Heterogeneous Overreaction in Expectation Formation: Evidence and Theory

Heng Chen (HKU), Guangyu Pei (CUHK), Qian Xin (HITSZ), Xu Li (HKU)

EEA-ESEM Barcelona 2023

Jul 30, 2023

L Ξ ト < Ξ ト Ξ Jul 30, 2023 1/23

イロト イヨト イヨト イヨト

Introduction

- Testing theories of expectation formation using survey data on expectations:
 - rational expectations hypothesis $\Rightarrow \mathbb{COV}(\mathsf{FE},\mathsf{FR}) = 0$
 - Bordalo, Gennaioli, Ma, and Shleifer (BGMS,2020)
 - ★ $COV(FE_{i,t}, FR_{i,t}) < 0$: individual forecasts overreact to information
- This paper
 - a set of empirical evidence on heterogenous over-reactions
 - ▶ a theory of asymmetric and non-monotone expectation formation

イロト イロト イヨト イヨト

This Paper I: Cross-Sectional Evidence

- \bullet Heterogenous overreaction in the cross-section of Info. Surprise \equiv Info. Prior
 - **sign:** overreaction is stronger when the surprises are negative
 - size: overreaction tends to be weaker when the surprises are larger in size
- Forecast revisions are asymmetric and non-monotone in surprises

 $FR = \kappa (Surp) \cdot Surp$

• response to surprises is asymmetric: κ (Surp₋) > κ (Surp₊)

FR is non-monotone in Surp: $\frac{\partial FR}{\partial Surp} < 0$ for large |Surp|

Noisy RE: Kalman Filter

3/23

イロト 不得 トイヨト イヨト

Jul 30, 2023

This Paper II: Theory and Quantitative Analysis

• A theory of expectation formation to rationalize the empirical facts that features

- \blacktriangleright uncertain information quality \rightarrow non-monotonicity
- $\blacktriangleright \text{ ambiguity averse analysts} \rightarrow \text{asymmetry}$
- Quantitatively discipline the model with the data
 - ▶ a reasonable degree of ambiguity aversion can rationalize the empirical facts
 - heterogeneous overreaction originates from ambiguity and ambiguity aversion

The Empirical Evidence

Empirical Environment

• Financial analysts forecast earnings of the firms in each quarter

Data and Sample Summary Statistics

Jul 30, 2023

イロト イロト イヨト イヨト

F

2

Over-Reaction: FE-on-FR

$$\mathsf{FE}_{ijt} = b_0 + b_1 \mathsf{FR}_{ijt} + \delta_i + \delta_j + \delta_t + \omega_{ijt}.$$

		Outc	ome Variable:	Forecast Error	FEi	
	Winsorizat	ion at the 1%	and 99%	Winsorizatio	on at the 2.5%	and 97.5%
	Baseline	Control	Unscaled	Baseline	Control	Unscaled
	(1)	(2)	(3)	(4)	(5)	(6)
FR _i	-0.0952*** (0.0146)	-0.0954*** (0.0147)	-0.0964*** (0.0124)	-0.0926*** (0.0119)	-0.0926*** (0.0119)	-0.0793*** (0.0102)
Earnings of the Last Quarter	()	0.0023 (0.0073)	()	()	-0.0004 (0.0050)	(****)
Quarter FEs Analyst FEs Firm FEs	YES YES YES	YES YES YES	YES YES YES	YES YES YES	YES YES YES	YES YES YES
Obs. Adj. R-sq	110,895 0.2429	110,895 0.2429	110,895 0.2170	110,895 0.2298	110,895 0.2298	110,895 0.2236

The standard errors are clustered on firm and calendar year-quarter.*** p<0.01, ** p<0.05, * p<0.1

Robustness I: Subsamples Robustness II: Trimming

イロト イロト イヨト イヨト

Jul 30, 2023

æ

Heterogeneous Over-Reactions

$$\mathsf{FE}_{ijt} = b_0 + b_1 \mathsf{FR}_{ijt} + \delta_i + \delta_j + \delta_t + \omega_{ijt}.$$

- One important feature of our empirical setting:
 - ▶ the guidance G_{*j*,*t*} is common for all analysts,
 - but surprises Surpise_{iit} contained in the guidance are heterogeneous across analysts
- FE-on-FR regression on running decile windows:
 - trimming the data set at the 2.5% and 97.5%
 - rank surprises from the most negative to the most positive and break them into deciles
 - construct a running decile window *j* covers decile j 1, *j*, and j + 1
 - run FE-on-FR regression on each running decile window

Э

イロト イロト イモト イモト

Jul 30, 2023

Heterogeneous Over-Reactions

イロト イロト イヨト イヨト

Jul 30, 2023

2

9/23

Heterogeneous Over-Reactions: Mechanism

• FR-on-Surprise: marginal effect of Surprise on FR is state (surprise) dependent

$$\frac{\partial \mathsf{FR}}{\partial \mathsf{Surprise}} = \kappa \left(\mathsf{Surprise} \right) > 0$$

Noisy RE: Kalman Filter

э

10/23

<ロト < 回 > < 回 > < 回 > .

