

Household and Production

Households: consume and save in liquid and illiquid asset, $b_{i,t}$, $a_{i,t}$:

$$\max_{c_{i,t}, b_{i,t}, a_{i,t}} \mathbb{E} \sum_{t \ge 0} \beta_i^t u\left(c_{i,t}, h_{i,t}\right), s.t.$$
$$c_{i,t} + b_{i,t} + a_{i,t} + \Phi_t(a_{i,t}, a_{i,t-1})$$
$$= (1 + r_t^B) b_{i,t-1} + (1 + r_t^A) a_{i,t-1} + y_{i,t} - \mathcal{T}(y_{i,t}).$$

portfolio adj. costs: Φ_t , borrowing constraints: $b_{i,t} \ge \underline{b}$, $a_{i,t} \ge \underline{a}$ labor income: $y_{i,t} = \frac{W_t}{P_t} z_{i,t} h_{i,t}$, idiosyncratic shocks: $z_{i,t}$

Production: sticky wages; capital adjustment costs.

Returns on capital: r_{t+1}^K .

The Financial Sector

▶ A representative bank issues deposits d_t to hold capital and liquid government debt b_t^B . Liquidity supply $d_t := \tilde{d}_t - b_t^B$.

The bank's problem:

$$r_{t+1}^N n_t = \max_{k_t^B, d_t} r_{t+1}^K q_t k_t^B - r_{t+1}^B d_t$$

subject to their balance sheet and financial constraints:

$$q_t k_t^B = d_t + n_t, \quad q_t k_t^B \le \Theta \left(\left\{ r_{s+1}^K, r_{s+1}^B \right\}_{s \ge t} \right) n_t$$

- ▶ Net worth of banks: $n_{t+1} = (1 f)(1 + r_{t+1}^N)n_t + m$.
- Illiquid assets consist of the net worth of banks and capital:

$$a_t = n_t + q_t k_t^F, \quad r_{t+1}^A = \frac{1}{a_t} (r_{t+1}^N n_t + r_{t+1}^K q_t k_t^F).$$

Government

• Government issues debt b_t^G , collects tax $T_t = \int \mathcal{T}(y_{i,t}) di$, purchases goods g_t and illiquid assets a_t^G

$$b_t^G - (1 + r_t^B)b_{t-1}^G = g_t - T_t + a_t^G - (1 + r_t^A)a_{t-1}^G.$$

- Monetary policy sets the nominal rate to implement real liquid rate target r^B_t.
- Equilibrium: prices and allocations such that agents optimize and markets clear. In particular,

liquid asset market :
$$\int b_{i,t} di = d_t + b_t^G$$
.

 Focus on an equilibrium where the financial constraint is binding. Liquidity Supply and Aggregate Responses

Nesting Models of Financial Intermediation

Models of financial intermediation (\mathcal{M})

- asset diversion (Gertler and Kiyotaki, Gertler and Karadi)
- costly state verification (Bernanke et al.)
- costly leverage (Uribe and Yue, Cúrdia and Woodford)
- collateral constraints (Bianchi and Mendoza)

Lemma

Given \mathcal{M} , there exists $\Theta(\cdot)$ s.t. d_t as a function of returns is identical to that in \mathcal{M} . Moreover, at the steady state,

$$\frac{\partial \Theta_t}{\partial r_{s+1}^K} = \gamma^{s-t} \ \bar{\Theta}_{r^K}, \quad \frac{\partial \Theta_t}{\partial r_{s+1}^B} = -\gamma^{s-t} \ \bar{\Theta}_{r^B}, \quad \forall s \ge t,$$

where $\Theta_t := \Theta(\{r_{s+1}^K, r_{s+1}^B\}_{s \ge t})$ and $\overline{\Theta}_{r^K}, \overline{\Theta}_{r^B} \ge 0, \gamma \in [0, 1).$

 $\mathcal{D}_t(\{r_s^K, r_s^B\}) \coloneqq d_t \text{ given returns; elasticities governed by } \bar{\Theta}_{r^K}, \bar{\Theta}_{r^B}, \gamma$

A Demand and Supply Representation

Approach: characterize equilibrium as an intertemporal demand and supply system.

Lemma

Given
$$\{b_s^G, T_s, g_s, r_s^B\}_{s=0}^{\infty}$$
, the equilibrium $\{y_s, r_s^K\}_{s=0}^{\infty}$ solve:
 $C_t(\{y_s, r_s^A, r_s^B, T_s\}) + \mathcal{X}_t(\{y_s, r_s^K\}) + g_t = y_t,$
 $\mathcal{B}_t(\{y_s, r_s^A, r_s^B, T_s\}) = \mathcal{D}_t(\{r_s^K, r_s^B\}) + b_t^G,$

and

$$\boldsymbol{r_t^A} = \mathcal{R}_t^A \big(\{\boldsymbol{r_s^K}, \boldsymbol{r_s^B}\}, \mathcal{D}_{t-1}(\{\boldsymbol{r_s^K}, \boldsymbol{r_s^B}\}) \big),$$

where $C_t, \mathcal{B}_t, \mathcal{X}_t, \mathcal{R}_t^A$ are functions that do not depend on Θ .

Implication: aggregate responses depend on financial frictions Θ only through the liquidity supply function \mathcal{D}_t .

