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Introduction

▶ Financing constraints slow down firms’ growth over their lifecycle

▶ Literature: Dynamic contracts (cash flow diversion model) to provide microfoundations

▶ But:

1. Entrepreneur risk neutral: Backload compensation at little (or no) cost

2. Productivity shocks i.i.d: Limits gains misreporting and difference in preferences for future

contract arrangements

This paper: Firm size and compensation dynamics when entrepreneur is risk averse and

has persistent private information?

1. Risk aversion decouples firm size and compensation dynamics

2. Interaction risk aversion + persistence on firm size dynamics
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Preview results

▶ Optimal contract:

Risk neutral

(Clementi and Hopenhayn (2006))
Risk averse + persistent

Firm size (drift) ↗ ↘ (constant if i.i.d)

Compensation once reach FB smoothed & variance ↗

▶ (Quasi-) Implementation: wealth + equity share; pledge shares

Risk neutral

(Clementi and Hopenhayn (2006))
Risk averse + persistent

Promised utility Equity value Private Wealth

Equity share (drift) ↗ ↘ (constant if i.i.d)
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Literature

▶ Dynamic financial contracting: Clementi and Hopenhayn (2006), Albuquerque and

Hopenhayn (2004), Biais et al. (2007), Biais et al. (2010), DeMarzo and Sannikov (2006),

DeMarzo and Fishman (2007a), DeMarzo and Fishman (2007b), DeMarzo et al. (2012) and

Clementi et al. (2010)

▶ Risk aversion: He (2012) and Di Tella and Sannikov (2021) (Hidden savings problems)

▶ Persistence: DeMarzo and Sannikov (2016), Fu and Krishna (2019) and Krasikov and

Lamba (2021)

→ RN + persistence: firm size still converges to FB. Need both RA + persistence

▶ Dynamic Mirrlees: Kapička (2013), Farhi and Werning (2013), Golosov et al. (2016a), Makris

Pavan (2020) and Hellwig (2021)

→ Use first-order approach and incentive-adjusted measures. Connection labor wedge

dynamics
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Outline

1. Model and set up lender’s problem

2. Optimal allocation

▶ Firm size dynamics

▶ Consumption dynamics (Generalized Inverse Euler Equation)

3. Numerical simulations

4. Implementation



Cash flow diversion model
▶ Risk-averse entrepreneur (agent) needs funds kt (firm size) from a lender (principal) to

operate a project

▶ Entrepreneur’s expected continuation utility

wt = E
[ ∞∑
τ=0

βτu(ct+τ )
]

▶ Every period, cash flow f(kt, θt), where θt ∈ [θ, θ] is the entrepreneur’s productivity

▶ θt is private information, denote θt = {θ1, ..., θt}
▶ Follows a persistent Markov process, conditional density φt(θt|θt−1) (and cdf Φ(θt|θt−1))

ρt(θ
t) ≡

∂
∂θt−1

(1− Φ(θt|θt−1))

φt(θt|θt−1)
≥ 0

▶ Assume fθ > 0 and fθk > 0
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Cash flow diversion model

▶ Lender does not observe returns, entrepreneur can misreport and divert a fraction of the

cash flow

▶ After report f(kt, θ̃t), ask repayment bt(θ̃t) and advance funds kt+1(θ̃t)

▶ Deadweight loss (1− ι) ∈ [0, 1) on diverted funds

ct = f(kt, θt)− (1− ι)
(
f(kt, θt)− f(kt, θ̃t)

)
− bt(θ̃t)

If don’t misreport ct = f(kt, θt)− bt(θt). Cannot overreport θ̃t ≤ θt

▶ Every period capital fully depreciates and entrepreneur cannot save by himself
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Principal’s problem

▶ Direct mechanism: report σt → allocations
(
kt(σ

t−1), bt(σ
t)
)

▶ Risk-neutral lender problem

K(v) = min
{kt(θt−1),bt(θt)}

E0

[ ∞∑
t=1

qt
(
kt+1

(
θt
)
− bt

(
θt
))]

s.t E0

[
w1

(
θ1
)]

≥ v (PK)

wt(θ
t) ≥ wσ

t (θ
t) ∀σ, θt (IC)

▶ First Order Approach (Kapicka (2013), Farhi Werning (2013), Pavan Segal Toikka (2014))

▶ Local IC constraint (mimick type right below)

▶ Check global IC numerically

full details
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Optimal Allocation



Firm size dynamics

In the FB (no private info)
1

q
= E

[
fk(kt+1(θ

t), θt+1)|θt
]
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Firm size dynamics