Jul 30, 2023

FR-on-Surprise: Non-parametric Estimation

- Local polynomial regression with
 - Epanechnikov kernel and third degree of the polynomial smoother

• FR and Surp trimed at 2.5% and 97.5%

• FR and Surp residualized by controlling for quarter, firm, and analyst fixed effects

イロト イボト イヨト イヨト

FR-on-Surprise: Non-parametric Estimation

(a) Non-parametric estimation

(b) Derivative: marginal effect

Trim at the 2.5% and 97.5%.

A Simple Forecasting Model

Asymmetric and Non-monotone Expectation Formation

- Uncertain information quality \rightarrow Bayesian updating \rightarrow non-monotonicity
- Ambiguity aversion \rightarrow pessimistic beliefs (as if) \rightarrow asymmetry

A Summary: Non-monotonicity and Asymmetry

- If analysts have ambiguity neutral preferences ($\lambda = 0$),
 - non-monotone but symmetric
- If analysts have Wald (1950) maxmin criterion $(\lambda \to +\infty)$,
 - asymmetric but monotone
- Qualitatively: the smooth model is in between, two competing forces
- Quantitatively: how much degree of ambiguity aversion is needed?

15/23

ヘロト 人間 ト 人 ヨト 人 ヨト

Jul 30, 2023

Quantitative Analysis

Connecting Theory to Data

• The challenge of unobservable private information of the analysts

• Is our model informative for the observable relationship quantitatively?

イロト イボト イヨト イヨト

Disciplining Model with Data: Simulated Method of Moments

- Simulating our model and non-parametric estimation
- Construct a "distance" between simulated and empirical relationships

$$\Lambda(\Theta) = \frac{1}{N} \left[\hat{m} - m(\Theta) \right]' \hat{W} \left[\hat{m} - m(\Theta) \right]$$

- σ_{θ} is calibrated to match the standard deviation of realized earnings

$$\bullet \ \Theta = \{\lambda, \beta, L, U, \sigma_{\theta}, \sigma_{x}, \sigma_{Y}, \sigma_{z}\}$$

- \hat{m} : a vector of N targeted moments from non-parametric estimation of the data
- m: the vector of simulated moments as a function of the set of parameters Θ
- \hat{W} is the weighting matrix with diagonal elements being the precision of moments \hat{m}
- Choose parameters Θ to minimize the distance:
 - Laplace type estimator using MCMC with the Metropolis-Hasting algorithm
 - ★ Chernozhukov and Hong (2003)
 - ▶ as if IRF matching [CEE (2005), ACEL (2011)]

イロト イボト イヨト イヨト

Jul 30, 2023

Estimated Parameters

	Mean	90% HPDI	95% HPDI
λ	449.9	(411.9, 504.0)	(379.5, 504.2)
β	1.379	(0.773, 1.971)	(0.694, 2.092)
U	0.772	(0.676, 0.855)	(0.674, 0.875)
L	0.082	(0.036, 0.119)	(0.030, 0.121)
$100\sigma_x$	0.472	(0.332, 0.593)	(0.305, 0.625)
$100\sigma_z$	0.186	(0.140, 0.234)	(0.137, 0.240)
$100\sigma_Y$	0.435	(0.416, 0.453)	(0.411, 0.453)

Table: Estimated Model Parameters

Disciplining Model with Data: Non-Parametric Regression

(a) $\lambda = 449.9$, Non-parametric estimation

(b) $\lambda = 449.9$, Derivative: marginal effect

Heterogeneous Over-Reaction and Ambiguity Aversion

Ambiguity Neutral Max-Min Average Overreaction

Jul 30, 2023

문 > 문

21/23

< ロト < 回ト < 三ト</p>

Discussions:

• Behavioural alternatives: Diagnostic Expectations; Over-Confidence; Loss Aversion.

• Agency Issues: Skewed Information Reliability; "Walk-down to beatable".

Dynamic Models Exploiting Heterogeneity of Firms

Jul 30, 2023

<ロト < 回 > < 回 > < 回 > .

