Exchange Rates and Monetary Policy with Heterogeneous Agents: Sizing up the Real Income Channel

Adrien Auclert, Matt Rognlie, Martin Souchier, and Ludwig Straub

EEA special session on Open Economy HANK models - August 2023

Q How do exchange rates affect aggregate demand?

• matters for the effects of capital flows and monetary policy

- **Q** How do exchange rates affect aggregate demand?
 - matters for the effects of capital flows and monetary policy
- ightarrow Existing answers rely on NK models with **Representative Agent (RA)**

[Clarida-Gali-Gertler 02, Gali-Monacelli 05, Schmitt-Grohe-Uribe 17, ...]

- closed economy literature: misses important features of the data!
- e.g. high MPCs, unequal exposures [Johnson-Parker-Souleles 06, Kaplan-Moll-Violante 18, Auclert 19, ...]

- **Q** How do exchange rates affect aggregate demand?
 - matters for the effects of capital flows and monetary policy
- \rightarrow Existing answers rely on NK models with **Representative Agent (RA)**

[Clarida-Gali-Gertler 02, Gali-Monacelli 05, Schmitt-Grohe-Uribe 17, ...]

- closed economy literature: misses important features of the data!
- e.g. high MPCs, unequal exposures [Johnson-Parker-Souleles 06, Kaplan-Moll-Violante 18, Auclert 19, ...]
- \rightarrow Revisit with **Heterogeneous Agents (HA)** in a NK-SOE model
 - 1. through which **channels** are exchange rates transmitted?
 - 2. when does heterogeneity amplify / mitigate transmission to output?
 - 3. new policy implications?

- **Q** How do exchange rates affect aggregate demand?
 - matters for the effects of capital flows and monetary policy
- \rightarrow Existing answers rely on NK models with **Representative Agent (RA)**

[Clarida-Gali-Gertler 02, Gali-Monacelli 05, Schmitt-Grohe-Uribe 17, ...]

- closed economy literature: misses important features of the data!
- e.g. high MPCs, unequal exposures [Johnson-Parker-Souleles 06, Kaplan-Moll-Violante 18, Auclert 19, ...]
- \rightarrow Revisit with **Heterogeneous Agents (HA)** in a NK-SOE model
 - 1. through which **channels** are exchange rates transmitted?
 - 2. when does heterogeneity amplify / mitigate transmission to output?
 - 3. new policy implications?

Exciting literature: [Farhi-Werning, Cugat, De Ferra-Mitman-Romei, Giagheddu, Zhou, Kekre-Lenel, Guo-Ottonello-Perez, ...]

- Start with response to depreciation with **RA** and complete markets
 - output boom, scales in trade elasticity χ due to **expenditure switching channel**

- Start with response to depreciation with **RA** and complete markets
 - output boom, scales in trade elasticity χ due to **expenditure switching channel**
- Two new transmission channels with **HA** and incomplete markets
 - real income channel: higher import prices (< O) [Diaz-Alejandro, Krugman Taylor, Corsetti Pesenti]
 - **multiplier channel:** from increased production (usually > 0)

- Start with response to depreciation with RA and complete markets
 - output boom, scales in trade elasticity χ due to **expenditure switching channel**
- Two new transmission channels with **HA** and incomplete markets
 - real income channel: higher import prices (< 0) [Diaz-Alejandro, Krugman Taylor, Corsetti Pesenti]
 - **multiplier channel:** from increased production (usually > 0)
- When does heterogeneity matter for output?
 - Capital flow shocks: HA = RA when $\chi =$ 1, HA < RA when $\chi <$ 1 "M

"Marshall-Lerner case"

• In the paper: similar result for monetary policy shocks

- Start with response to depreciation with **RA** and complete markets
 - output boom, scales in trade elasticity χ due to **expenditure switching channel**
- Two new transmission channels with **HA** and incomplete markets
 - real income channel: higher import prices (< 0) [Diaz-Alejandro, Krugman Taylor, Corsetti Pesenti]
 - **multiplier channel:** from increased production (usually > 0)
- When does heterogeneity matter for output?
 - Capital flow shocks: HA = RA when χ = 1, HA < RA when χ < 1 "Marshall