1

q
= E

[
fk(kt+1(θ

t), θt+1)(1− τk(θt+1))|θt
]

Proposition

τk(θt+1) = ι
θt+1fθk(θ

t+1)

fk(θt+1)︸ ︷︷ ︸
>0

Elasticity fk w.r.t θt+1

× µ̃t+1(θ
t+1)︸ ︷︷ ︸

”Normalized shadow
cost insurance”

× 1− Φ(θt+1|θt)
θt+1φ(θt+1|θt)︸ ︷︷ ︸

Pareto tail

≥ 0

▶ With persistent private information: µ̃t+1(θ
t+1) (and so τk(θt+1)) tend to increase

over time

▶ If promise more insurance t+ 1 lower cost screening at t

▶ Implies firm size tends to decrease over time!

▶ As labor tax Dynamic Mirrlees (Farhi Werning (2013), Makris Pavan (2020))
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Compensation Dynamics

Proposition

The consumption process satisfies a Generalized Inverse Euler Equation (Hellwig (2021))

q

β
Ê
[

1

u′(θt+1)
|θt

]
=

1

u′(θt)
(1 + s(θt))

where

s(θt) =

(
fθ(θ

t)u′′(θt)

u′(θt)
− Ê

[
ρt+1(θ

t+1)
ιfθ(θ

t+1)u′′(θt+1)

u′(θt+1)
|θt

])
fk(θ

t)

fθk(θt)
τk(θt)

▶ LHS: cost transferring compensation to t+ 1 in IC way. Compensation smoothed over

time

▶ s(θt) accounts for changes information rents. Higher ρ → ”savings” less discouraged
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Numerical Simulations



Parametrization

▶ Utility:

u(c) =
c1−σ

1− σ

▶ Production function:

f(k, θ) = zθkα

▶ Productivity:

θt = θρt−1εt

with log(εt) ∼ N(µ, σ2
ε)

▶ Calibration: β = q = 0.95, α = 3/4, σ = 2, ι = 0.95, µ = 1 and σ2
ε = 0.01. Compare

ρ = 0 and ρ = 0.7

▶ Dynamic programming (squared) with optimal control problem at every point in state

space (λ−, γ−, k, θ−)

▶ Monte Carlo simulation: 106 draws over 25 periods
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Compensation dynamics

l/r
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Compensation dynamics

l/r
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Separation compensation and firm size

▶ Promised utility vt−1 = E[w(θt)|θt−1]

Figure: Wedges and promised utility at age 20 (ρ = 0.7)

▶ With risk-neutrality, one-to-one relation

firm size and promised utility (Clementi and

Hopenhayn (2006))

▶ Promised insurance

∆t−1 = E
[
ρ(θt)∂w(θt)

∂θt
|θt−1

]
drives firm

size dynamics
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Firm size dynamics
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Firm size dynamics
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Implementation



Implementation

▶ Risk neutral: promised utility (vt) ⇐⇒ value equity (Clementi and Hopenhayn (2006))

▶ Risk averse: promised utility (vt) ⇐⇒ private wealth

▶ vt linked to consumption but unrelated to sensitivity consumption-returns

▶ Implementation i.i.d: Constant equity share & pledge shares to borrow (Fabisik (2019))

given the implied wealth regs problem results

▶ Implementation persistence: Extra state variable, promised insurance:

∆t−1 = E
[
ρ(θt)

∂w(θt)

∂θt
|θt−1

]
⇐⇒ Time-varying equity share

Intuition: If buy equity at t+ 1 to type θ′t, less attractive offer for types θ′′t > θ′t (because

have higher expected returns) =⇒ helps screen types

▶ But constant equity share still performs well (connection capital gains & dynamic info rents)
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Implications

▶ Both models get positive relation between equity share and firm size, but

▶ Risk neutral equity share drifts upwards (Clementi and Hopenhayn (2006))

▶ Risk averse + persistent equity share drifts downwards

▶ With risk neutral (and i.i.d) firm size converges to FB because the entrepreneur becomes the

only owner of the firm (debt and outside equity → 0)

▶ E.g. venture capital
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Conclusions

▶ Use first order-approach and change of measure to study a cash flow diversion model with

persistent private information and risk aversion

Findings:

▶ Firm size tends to decrease over time

▶ Compensation smoothed + variance ↗ (Generalized IEE)

▶ (Quasi-) Implementation:

▶ promised utility ⇐⇒ wealth (not equity as risk neutral)