э

Conclusion

- Empirical evidence expectation formation that features · · ·
 - heterogeneous over-reaction, asymmetry and non-monotonicity
 - the strategy of "FR-on-Surprise"
 - hard to be rationalized by existing theories of expectation formation
- A theory of expectation formation to rationalize the empirical facts that features
 - uncertain information quality and ambiguity aversion
- Quantitatively discipline the model with the data
 - ▶ a reasonable degree of ambiguity aversion can rationalize the empirical facts
 - heterogeneous overreaction originates from ambiguity and ambiguity aversion

イロト イボト イヨト イヨト

Jul 30, 2023

Contributions

- Empirically, evidence of expectation formation that features
 - heterogeneous over-reaction, asymmetry and non-monotonicity
 - cannot be rationalized by most of the existing theories of expectation formation
- Methodologically, the empirical strategy of "FR-on-Surprise"
 - a powerful test for asymmetry and non-monotonicity
 - complement to the "FE-on-FR" approach in the literature
- Theoretically, a theory of asymmetric and non-monotone expectation formation
 - rationalize the empirical facts qualitatively and quantitatively

Literature Review I: Empirical Evidence of Expectation Formation

- Using survey data to test theories of expectation formation
 - Coibion and Gorodnichenko (2015)
 - * "FE-on-FR", consensus forecasts of macroeconomic variables, under-reaction
 - Bordalo, Gennaioli, Ma, and Shleifer (2020)
 - * "FE-on-FR", individual forecasts of macroeconomic variables, over-reaction
 - Bordalo, Gennaioli, Porta, and Shleifer (2019)
 - ★ over-reaction in forecast data of firms' long-term earnings growth
 - Broer and Kohlhas (2019), Kohlhas and Walther (2021)
 - * "FE-on-FR" and "FE-on-Info" at individual level, macroeconomic survey
 - ★ mixed evidence on over- and under-reaction
 - Bouchaud, Krueger, Landier, and Thesmar (2019)
 - * "FE-on-FR" and "FE-on-Info", consensus + individual, firm level earning forecasts
 - ★ under-reaction in forecast data of short-term earnings growth
 - Angeletos, Huo, and Sastry (2020)
 - ★ consensus forecasts initially under-react before over-shooting later on
 - Afrouzi, Kwon, Landier, Ma, and Thesmar (2021)
 - heterogeneous overreaction: persistence of DGP and forecast horizons matter

イロト 不得下 イヨト イヨト

Jul 30, 2023

23/23

Literature Review II: Theories of Expectation Formation

- Theories of expectation formation outside full information rational expectations:
 - rational inattention [Sims (2003)]
 - sticky information [Mankiw and Reis (2002)]
 - ▶ higher-order uncertainty [Morris and Shin (2002), Woodford (2003), Angeletos and Lian (2016)]
 - ▶ asymmetric attention [Mackowiak and Wiederholt (2009), Kohlhas and Walther (2021)]
 - diagnostic expectations [BGS (2018), BGMS (2020), Bianchi, Ilut, and Saijo (2022)]
 - over-confidence [Kohlas and Broer (2019)]
 - cognitive discounting [Gabaix (2020)]
 - level-K thinking [Garcia-Schmidt and Woodford (2019), Farhi and Werning (2019)]
 - narrow thinking [Lian (2020)]
 - autocorrelation averaging [Wang (2021)]
 - over-extrapolation + dispersed info [Angeletos, Huo, and Sastry (2020)]
 - Loss aversion [Capistran and Timmermann (2008), EKT(2008), ET(2008)]
 - ▶ multiple prior preferences [Epstein and Schneider (2008), Baqaee (2020)]
 - uncertain info. quality [Gentzkow and Shapiro (2006), Chen, Lu, and Suen (2016)]

• • • •

イロト 不得下 イヨト イヨト

Literature Review III: Ambiguity Averse Preferences

• Smooth model of ambiguity and its applications under incomplete information

- Klibanoff, Marinacci, and Mukerji (2005)
- Pei (2023), Huo, Pedroni, and Pei (2023)
- Multiple prior preferences and its applications
 - Epstein and Schneider (2008), Baqaee (2020)
 - Ilut (2012), Ilut and Schneider (2014), Ilut and Saijo (2021)

イロト イヨト イヨト イ

Data and Sample

- I/B/E/S Guidance and I/B/E/S Estimates data on firm EPS
 - firm-quarter data from 1994 2017 for guidance
 - analysts-firm-quarter data from 1994 2017 for EPS forecasts (sell-side)
 - EPS, its guidance and forecasts are
 - * manually split adjusted to ensure consistency with realized earnings
 - deflated by stock price at the beginning of the quarter (CRSP)
 - sample selection:
 - manager guidance with point or range forecasts (midpoint)
 - exclude observations with bundled guidance
 - ★ exclude observations with the stock price less than \$1 to avoid small price deflator problem

23/23

Jul 30, 2023

multiple guidances—the latest guidance before earnings announcement

Summary of Statistics

- Our final sample includes · · ·
 - 3226 different firms, each with 5.03 quarters on average;
 - about 6.83 analysts issue forecasts for a specific firm-quarter;
 - ▶ 6,987 individual analysts, each on average issues forecasts for 6.74 firms.