"Marshall-Lerner case"

- In the paper: similar result for monetary policy shocks
- How large is χ ? Low in short run, higher in long run [Ruhl, Boehm-Levchenko-Pandalai-Nayar]
 - \rightarrow model generates **contractionary depreciation** after capital flow shock

HANK meets Gali-Monacelli

Model overview

- Discrete time, small open economy (SOE) model
 - No aggregate uncertainty + small shocks (first order perturb. wrt aggregates)
- Two goods
 - "Home": *H*, produced at home. Price P_{Ht} at home, P_{Ht}^* abroad
 - "Foreign": F, produced abroad. Price P_{Ft} at home, $P_{Ft}^* = 1$ abroad
 - Consumed in bundles. Price P_t of bundle at home, $P_t^* = 1$ abroad
- Two classes of agents
 - large mass of foreign households with fixed real C*
 - mass 1 of domestic households, subject to idiosyncratic income risk

• Domestic HA: intertemporal problem

$$\max_{\substack{\{c_{it}\}}} \mathbb{E}_{o} \sum_{t=o}^{\infty} \beta_{i}^{t} \left\{ \frac{c_{it}^{1-\sigma}}{1-\sigma} - v(N_{t}) \right\}$$
$$c_{it} + a_{it+1} = (1 + r_{t}^{p})a_{it} + e_{it} \frac{W_{t}}{P_{t}}N_{t} \qquad a_{it+1} \ge 0 \qquad C_{t} \equiv \int c_{it}di$$

•
$$a_{it} = \text{position in domestic mutual fund}$$

• Domestic HA: intertemporal problem

$$\max_{\{c_{it}\}} \mathbb{E}_{o} \sum_{t=0}^{\infty} \beta_{i}^{t} \left\{ \frac{c_{it}^{1-\sigma}}{1-\sigma} - v(N_{t}) \right\}$$
$$c_{it} + a_{it+1} = (1 + r_{t}^{p})a_{it} + e_{it} \frac{W_{t}}{P_{t}} N_{t} \qquad a_{it+1} \ge 0 \qquad C_{t} \equiv \int c_{it} di$$

- $a_{it} = position in domestic mutual fund$
- with RA: complete markets across hh & countries $\Rightarrow C_t^{-\sigma} = \beta (1 + r_{t+1}^p) C_{t+1}^{-\sigma}$

• Domestic HA: intertemporal problem

$$\max_{\{c_{it}\}} \mathbb{E}_{o} \sum_{t=0}^{\infty} \beta_{i}^{t} \left\{ \frac{c_{it}^{1-\sigma}}{1-\sigma} - v(N_{t}) \right\}$$
$$c_{it} + a_{it+1} = (1 + r_{t}^{p})a_{it} + e_{it} \frac{W_{t}}{P_{t}} N_{t} \qquad a_{it+1} \ge 0 \qquad C_{t} \equiv \int c_{it} di$$

- $a_{it} = position in domestic mutual fund$
- with RA: complete markets across hh & countries $\Rightarrow C_t^{-\sigma} = \beta (1 + r_{t+1}^p) C_{t+1}^{-\sigma}$
- Both domestic & foreign have CES bundle, solve intratemporal problem

$$C_{Ht} = (1 - \alpha) \left(\frac{P_{Ht}}{P_t}\right)^{-\gamma} C_t \qquad C_{Ht}^* = \alpha \left(\frac{P_{Ht}^*}{P^*}\right)^{-\gamma} C^*$$

• Domestic HA: intertemporal problem

$$\max_{\{c_{it}\}} \mathbb{E}_{o} \sum_{t=0}^{\infty} \beta_{i}^{t} \left\{ \frac{c_{it}^{1-\sigma}}{1-\sigma} - v(N_{t}) \right\}$$
$$c_{it} + a_{it+1} = (1 + r_{t}^{p})a_{it} + e_{it} \frac{W_{t}}{P_{t}} N_{t} \qquad a_{it+1} \ge 0 \qquad C_{t} \equiv \int c_{it} di$$

