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SUMMARY

• Many Synthetic Control type estimators

– Are limited to block assignment mechanisms
– Don’t exploit time ordering
– Use balancing weights rather than distance weights.

• We propose a new estimator, Doubly Weighted Causal Panel
(DWCP) estimator

– More than competitive with SC, competitive with SDID
– More generally applicable
– Uses time ordering explicitly.



RMSE COMPARISONS WITH BLOCK ASSIGNMENT

State Earnings Country GDP State Smoking
N = 50, T = 40 N = 111, T = 48 N = 38, T = 31

SC 0.116 0.129 0.232
SDID 0.111 0.029 0.135
MC 0.110 (3) 0.042 (29) 0.264 (3)
TWFE 0.134 0.358 0.446

DWCP-Intercept 0.146 (12,0.7) 0.065 (24,0.4) 0.207 (18,2.1)
DWCP-TWFE 0.107 (2,0.21) 0.031 (0.8,1.6) 0.137 (0.8,1.4)
DWCP–1 Factor 0.104 (0,0.08) 0.031 (0.15,0.3) 0.161 (0.1,0.1)
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SET UP
Outcomes: Yit, i = 1, . . . ,N, t = 1, . . . , T
Binary Treatment: Wit ∈ {0, 1}, i = 1, . . . ,N, t = 1, . . . , T.
Interest in (average) treatment effect.
Primarily focus on case with single treated unit/period:

W =


0 0 0 0 . . . 0
0 0 0 0 . . . 0
... ... ... ... . . . ...
0 0 0 0 . . . 1


We need to predict YNT withWNT = 1, as ŶNT , and then

τ̂ = YNT – ŶNT .



WE ILLUSTRATE FINDINGS ON THREE DATA SETS

• State Earnings, N = 50, T = 40, data on average earnings from
CPS, transformed to logarithms, from Arkhangelsky et al (2021).

• Country GDP, N = 111, T = 48, from Penn World Tables, for
particular sample, see Arkhangelsky et al (2021).

• State Smoking, N = 38, T = 31, from
Abadie-Diamond-Hainmueller (2010) (leaving out states with
smoking cessation programs)



EXISTING METHODS

1. Two Way Fixed Effects / Difference In Differences

2. Synthetic Control

3. Augmented Synthetic Control

4. Synthetic Difference In Differences

5. Matrix Completion / Factor Models

See surveys by Abadie (2021), Arkhangelsky & Imbens (2023)



SYNTHETIC CONTROL
Abadie-Diamond-Hainmueller (JASA, 2010):

ŶNT =
N–1∑
i=1

ωiYiT

The weights ω are choosen by restricted least squares regression
(Douchenko-Imbens, 2016)

min
ω:
∑

iωi=1,ωi≥0

T–1∑
t=1

YNt –
N–1∑
j =1

ω j Y j t

2

Given weights, weighted least squares estimator

min
τ,β

N∑
i=1

T∑
t=1

ωi (Yit – βt – τWit)2



SYNTHETIC DIFFERENCE IN DIFFERENCES

Arkhangelsky et al (2021): add unit fixed effects and time weights

min
τ,α,β

N∑
i=1

T∑
t=1

ωiλt (Yit – αi – βt – τWit)2

ωi: synthetic control weights, calculated as before.
λt: time weights calculated analogously:

arg min
λ:
∑

t λt=1,λt≥0

N–1∑
i=1

(
YiT –

T–1∑
s=1

λsYis

)2



MATRIX COMPLETION

Athey et al (2021): Fit a factor model + regularization for rank:

min
α,β,L

N∑
i=1

T∑
t=1

(1 – Wit) (Yit – αi – βt – L)2 + λ∥L∥nn

with nuclear norm penalty on L, leading to low-rank factor model:

L̂it =
R∑
r=1

δirγrt

Tuning parameter λ chosen through cross-validation.



THREE ISSUES WITH SYNTHETIC CONTROL AND
RELATED ESTIMATORS

• Does not directly generalize to settings with more general
assignment patterns, e.g., staggered adoption.

• Does not use time-series information: Early observations get as
much weight as recent observations. Does not seem plausible:
structure is likely to (possibly slowly) change over time.

• The synthetic control weights are not “local”: distance to treated
units does not matter, only whether treated unit is in convex hull.
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BLOCK ASSIGNMENT PATTERNS
Synthetic control easily extends to block assignments

Block Assignment W =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 1 1


Less clear, but still feasible, with staggered adoption

Staggered Adoption W =


0 0 0 0 0
0 0 0 1 1
0 0 0 1 1
0 1 1 1 1
0 1 1 1 1





GENERAL ASSIGNMENT PATTERNS

How do we deal with general assignment patterns?

General Assignment W =



0 1 0 0 . . . 1
1 1 0 0 . . . 0
0 0 1 0 . . . 0
... ... ... ... . . . ...
1 0 0 1 . . . 1



• If we splitW in blocks, the blocks will be very small.



IGNORING TIME SERIES INFORMATION, PART I
Should Y and Y′ (with columns 1 and T – 1 swapped) lead to the same
predictions for YNT(0)?