	(1) N	(2) mean	(3) sd	(4) p25	(5) p50	(6) p75
Initial forecasts	110,895	0.0120	0.0129	0.0070	0.0123	0.0180
Revised forecasts	110,895	0.0104	0.0149	0.0057	0.0113	0.0173
Forecast revision	110,895	-0.0016	0.0055	-0.0017	0.0000	0.0000
Forecast errors	110,895	-0.0000	0.0047	0.0000	0.0003	0.0011
Unfavorable	110,895	0.6256	0.4840	0.0000	1.0000	1.0000
Surprise	110,895	-0.0040	0.0171	-0.0062	-0.0012	0.0003
Managerial guidance Earnings	16,241 16,241	0.0067 0.0089	0.0293 0.0197	0.0027 0.0044	0.0089 0.0112	0.0160 0.0177

イロト 不得下 イヨト イヨト

Jul 30, 2023

FE-on-FR: Robustness I

		Outo	come Variable:	Forecast Error	FE _i	
	Winsoriza	ation at the 1% a	ind 99%	Winsorizati	on at the 2.5% a	and 97.5%
	Excl Pre-anc	Excl Multiple	Excl Both	Excl Pre-anc	Excl Multiple	Excl Both
	(1)	(2)	(3)	(4)	(5)	(6)
FR _i	-0.0733** (0.0284)	-0.1561*** (0.0217)	-0.1545*** (0.0469)	-0.0731*** (0.0228)	-0.1536*** (0.0171)	-0.1540*** (0.0352)
Quarter FEs Analyst FEs Firm FEs	YES YES YES	YES YES YES	YES YES YES	YES YES YES	YES YES YES	YES YES YES
Obs. Adj R-sq.	50,558 0.2675	46,493 0.3020	17,606 0.3412	50,558 0.2727	46,493 0.2842	17,606 0.3285

The standard errors are clustered on firm and calendar year-quarter.*** p < 0.01, ** p < 0.05, * p < 0.1

Return

イロト イヨト イヨト イヨト

FE-on-FR: Robustness II

			Outc	ome Variable:	Forecast Error	FE _i		
		Trimmed at	1% and 99%			Trimmed at 2.	5% and 97.5%	
	Full	Excl Pre-anc	Excl Multiple	Excl Both	Full	Excl Pre-anc	Excl Multiple	Excl Both
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
FR _i	-0.1024*** (0.0105)	-0.0942*** (0.0208)	-0.1627*** (0.0137)	-0.1774*** (0.0287)	-0.0854*** (0.0082)	-0.0819*** (0.0137)	-0.1492*** (0.0107)	-0.1568*** (0.0186)
Quarter FEs Analyst FEs Firm FEs	YES YES YES							
Obs. Adj R-sq.	106,614 0.2250	48,950 0.2762	43,756 0.2817	16,738 0.3336	100,308 0.2110	46,363 0.2748	40,148 0.2654	15,484 0.3139

The standard errors are clustered on firm and calendar year-quarter.*** p < 0.01, ** p < 0.05, * p < 0.1