- $a_{it} = position in domestic mutual fund$
- with RA: complete markets across hh & countries $\Rightarrow C_t^{-\sigma} = \beta (1 + r_{t+1}^p) C_{t+1}^{-\sigma}$
- Both domestic & foreign have CES bundle, solve intratemporal problem

$$C_{Ht} = (1 - \alpha) \left(\frac{P_{Ht}}{P_t}\right)^{-\gamma} C_t \qquad C_{Ht}^* = \alpha \left(\frac{P_{Ht}^*}{P^*}\right)^{-\gamma} C^*$$

• Domestic production and market clearing: $Y_t = N_t = C_{Ht} + C_{Ht}^*$

nreferences

Prices, nominal rigidities and monetary policy

• Exchange rates: nominal \mathcal{E}_t , real $Q_t = \mathcal{E}_t / P_t$, \uparrow is depreciation

Prices, nominal rigidities and monetary policy

- Exchange rates: nominal \mathcal{E}_t , real $Q_t = \mathcal{E}_t / P_t$, \uparrow is depreciation
- Standard nominal wage rigidity [Erceg-Henderson-Levin, Auclert-Rognlie-Straub]

$$\pi_{wt} = \kappa_{w} \left(\frac{\mathbf{v}'(N_t) / \mathbf{u}'(C_t)}{\mu_{w} W_t / P_t} - 1 \right) + \beta \pi_{wt+1}$$

• For now, flexible prices everywhere else:

$$P_{Ft} = \mathcal{E}_t$$
 $P_{Ht} = \mu \cdot W_t$ $P_{Ht}^* = \frac{P_{Ht}}{\mathcal{E}_t}$

Prices, nominal rigidities and monetary policy

- Exchange rates: nominal \mathcal{E}_t , real $Q_t = \mathcal{E}_t / P_t$, \uparrow is depreciation
- Standard nominal wage rigidity [Erceg-Henderson-Levin, Auclert-Rognlie-Straub]

$$\pi_{wt} = \kappa_{w} \left(\frac{v'(N_t) / u'(C_t)}{\mu_{w} W_t / P_t} - 1 \right) + \beta \pi_{wt+1}$$

• For now, flexible prices everywhere else:

$$P_{Ft} = \mathcal{E}_t$$
 $P_{Ht} = \mu \cdot W_t$ $P_{Ht}^* = \frac{P_{Ht}}{\mathcal{E}_t}$

• For now, domestic central bank targets CPI-based real interest rate

$$i_t = r_t + \pi_{t+1}$$

- Mutual fund and foreign agents trade two types of assets:
 - shares in home firms with price $v_t = (v_{t+1} + div_{t+1})/(1 + r_t)$
 - nominal home & foreign bonds in zero net supply

- Mutual fund and foreign agents trade two types of assets:
 - shares in home firms with price $v_t = (v_{t+1} + div_{t+1})/(1 + r_t)$
 - nominal home & foreign bonds in zero net supply
- Mutual fund & foreigners invest freely in all assets, equalizing ${\ensuremath{\mathbb E}}$ returns
 - UIP condition:

$$1+r_t = (1+\frac{\mathbf{i}_t^*}{Q_t})\frac{Q_{t+1}}{Q_t}$$

- Mutual fund and foreign agents trade two types of assets:
 - shares in home firms with price $v_t = (v_{t+1} + div_{t+1})/(1 + r_t)$
 - nominal home & foreign bonds in zero net supply
- Mutual fund & foreigners invest freely in all assets, equalizing ${\ensuremath{\mathbb E}}$ returns
 - UIP condition:

$$1+r_t = (1+\frac{\mathbf{i}_t^*}{Q_t})\frac{Q_{t+1}}{Q_t}$$

• asset market clearing: $A_t = v_t + NFA_t$

- Mutual fund and foreign agents trade two types of assets:
 - shares in home firms with price $v_t = (v_{t+1} + div_{t+1})/(1 + r_t)$
 - nominal home & foreign bonds in zero net supply
- Mutual fund & foreigners invest freely in all assets, equalizing ${\ensuremath{\mathbb E}}$ returns
 - UIP condition:

$$1+r_t=(1+\frac{i_t^*}{Q_t})\frac{Q_{t+1}}{Q_t}$$

- asset market clearing: $A_t = v_t + NFA_t$
- Without agg. uncertainty, portfolios indeterminate \Rightarrow assume 100% equity