▶ promised insurance ⇐⇒ equity share

▶ Challenging to get both firm size and equity share dynamics right
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Regressions iid types

Consumptiont

(1) (2) (3) (4)

returnst 0.0479∗∗∗ 0.0479∗∗∗ 0.0484∗∗∗ 0.0626∗∗∗

(16781.39) (411.86) (141.92) (1130.54)

vt−1 0.199∗∗∗ 0.199∗∗∗ 0.199∗∗∗

(31258.41) (2798.00) (31290.36)

returnst−5 0.0474∗∗∗

(407.27)

returnst ∗ vt−1 -0.0000173
(-1.40)

returns2t -0.00127∗∗∗

(-265.37)
N 4900000 4400000 4900000 4900000
R2 0.999 0.071 0.999 0.999

▶ (2) and consumption

follows RW:

compensation perfectly

smoothed across

periods

▶ (3) effect returns on

compensation doesn’t

depend promised utility

▶ (4) compensation close

to linear in returns

Back



Immiseration in the very long run

Figure: Marginal utility with ρ = 0 (i.i.d) Figure: Marginal utility with ρ = 0.7 (i.i.d)

Back



Methodology from Dynamic Public Finance

1. Persistent Private Info → First Order Approach (Kapicka (2013), Farhi Werning (2013),

Pavan Segal Toikka (2014), Golosov Troshkin Tsyvinski (2016))

∂

∂θt
wt

(
θt
)
= u′ (c (θt))ϕfθ (kt (θt−1

)
, θt

)
+ β E

[
ρ(θt+1)

∂wt+1

(
θt+1

)
∂θt+1

|θt
]

︸ ︷︷ ︸
≡∆t(θt) ”Promised insurance”

Check global IC numerically

2. Risk aversion → Incentive-adjusted probability measures (Hellwig (2021))

φ̂(θt|θt−1) =
φ(θt|θt−1)m(θt)

E[φ(θt|θt−1)m(θt)|θt−1]
with

m′(θt)

m(θt)
=

u′′(θt)ϕfθ(θ
t)

u′(θt)
< 0

▶ To characterize µt(θ
t) (and Euler eq.): Higher if want to provide more insurance around θt

Back



Consumption dynamics

Proposition

The consumption process satisfies a Generalized Inverse Euler Equation

q

β
Ê
[

1

u′(θt+1)
|θt

]
=

1

u′(θt)
(1 + s(θt))

where

s(θt) =

(
fθ(θ

t)u′′(θt)

u′(θt)
− Ê

[
ρt+1(θ

t+1)
ιfθ(θ

t+1)u′′(θt+1)

u′(θt+1)
|θt

])
fk(θ

t)

fθk(θt)
τk(θt)

▶ If persistence not too high s(θt) < 0 → variance consumption and expected marginal

utility permanently increasing (immiseration)

▶ Varying kt+1(θ
t) extra force for immiseration

Back
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Parametrization
▶ Utility:

u(c) =
c1−σ
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Recursive planning problem

Kt(vt−1,∆t−1, θ
t−1, kt) =

min

∫ [
kt+1(θ

t)− bt(θ
t) + qKt+1(vt(θ

t),∆t(θ
t), θt, kt+1(θ

t))
]
φ(θt|θt−1)dθt

(PK) wt(θ
t) = u(c(θt)) + βvt(θ

t)

vt−1 =

∫
wt(θ

t)φ(θt|θt−1)dθt

(IC) ẇ(θ) = u′(c(θt))ϕfθ(kt, θt) + β∆t(θ
t) [µ(θt)]

∆t−1 =

∫
wt(θ

t)
∂φ(θt|θt−1)

∂θt−1
dθt

(Feasibility) c(θt) = f(kt, θt)− bt(θ
t)

Back



Entrepreneur’s problem implementation i.i.d

W1 = W0 +
χf(kSB)

1− q

To first order dct
df(kSB ,θt)

≈ (1− q)χ. From the regressions: χ̂ = βreturns

(1−q) = 0.958 ≈ ϕ

W (Wt, θt) = max
θ̃

u (c̃t) + βE [W(Wt+1, θt+1)]

s.t Wt+1 = qC
(
Wt, θ̃t

)
ct = (1− q)C

(
Wt, θ̃t

)
c̃t = ct + ϕ

(
f (kSB , θ)− f

(
kSB , θ̃

))
(1)

where

C(Wt, θt) =
1

q
Wt + χ̂

(
f(kSB , θ̃t)− f(kSB)

)
Back



Plots implementation iid

Back