Return

イロト イヨト イヨト イヨト

Heterogeneous Over-Reaction: Trim at 1% and 99%

Return < □ > < @ > < ই > < ই > ই ৩ ৭ ৫ Jul 30, 2023 23/23

Heterogeneous Over-Reaction: Regressions on Deciles

Robustness: Definition of Large Surprises

(Outcome Variable	Forecast Revision	on FR _i
Winsorization	at 1% and 99%	Winsorization	at 2.5% and 97.5%
(1) $n = 1.5$	(2) <i>n</i> = 2	(3) $n = 1.5$	(4) $n = 2$
0.4311***	0.3971***	0.4575***	0.4193***
(0.0188)	(0.0184)	(0.0162)	(0.0169)
-0.0060***	-0.0046* ^{**}	-0.0020***	-0.0019* ^{**}
(0.0006)	(0.0007)	(0.0003)	(0.0003)
-0.3502***	-0.3203***	-0.2852***	-0.2655* ^{**}
(0.0194)	(0.0182)	(0.0167)	(0.0175)
0.0001	-0.0001	0.0001	-0.0000
(0.0001)	(0.0001)	(0.0001)	(0.0001)
VES	VES	VES	VES
VES	VES	VES	VES
I LJ	I LJ	I LJ	TES NEC
YES	YES	YES	YES
110,895	110,895	110,895	110,895
0.4819	0.4811	0.5019	0.5032
	$\begin{tabular}{ c c c c } \hline \hline & $	$\label{eq:constraint} \begin{array}{ c c c } \hline Outcome Variable} \\ \hline \hline \\ \hline \hline \\ $	$\begin{tabular}{ c c c c c c } \hline $Viscome Variable: Forecast Revisit} \hline $Viscome Variable: Forecast Revisities $Viscome Variable: Forecast Revisities $Viscome Variable: Forecast Revisities $Viscome Variable: $$

The standard errors are clustered on firm and calendar year-quarter. ***p<0.01, **p<0.05, *p<0.1

Non-parametric Estimation: Robustness I

Trim at the 1% and 99%.

Non-parametric Estimation: Robustness II

- (a) Winsorization, Non-parametric estimation
- (b) Trimming, Non-parametric estimation

Winsorizing at the 1% and 99%.

Return イロト イラト イヨト ヨーク Q (~ Jul 30, 2023 23/23

Non-parametric Estimation: Robustness III

(a) 5% Triming, Non-parametric estimation

(b) 2% Trimming, Non-parametric estimation

Subsample of Firms that Issued at Least 12 Consecutive Guidances.

Non-parametric Estimation: Robustness IV

(a) 5% Triming, Non-parametric estimation

(b) 2% Trimming, Non-parametric estimation

Subsample that Excludes the Period of the Financial Crisis.

Binscatter Plots I

Trim at the 2.5% and 97.5%.

Binscatter Plots II

Trim at the 1% and 99%.

Over-Reaction I

Proposition: if analysts are ambiguity neutral, i.e., $\lambda = 0$,

$$\operatorname{sign}\left\{\frac{\operatorname{COV}\left(\operatorname{FE}_{i},\operatorname{FR}_{i}\right)}{\operatorname{\mathbb{V}}\left(\operatorname{FR}_{i}\right)}\right\}=\operatorname{sign}\left\{\kappa^{\operatorname{RE}}-\mathbb{\hat{\mathbb{E}}}\left[\kappa\left(s_{i}\right)\right]\right\}.$$

• $\kappa^{\mathsf{RE}} = \frac{\tau_{Y}}{\tau_{\theta} + \tau_{z} + \tau_{Y}}$ denotes the FR's response to surprise under rational expectation.

• $\hat{\mathbb{E}}\left[\cdot\right]$ is an expectation operator under the adjusted belief $\hat{p}\left(s_{i}\right)$,

$$\hat{\mathbb{E}}\left[\kappa\left(s_{i}\right)\right] \equiv \int_{\mathbb{R}} \kappa\left(s_{i}\right) \hat{p}\left(s_{i}\right) \mathrm{d}s_{i}; \qquad \hat{p}\left(s_{i}\right) \propto \Omega(s_{i})p\left(s_{i}\right); \qquad \Omega(s_{i}) \equiv \frac{\kappa\left(s_{i}\right)s_{i}^{2}}{\mathbb{E}\left[\kappa\left(s_{i}\right)s_{i}^{2}\right]}.$$

23/23

Э

イロン イ団 とくほとう ほとう

Jul 30, 2023

Over-Reaction II

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

Jul 30, 2023

3

23/23

Heterogeneous Over-Reaction and Ambiguity Neutrality

Return < 그 > < 큔 > < 흔 > < 흔 > 흔 ~ 옷 < Jul 30, 2023 23/23

Heterogeneous Over-Reaction and Max-Min Criterion

Average Over-Reaction and Ambiguity Aversion

Diagnostic Expectations and Over Confidence

• Diagnostic Expectations

$$\mathsf{FR}_{i}^{\mathsf{DE}} = (1 + \psi) \, \kappa^{\mathsf{RE}} \left(y - \mathsf{F}_{0i}^{\mathsf{DE}} \right) + \psi \left[\kappa^{\mathsf{RE}} - \frac{1}{1 + \psi} \right] \mathsf{F}_{0i}^{\mathsf{DE}},$$