- Mutual fund and foreign agents trade two types of assets:
 - shares in home firms with price $v_t = (v_{t+1} + div_{t+1})/(1 + r_t)$
 - nominal home & foreign bonds in zero net supply
- Mutual fund & foreigners invest freely in all assets, equalizing ${\ensuremath{\mathbb E}}$ returns
 - UIP condition:

$$1+r_t=(1+\frac{i_t^*}{Q_t})\frac{Q_{t+1}}{Q_t}$$

- asset market clearing: $A_t = v_t + NFA_t$
- Without agg. uncertainty, portfolios indeterminate \Rightarrow assume 100% equity
 - study optimal portfolio in alternative complete-market HA model

- Calibrate to a typical emerging economy such as Mexico
- Set $\alpha =$ 0.40 to match import share of output in 2019 and balanced trade
- HA: β heterogeneity to match Peruvian data on MPCs

[Hong 2020]

- EIS $\sigma^{-1}=\mathbf{1}$
- Allow for general substitution elasticities η,γ for now.

Response to exchange rate shocks

- Consider a temporary shock $i_t^* \uparrow$
 - microfoundation: shock to discount factor β abroad
 - Home monetary policy keeps $r_t = r$

- Consider a temporary shock $i_t^* \uparrow$
 - microfoundation: shock to discount factor β abroad
 - Home monetary policy keeps $r_t = r$
- From UIP, effect on path of real exchange rate:

$$dQ_t = \sum_{s \ge t} \frac{di_{t+s}^*}{1+r}$$

• $Q_t \uparrow$ (real depreciation), $\frac{P_{Ht}}{P_t} \downarrow$ and $\frac{P_{Ht}}{\mathcal{E}_t} \downarrow$

- Consider a temporary shock $i_t^* \uparrow$
 - microfoundation: shock to discount factor β abroad
 - Home monetary policy keeps $r_t = r$
- From UIP, effect on path of real exchange rate:

$$dQ_t = \sum_{s \ge t} \frac{di_{t+s}^*}{1+r}$$

- $Q_t \uparrow$ (real depreciation), $\frac{P_{Ht}}{P_t} \downarrow$ and $\frac{P_{Ht}}{\mathcal{E}_t} \downarrow$
- Use good market condition to study effect on output:

$$\mathbf{Y}_{t} = (\mathbf{1} - \alpha) \left(\frac{P_{Ht}}{P_{t}}\right)^{-\eta} C_{t} + \alpha \left(\frac{P_{Ht}}{\mathcal{E}_{t}}\right)^{-\gamma} C^{*}$$

Textbook RA complete markets model

- In **RA** : complete markets + r constant \Rightarrow $C_t = C$
- Only channel: **expenditure switching** with trade elasticity $\chi \equiv \eta (1 \alpha) + \gamma$
 - home and foreign households substitute towards cheaper home goods

(i_t^* shock of quarterly persistence ho = 0.85 and impact effect of 1% on Q.)

What changes with incomplete markets and heterogeneous agents?

• With incomplete markets, C_t is affected by Q_t

What changes with incomplete markets and heterogeneous agents?

- With incomplete markets, C_t is affected by Q_t
- C_t depends on paths of real labor income $\frac{W_t}{P_t}N_t$ and real dividends div_t

What changes with incomplete markets and heterogeneous agents?