Aggregate Output Response

Define excess liquidity and aggregate demand as

 $\boldsymbol{\epsilon}_t(\cdot) \coloneqq \mathcal{D}_t(\cdot) + b_t^G - \mathcal{B}_t(\cdot), \quad \Psi_t(\cdot) \coloneqq \mathcal{C}_t(\cdot) + \mathcal{X}_t(\cdot) + g_t,$

Theorem

Given $\{d \boldsymbol{b}^{\boldsymbol{G}}, d \boldsymbol{T}, d \boldsymbol{g}, d \boldsymbol{r}^{B}\}$, the aggregate output response is:

$$d\boldsymbol{y} = \underbrace{(\mathbf{I} - \boldsymbol{\Psi}_{y} - \boldsymbol{\Omega}\boldsymbol{\epsilon}_{y})^{-1}}_{(iii) \text{ modified Keynesian cross}} \times \left(\underbrace{d\boldsymbol{g} + \boldsymbol{\Psi}_{T} d\, \boldsymbol{T} + \boldsymbol{\Psi}_{r^{B}} d\boldsymbol{r}^{B}}_{(i) \text{ goods market}} + \underbrace{\boldsymbol{\Omega}(d\boldsymbol{b}^{G} + \boldsymbol{\epsilon}_{T} d\, \boldsymbol{T} + \boldsymbol{\epsilon}_{r^{B}} d\boldsymbol{r}^{B})}_{(ii) \text{ asset markets}} \right)$$

$$\label{eq:Omega} \begin{split} \mathbf{\Omega} \coloneqq \Psi_{r^K} \times (-\epsilon_{r^K}^{-1}) \text{: how aggregate demand responds to changes} \\ \text{in } r^K \text{ due to excess liquidity }. \end{split}$$

Asset Purchases vs. Tax Cuts

Asset Purchases vs. Tax Cuts

Consider two policies with the same paths for b_t^G, r_t^B, g_t : policy 1: asset purchases $\Delta_t := a_t^G - (1 + r_t^A)a_{t-1}^G$; tax T_t policy 2: pays Δ_t to households; tax $T_t - \Delta_t$

Differences in output responses: $\widehat{d y} \coloneqq d y^{\mathsf{asset}} - d y^{\mathsf{tax cut}}$

$$\widehat{d\boldsymbol{y}} = \big(\mathbf{I} - \boldsymbol{\Psi}_y - \boldsymbol{\Omega}\boldsymbol{\epsilon}_y\big)^{-1}\big(\underbrace{\boldsymbol{C}_T\boldsymbol{\Delta}}_{\text{(i) goods market}} + \underbrace{\boldsymbol{\Omega} \ (-\boldsymbol{B}_T)\boldsymbol{\Delta}}_{\text{(ii) asset markets}}\big)$$

(i): tax cuts → stronger direct consumption response
 (ii): asset purchases create more excess liquidity
 → affects AD via asset markets, strength depends on Ω

Model Comparison

Exercise: keep households and steady state the same; vary the financial sector's liquidity supply elasticities

Empirical elasticities:

$$\underbrace{d\Theta_t}_{(i)} = \sum_{h \ge 1} \gamma^{h-1} \Big(\bar{\Theta}_{r^K} \underbrace{\mathbb{E}_t[dr_{t+h}^K]}_{(ii)} - \bar{\Theta}_{r^B} \underbrace{\mathbb{E}_t[dr_{t+h}^B]}_{(iii)} \Big) + \upsilon_t$$

(i) bank market leverage (ii) corp bond yields (iii) treasury yields Our estimates: $\bar{\Theta}_{r^{K}} = 25$, $\bar{\Theta}_{r^{B}} = 27$, $\gamma = 0.96$

Implicit assumptions of standard models:

- 1. GKK-implied elasticities: $\bar{\Theta}_{r^{K}} = 11, \ \bar{\Theta}_{r^{B}} = 12, \ \gamma = 0.99$
- 2. Perfectly elastic (Auclert et al. (2023)): $\bar{\Theta}_{r^{K}}, \bar{\Theta}_{r^{B}} \rightarrow \infty$
- 3. Perfectly inelastic (Kaplan et al. (2018)): $\mathcal{D}_{r^{K}} = \mathcal{D}_{r^{B}} = \mathbf{0}$

Policy Experiments

Figure 1: Government debt, net asset purchases, and taxes; y-axis: % of steady-state GDP. We keep g_t and r_t^B constant at steady-state levels.

Aggregate Output Responses

Output response

Figure 2: y-axis: % of steady state GDP; blue: perfectly inelastic; yellow to red: $\overline{\Theta}_{r^{K}}$ from GKK to our estimate; black: perfectly elastic.

Decomposition of Aggregate Output Responses

Relative Effectiveness of Asset Purchases v.s. Tax Cuts

Figure 3: y-axis: % of steady state GDP; blue: perfectly inelastic; yellow to red: $\overline{\Theta}_{r^{K}}$ from GKK to our estimate; black: perfectly elastic.

$$\widehat{doldsymbol{y}} = ig(\mathbf{I} - oldsymbol{\Psi}_y - oldsymbol{\Omega}oldsymbol{\epsilon}_y ig)^{-1} ig(oldsymbol{C}_T oldsymbol{\Delta} + oldsymbol{\Omega} (-oldsymbol{B}_T) oldsymbol{\Delta} ig)$$

Conclusion

- A framework to study how the financial sector affects macroeconomic policies
- Key: elasticities of liquidity supply w.r.t returns
- Application: effectiveness of asset purchases vs. tax cuts
- Output responses differ by orders of magnitude due to implicit assumptions about these elasticities
- Our estimates: modest asset market channel, targeting households is relatively more effective