Over Confidence

23/23

2

イロト イヨト イヨト イヨト

Jul 30, 2023

Loss Aversion

- The parsimonious setup [Capistrán and Timmermann (2009)]
 - asymmetric loss function

$$L(F_i, \theta; \phi) = \frac{1}{\phi^2} \left[\exp \left(\phi \left(\theta - F_i \right) \right) - \phi \left(\theta - F_i \right) - 1 \right],$$

biased optimal forecasts

$$F_{i}^{*} = \mathbb{E}_{i}\left[heta
ight] - rac{1}{2}\phi \mathsf{Var}_{i}\left[heta
ight].$$

- forecast revisions are still linear in surprises.
- no overreactions: $\mathbb{COV}(\mathsf{FE}_i,\mathsf{FR}_i) = 0$
- The flexible setup [Elliott and Timmermann (2008), Elliott, Komunjer, and Timmermann (2008)]
 - potentially non-linear but globally monotone FR-on-Surp relation

Agency Issues: Skewed Information Reliability

- Agency issues between analysts and the managerial teams:
 - managers spinning information in self-serving ways to cater to investors and analysts
 - delayed disclosure of bad news

Asymmetry ✓; Non-monotonicity ✗

< □ > < / > < 클 > < 클 > Jul 30. 2023

Agency Issues: Skewed Information Reliability

	Outcome Vari	able: Absolute Diffe	erence between G	uidance and Earnings
	Sam	ple: Full	Exclude	e Conforming
	1% and 99%	2.5% and 97.5%	1% and 99%	2.5% and 97.5%
	(1)	(2)	(3)	(4)
Negative Guidance	0.0012*** (5.1339)	0.0008*** (3.7038)	0.0010*** (3.1044)	0.0003
Constant	0.0050*** (35.1519)	0.0048*** (38.5143)	0.0057*** (26.4874)	0.0056*** (30.2028)
Quarter FEs Firm FEs	YES YES	YES YES	YES YES	YES YES
Observations Adjusted R-squared	15,528 0.6105	15,528 0.5395	13,476 0.6151	13,500 0.5428

Notes: The observation numbers in columns (3) and (4) vary because the numbers of conforming cases vary due to Winsorization. The standard errors are clustered on firm and year-quarter. *** p < 0.01, ** p < 0.05, * p < 0.1.

Return

2

ヘロト 人間 ト 人 ヨト 人 ヨト

Jul 30, 2023

Agency Issues: Walk-Down to Beatable

- Manager's incentives to manage guidance downwards before the earning releases
 - ▶ e.g., Matsumoto (2002), Cotter et al., (2006), Johnson et al., (2020)
- The expectation management index (EMI): Johnson et al. (2020)
 - higher EMI indicates stronger incentives for driving down earning expectations
- Adding EMI as additional control for our empirical analysis
 - estimated coefficients are barely affected in terms of magnitude and significance.

Dynamic Models

.

	Outco	ome Variable: in Qua	rter t for Firm j, A	Analyst <i>i</i> 's
	Forec	ast Errors	Forecas	st Revisions
	1% and 99%	2.5% and 97.5%	1% and 99%	2.5% and 97.5%
	(1)	(2)	(3)	(4)
Earnings in the Last Quarter $(t-1)$	0.0008	-0.0010	-0.0048	-0.0058
Surprise _i	(0.0070)	(0.0049)	0.1468***	0.2445***
Constant	-0.0000 (0.0001)	0.0001** (0.0001)	(0.0125) -0.0009*** (0.0001)	(0.0128) -0.0004*** (0.0001)
Quarter FEs Analyst FEs Firm FEs Obs. Adj. R-sq	YES YES YES 110,895 0.2341	YES YES YES 110,895 0.2202	YES YES YES 110,895 0.3943	YES YES YES 110,895 0.4588

The standard errors are clustered on firm and calendar year-quarter.*** p<0.01, ** p<0.05, * p<0.1

Exploiting Firm Heterogeneity

- For firms with low or no uncertainty in earnings guidance quality,
 - ▶ analysts' forecast revisions should be close to linear in guidance surprise

Linear FR-on-Surp Relation

- Noisy RE with AR(1) fundamental θ_t and Gaussian signals $\mathcal{I}_{i,t} = \mathcal{I}_{i,t-1} \cup \{x_{i,t}, y_t\}$
 - standard Kalman filter implies that

$$\mathbb{E}_{i,t} \left[\theta_t \right] = (1 - \delta_x) \mathbb{E}_{i,t-1} \left[\theta_t \right] + \delta_x x_{i,t} + \delta_y y_t$$

or equivalently a linear FR-on-Surp relation

$$\mathsf{FR}_{i,t} \equiv \mathbb{E}_{i,t} \left[\theta_t\right] - \mathbb{E}_{i,t-1} \left[\theta_t\right] = \delta_x \left(x_{i,t} - \mathbb{E}_{i,t-1} \left[\theta_t\right]\right) + \delta_y \left(y_t - \mathbb{E}_{i,t-1} \left[\theta_t\right]\right).$$