- With incomplete markets, C_t is affected by Q_t
- C_t depends on paths of real labor income $\frac{W_t}{P_t}N_t$ and real dividends div_t

$$\frac{W_t}{P_t} N_t = \frac{1}{\mu} \frac{P_{Ht}}{P_t} Y_t \qquad \text{div}_t = \left(1 - \frac{1}{\mu}\right) \frac{P_{Ht}}{P_t} Y_t$$

- **Real income channel** \rightarrow lower value of goods sold (P_H) relative to bought (P)
- Multiplier channel \rightarrow higher production (Y)

Theorem

 $\chi = \mathbf{1} \qquad \Rightarrow \qquad d\mathbf{Y}^{HA} = d\mathbf{Y}^{RA}$

Heterogeneity is *irrelevant* for output effect of exchange rate

- Multiplier channel undoes real income channel, $\frac{P_{Ht}}{P_{t}}Y_{t}$ = const
 - Households pay more for consumption, but work more because of the boom

Theorem

 $\chi = \mathbf{1} \qquad \Rightarrow \qquad d\mathbf{Y}^{HA} = d\mathbf{Y}^{RA}$

Heterogeneity is *irrelevant* for output effect of exchange rate

- Multiplier channel undoes real income channel, $\frac{P_{Ht}}{P_{t}}Y_{t}$ = const
 - Households pay more for consumption, but work more because of the boom
- More generally, for $d\mathbf{Q} \ge 0$, can show $d\mathbf{Y}^{HA} < d\mathbf{Y}^{RA}$ if and only if $\chi < 1$.

Contractionary devaluations in output for low χ

- With χ small, **HA** model can generate **contractionary devaluations**!
 - Boom in exports does not offset change in relative prices anymore

(i_t^* shock of quarterly persistence ho= 0.85 and impact effect of 1% on Q.)

Heterogeneity vs incomplete markets 1

- Middle panel shows dY in **RA model with incomplete markets**
 - Small contraction because of low MPCs: heterogeneity quantitatively critical

Heterogeneity vs incomplete markets 2

- Middle panel shows dY in HA model with complete markets
 - Small contraction because of hedging: incomplete market also quant. critical

Quantitative model with dynamic trade elasticity

Quantitative model outline

- In simple model, trade elasticity χ was critical. What is it?
 - Macro time-series literature $\rightarrow \chi$ is low (< 1)
 - Trade literature (usually from cross-section) $\rightarrow \chi$ is high (> 3)
- Build Calvo model of **delayed substitution** consistent with evidence Details
 - χ is small in the short run, and large in the long run [Boehm-Levchenko-Pandalai-Nayar 20]

Quantitative model outline

- In simple model, trade elasticity χ was critical. What is it?
 - Macro time-series literature $\rightarrow \chi$ is low (< 1)
 - Trade literature (usually from cross-section) $\rightarrow \chi$ is high (> 3)
- Build Calvo model of **delayed substitution** consistent with evidence Details
 - χ is small in the short run, and large in the long run [Boehm-Levchenko-Pandalai-Nayar 20]
- Also add quantitative bells and whistles to model
 - Price rigidity in addition to wage rigidity + dollar currency pricing
 - Taylor rule for monetary policy
 - Nonhomotheticities in consumption, heterogeneous incidence of agg. shock

Effects of devaluation shocks in quantitative model

• Substitution delayed enough that capital outflow shocks are contractionary

Conclusion

HA + NK-SOE \Rightarrow real income channel

• contractionary devaluations for plausibly delayed adjustment

HA + NK-SOE \Rightarrow real income channel

- contractionary devaluations for plausibly delayed adjustment
- In paper: analytics + implications for monetary policy