- Extends to behavioural models such as
 - diagnostic expectations, over-confidence, and loss aversion

Model Setup

The Model: A Static Setup

- A continuum of analysts, indexed by $i \in [0, 1]$ and a firm with fundamental θ
- Each analyst makes a forecast F about firm fundamental θ with utility given by:

$$U(F_i,\theta) = -(F_i - \theta)^2 + \beta\theta + \alpha\theta^2$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Jul 30, 2023

23/23

- guadratic approximation around complete information solution
- restriction: $F_i^* = \theta$, under complete information
- β plays no roles with noisy rational expectations: $F_i^* = \mathbb{E}_i [\theta]$
- β plays important roles with ambiguity averse analysts
- abstract out quadratic terms for simplicity: $\alpha = 0$

Information Structure

• The firm fundamental θ is normally distributed with mean 0 and precision τ_{θ} :

$$\theta \sim N(0, 1/\tau_{\theta})$$

• At stage 0, each analyst i is endowed with private information about the earning

$$z_{0i} = \theta + \iota_i, \qquad \qquad \iota_i \sim N\left(0, 1/\tau_z\right)$$

• At stage 1, each analyst *i* receives a managerial guidance released by the firm:

$$y = \theta + \eta,$$
 $\eta \sim N(0, 1/\tau_Y)$

< ロ > < 回 > < 回 > < 回 > < 回 >

Jul 30, 2023

23/23

Ambiguity in Quality

• Analysts possess ambiguity about the quality of manager guidance τ_{γ}

$$\tau_y \in \Gamma_y, \qquad \qquad p(\tau_y)$$

• e.g.
$$\Gamma_y = [\tau_{y,\min}, \tau_{y,\max}]$$
 and $p(\tau_y) = \frac{1}{\tau_{y,\max} - \tau_{y,\min}}$

Return			
Return	-		

23/23

2

<ロト < 回 > < 回 > < 回 > .

Jul 30, 2023

• The smooth model of ambiguity - Klibanoff, Marinacci, and Mukerji (2005)

$$F_{i}^{*} = \arg \max_{F} \int_{\Gamma_{y}} \phi\left(\mathbb{E}^{\tau_{y}}\left[U\left(F,\theta\right) \left|\mathcal{I}_{i}\right]\right) p\left(\tau_{y} \left|\mathcal{I}_{i}\right\right) d\tau_{y}\right]$$

- CAAA specification: $\phi(t) = -\frac{1}{\lambda} \exp(-\lambda t)$
 - ★ $\lambda = 0$, ambiguity neutral
 - ★ $\lambda \rightarrow +\infty$, max-min criterion of Wald (1950)
- Bayesian updating

$$p\left(\tau_{y}|\mathcal{I}_{i}\right) \propto p\left(\mathcal{I}_{i}|\tau_{y}\right)p\left(\tau_{y}\right)$$

• The smooth model of ambiguity - Klibanoff, Marinacci, and Mukerji (2005)

$$F_{i}^{*} = \arg \max_{F} \int_{\Gamma_{y}} \phi \left(\mathbb{E}^{\tau_{y}} \left[U(F, \theta) | \mathcal{I}_{i} \right] \right) p\left(\tau_{y} | \mathcal{I}_{i} \right) d\tau_{y}$$

- CAAA specification: $\phi(t) = -\frac{1}{\lambda} \exp(-\lambda t)$
 - ★ $\lambda = 0$, ambiguity neutral
 - ★ $\lambda \rightarrow +\infty$, max-min criterion of Wald (1950)
- Bayesian updating

$$p\left(\tau_{y}|\mathcal{I}_{i}\right) \propto p\left(\mathcal{I}_{i}|\tau_{y}\right)p\left(\tau_{y}\right)$$

• The smooth model of ambiguity - Klibanoff, Marinacci, and Mukerji (2005)

$$F_{i}^{*} = \arg \max_{F} \int_{\Gamma_{y}} \phi \left(\mathbb{E}^{\tau_{y}} \left[U(F, \theta) | \mathcal{I}_{i} \right] \right) p\left(\tau_{y} | \mathcal{I}_{i} \right) d\tau_{y}$$