Preferences

• In baseline, consumption c_{it} aggregates H and F with elasticity η ,

$$\mathbf{c}_{it} = \left[(\mathbf{1} - \alpha)^{\frac{1}{\eta}} (\mathbf{c}_{iHt})^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} (\mathbf{c}_{iFt})^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

and preferences across goods j produced in countries k are

$$c_{iHt} = \left(\int_{0}^{1} c_{iHt}(j)^{\frac{\epsilon-1}{\epsilon}} dj\right)^{\frac{\epsilon}{\epsilon-1}} c_{iFt} = \left(\int_{0}^{1} c_{ikt}^{\frac{\gamma-1}{\gamma}} dk\right)^{\frac{\gamma}{\gamma-1}} c_{ikt} = \left(\int_{0}^{1} c_{ikt}(j)^{\frac{\epsilon-1}{\epsilon}} dj\right)^{\frac{\epsilon}{\epsilon-1}}$$

with $\epsilon >$ 1, $\gamma >$ 0 and $\eta >$ 0. Budget constraint:

$$\int_{0}^{1} P_{Ht}(j) c_{iHt}(j) dj + \int_{0}^{1} \int_{0}^{1} P_{kt}(j) c_{ikt}(j) dj dk + a_{it+1} \leq \left(1 + r_{t}^{p}\right) a_{it} + e_{it} \frac{W_{t}}{P_{t}} N_{t}$$

• Demand for good *j* in country *k* by consumer *i*:

$$c_{ikt}(j) = \alpha \left(\frac{P_{kt}(j)}{P_{kt}}\right)^{-\epsilon} \left(\frac{P_{kt}}{P_{Ft}}\right)^{-\gamma} \left(\frac{P_{Ft}}{P_{t}}\right)^{-\eta} c_{it}$$

- The effect comes from a current account deficit after monetary easing:
 - 1. Real income effect: import prices rise
 - 2. Interest rate effect: agents front-load spending (intertemporal substitution!)

- The effect comes from a current account deficit after monetary easing:
 - 1. Real income effect: import prices rise
 - 2. Interest rate effect: agents front-load spending (intertemporal substitution!)
- Effects are only balanced by increased exports if $\chi = \mathbf{2} \alpha$.

- The effect comes from a current account deficit after monetary easing:
 - 1. Real income effect: import prices rise
 - 2. Interest rate effect: agents front-load spending (intertemporal substitution!)
- Effects are only balanced by increased exports if $\chi = \mathbf{2} \alpha$.
- CA deficit \rightsquigarrow falling NFA \rightsquigarrow agents eventually spend less to rebuild NFA

- The effect comes from a current account deficit after monetary easing:
 - 1. Real income effect: import prices rise
 - 2. Interest rate effect: agents front-load spending (intertemporal substitution!)
- Effects are only balanced by increased exports if $\chi = \mathbf{2} \alpha$.
- CA deficit \rightsquigarrow falling NFA \rightsquigarrow agents eventually spend less to rebuild NFA
- "Stealing demand from future" is similar to recent closed economy papers [McKay Wieland 2020, Caballero Simsek 2020, Mian Straub Sufi 2021]

- The effect comes from a current account deficit after monetary easing:
 - 1. Real income effect: import prices rise
 - 2. Interest rate effect: agents front-load spending (intertemporal substitution!)
- Effects are only balanced by increased exports if $\chi = \mathbf{2} \alpha$.
- CA deficit \rightsquigarrow falling NFA \rightsquigarrow agents eventually spend less to rebuild NFA
- "Stealing demand from future" is similar to recent closed economy papers [McKay Wieland 2020, Caballero Simsek 2020, Mian Straub Sufi 2021]
- ... but one **big difference**: monetary easing here can have **negative NPV**

Present value (dY) < 0
$$\qquad \Leftrightarrow \qquad \chi < \mathsf{1} - lpha$$

1. Nonhomothetic Stone-Geary to capture heterogeneity in real income effect

$$\mathsf{C}_{\mathsf{t}} = \left((\mathsf{1} - \alpha)^{\frac{1}{\eta}} \mathsf{C}_{\mathsf{H}\mathsf{t}}^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} \left(\mathsf{C}_{\mathsf{F}\mathsf{t}} - \underline{\mathsf{c}}_{\mathsf{F}} \right)^{\frac{\eta-1}{\eta}} \right)^{\frac{\eta}{\eta-1}}$$