- CAAA specification: $\phi(t) = -\frac{1}{\lambda} \exp(-\lambda t)$
 - ★ $\lambda = 0$, ambiguity neutral
 - ★ $\lambda \rightarrow +\infty$, max-min criterion of Wald (1950)
- Bayesian updating

$$p\left(\tau_{y}|\mathcal{I}_{i}\right) \propto p\left(\mathcal{I}_{i}|\tau_{y}\right)p\left(\tau_{y}\right)$$

• The smooth model of ambiguity - Klibanoff, Marinacci, and Mukerji (2005)

$$F_{i}^{*} = \arg \max_{F} \int_{\Gamma_{y}} \phi \left(\mathbb{E}^{\tau_{y}} \left[U(F, \theta) | \mathcal{I}_{i} \right] \right) p\left(\tau_{y} | \mathcal{I}_{i} \right) d\tau_{y}$$

- CAAA specification: $\phi(t) = -\frac{1}{\lambda} \exp(-\lambda t)$
 - ★ $\lambda = 0$, ambiguity neutral
 - ★ $\lambda \rightarrow +\infty$, max-min criterion of Wald (1950)
- Bayesian updating

$$p\left(\tau_{y}|\mathcal{I}_{i}\right) \propto p\left(\mathcal{I}_{i}|\tau_{y}\right)p\left(\tau_{y}\right)$$

Optimal Forecasts

$$\begin{split} F_{0i} &= \arg\max_{F} \mathbb{E}\left[U\left(F,\theta\right)|z_{0i}\right] = \mathbb{E}\left[\theta|z_{0i}\right] = \frac{\tau_{z}}{\tau_{\theta} + \tau_{z}} z_{0i} \\ F_{i} &= \int_{\Gamma_{y}} \underbrace{\left(\frac{\tau_{z} z_{0i} + \tau_{y} y}{\tau_{\theta} + \tau_{z} + \tau_{y}}\right)}_{\mathbb{E}^{\mathrm{Ty}}\left[\theta|z_{0i}, y\right]} \tilde{p}\left(\tau_{y}|z_{0i}, y; F_{i}\right) \mathrm{d}\tau_{y} \\ \tilde{p}\left(\tau_{y}|z_{0i}, y; F_{i}\right) &\propto \underbrace{\phi'\left(\mathbb{E}_{i}^{\tau_{y}}\left[U\left(F_{i},\theta\right)\right]\right)}_{\mathrm{Pessimistic Distortion}} \underbrace{p\left(z_{0i}, y|\tau_{y}\right)p\left(\tau_{y}\right)}_{\mathrm{Bayesian Kernel}}. \end{split}$$

Return

3

990

23/23

イロト 不問 トイヨト 不良トー

Jul 30, 2023

Optimal Forecasts (Cont.)

$$FR_{i} \equiv F_{i} - F_{0i} = \kappa \left(s_{i}\right) \cdot \underbrace{\left(y - F_{0i}\right)}_{s_{i}}$$

$$\kappa\left(s_{i}\right) = \left[\int_{\Gamma_{y}} \left(\frac{\tau_{y}}{\tau_{\theta} + \tau_{z} + \tau_{y}}\right) \tilde{p}\left(\tau_{y}|s_{i}; \kappa\left(s_{i}\right)\right) \mathrm{d}\tau_{y}\right]$$

Proposition: (Existence and Uniqueness)

If analysts are ambiguity averse ($\lambda > 0$), there always exists a unique optimal forecast $F_i^*(X_i, s_i)$ and a unique optimal response $\kappa^*(s_i)$ associated with it.

Asymmetry

• For
$$s_i^- < 0 < s_i^+$$
 and $s_i^- + s_i^+ = 0$
$$\operatorname{sign} \left[\kappa^* \left(s_i^- \right) - \kappa^* \left(s_i^+ \right) \right] = \operatorname{sign} [\beta]$$

• Upon aggregation:

$$\mathsf{sign}[\kappa_-^*-\kappa_+^*]=\mathsf{sign}\left[eta
ight]$$
 ,

in which

$$\kappa_{-}^{*} \equiv \int_{\mathbb{R}^{-}} \kappa^{*}\left(s_{i}\right) \mathrm{d}P_{s}\left(s_{i}|s_{i}<0\right); \qquad \kappa_{+}^{*} \equiv \int_{\mathbb{R}^{+}} \kappa^{*}\left(s_{i}\right) \mathrm{d}P_{s}\left(s_{i}|s_{i}>0\right).$$

Non-Monotonicity

< ロ > < 回 > < 回 > < 回 > < 回 >

Jul 30, 2023

2

23/23