- 2. Realistic passthrough of exch. rate to domestic & foreign consumer prices
 - Add domestic price rigidities

$$\pi_{Ht} = \kappa_H \left(\frac{\mu_H W_t / Z_t}{P_{Ht}} - 1 \right) + \beta \pi_{Ht+1}$$

• Add flexibility of dollar export prices

$$\pi_{Ht}^{*} = \kappa_{X} \left(\frac{P_{Ht}/\mathcal{E}_{t}}{P_{Ht}^{*}} - 1 \right) + \beta \pi_{Ht+1}^{*}$$

- Allow foreign retailers to repatriate profits from dollar sales
- 3. Allow for currency mismatch in NFA ($f_Y \equiv asset-liability mismatch/GDP$)
 - Debt held by households via mutual fund, or by government and then rebated

Benchmark model fit

Calibration

Parameter	Benchmark	Quantitative	Parameter	Benchmark	Quantitative
σ	1	1	μ	1.03	1.028
ψ	2	2	s.s. nfa	0	0
η	$\frac{\{0.1, 0.5, 1, 2-\alpha\}}{2-\alpha}$	4	σ_e	0.6	0.6
γ	$=\eta$	$=\eta$	$ ho_{e}$	0.92	0.92
θ	n.a.	0.987	$ heta_w$	0.95	0.95
eta	0.954	0.953	θ_p	0	0.75
Δ	0.06	0.067	θ_X	n.a.	0.66
α	0.4	0.323	θ_{I}	0	0
<u>C</u>	0	0.114	ϕ	n.a.	1.5

Moment	Data	Benchmark model	Quantitative Model
Average MPC	0.632	0.636	0.637
Std of MPC	0.152	O.151	0.149
Average tradable share	0.400	0.400	0.400
Std of tradable share	0.042	n.a.	0.042

Delayed substitution model

- Ratio $x = \frac{C_H}{C_F}$ is a state variable, updated a la Calvo with parameter θ
- Static outcome ($\theta = 0$)

$$\mathbf{x}_{t} = \frac{\alpha}{\mathbf{1} - \alpha} \left(\frac{\mathbf{P}_{Ht}}{\mathbf{P}_{Ft}}\right)^{-\tau}$$

• Dynamic ($\theta > 0$) outcome with log utility [general case in paper]

$$d \log x_t^* = -\eta (1 - \beta \theta) d \log \frac{P_{Ht}}{P_{Ft}} + \beta \theta d \log x_{t+1}^*$$
$$d \log x_t = (1 - \theta) d \log x_t^* + \theta d \log x_{t-1}$$

Long-run elasticity is η , short-run is $< \eta$, depends on shock duration

• Same assumption for γ (exports slow to adjust)

Calibration of η , γ and θ

• Use tariff change evidence in Boehm, Levchenko, and Pandalai-Nayar

28

Calibration of η , γ and θ

• Use tariff change evidence in Boehm, Levchenko, and Pandalai-Nayar

Quantitative model behaves like a low-elasticity model

29

	Bench.	$\mathrm{Low}\; \alpha$	High MPC	Full DCP	Low passthru	Homothetic	High ST elast.
dYo	- 0.36	- 0.27	- 0.40	- 0.31	- 0.09	- 0.32	- 0.30
PDV of dY	- 2.03	- 2.38	- 1.15	- 1.25	- 1.01	- 1.51	- 0.25

(Response to i_t^* shock of quarterly persistence $\rho = 0.8$ and impact effect of 1% on Q.)

Assuming a gross currency debt position in the NFA of 50% of annual GDP:

				Government	
	Benchmark	Mutual fund	lump-sum	prop tax	+ deficit-fin.
dYo	- 0.36	- 0.41	- 0.71	- 0.63	- 0.46
PDV of dY	- 2.03	- 2.86	- 3.18	- 3.17	- 3.21

(Response to i_t^* shock of quarterly persistence $\rho =$ 0.8 and impact effect of 1% on Q.)

Amplification from non-homothetic demand

Amplification from currency mismatch on balance sheet