Y =


Y11 Y12 . . . Y1,T–1 Y1T
Y21 Y22 . . . Y2,T–1 Y2T

... ... . . . ... ...
YN1 YN2 . . . YN,T–1 YNT



Y′ =


Y1,T–1 Y12 . . . Y11 Y1T
Y2,T–1 Y22 . . . Y21 Y2T

... ... . . . ... ...
YN,T–1 YN2 . . . YN1 YNT





IGNORING TIME SERIES INFORMATION, PART II
Consider the SC estimator, with the weights estimated on periods
1, . . . , T0/2, vs weights estimated on T0/2 + 1, . . . , T0.

Under a factor model both should do equally well. Not true in
practice. Second half does systematically better.

Training Period State Earnings Country GDP State Smoking
↓ N = 50, T = 40 N = 111, T = 48 N = 38, T = 31

First Half 0.066 0.492 14.3
Second Half 0.059 0.182 9.3
All 0.057 0.200 10.5
% Improvement 10% 63% 55%
First to Second Half



IGNORING TIME SERIES INFORMATION, PART III

• Simple factor model can pick up main variation over time.

• Taking account of time-series patterns can aid in exploiting weak
signals.

• Smoothing over time improves precision.



BALANCING VERSUS DISTANCE/KERNEL WEIGHTS,
PART I
Suppose, for large c, small ε

Y =



ε 0 0 0 Y1T
0 ε 0 0 Y2T
0 0 0 ε Y3T
c c c c Y4T

–c –c –c –c Y5T
0 0 0 0 YNT


, ω =



ω1
ω2
ω3
ω4
ω5
∅


Distance/kernel weights lead to ωK

1 = ωK
2 = ωK

3 ≈ 1/3, ωK
4 = ωK

5 ≈ 0.
SC/balancing weights lead to ωSC

1 = ωSC
2 = ωSC

3 ≈ 0,
ωSC

4 = ωSC
5 ≈ 1/2.

Which weights are more attractive?
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BALANCING VERSUS DISTANCE/KERNEL WEIGHTS,
PART II

• Balancing weights (depend on all units) ensure that average
pretreatment outcomes and covariates are balanced.

ω solves 1
N0

∑
i
ωi(1 – Wi)Xi ≈

1
N1

∑
i
WiXi

• Distance weights (depend only on pairs of units) ensure that only
units similar to treated unit receive much weight.
For treated unit i, control unit j :

ωi
j ∝ distance(Xi, X j )



SYNTHETIC CONTROL, SYNTHETIC DIFFERENCE IN
DIFFERENCES, AUGMENTED SYNTHETIC CONTROL,

MATRIX COMPLETION

General Time Weights Weights
Assignment Invariance (Time) (Units)

TWFE Yes Yes None None
Synthetic Control No Yes None Balancing
Augmented SC No Yes None Balancing
Synthetic DID No Yes Balancing Balancing
Matrix Completion Yes Yes None None



PROPOSAL
Estimate model on control outcomes, using distance-based weights
ωit, given an outcome model g(i, t; θ) with unknown parameter θ:

θ̂ = arg min
θ

N∑
i=1

T∑
t=1

ωit(1 – Wit) (Yit – g(i, t; θ))2

The missing value YNT(0) is imputed as

ŶNT(0) = g(N, T; θ̂)

The estimated treatment effect is

τ̂ = YNT – ŶNT(0)



CANDIDATE OUTCOME MODELS
1. Constant (for illustrative purposes)

Yit(0) = µ + εit

2. Two Way Fixed Effects

Yit(0) = µ + αi + βt + εit

3. Two Way Fixed Effects with Additional Factor

Yit(0) = µ + αi + βt + δiγt + εit

4. More general



PROPOSAL: GENERAL DISTANCE WEIGHTS

ωit = exp
(

–λun
i distun(i,N)︸ ︷︷ ︸

unit distance

–λti distti(t, T)︸ ︷︷ ︸
time distance

)

• distun(i, j ) and distti(s, t) possibly vector-valued.

• Tuning par λun and λti, chosen jointly through cross-validation

• Unit weights: distun(i, j ) depend only on outcomes/treatments
for units i and j .

• Time weights: distti(s, t) depends on s and t, possibly on
outcomes, e.g., difference |t – s|, or incorporating seasonals, e.g.,
days of the week, t – s – 7 × ⌊(t – s)/7⌋.



PROPOSAL: DISTANCE WEIGHTS, A SIMPLE EXAMPLE
Weight contributions to objective function by unit and time:

ωit = exp
(

–λun
i distun(i,N)︸ ︷︷ ︸

unit distance

–λti distti(t, T)︸ ︷︷ ︸
time distance

)
Simple example (but more general weights functions possible):

1 Unit weights: distance for control outcomes

distun(i, j ) =
(∑T

t=1(1 – Wit)(1 – W j t)(Yit – Y j t)2∑T
t=1(1 – Wit)(1 – W j t)

)1/2

≈ ∥Yi· – Y j ·∥2

2 Time weights: difference in time

distti(s, t) = |t – s|



WHY LOCAL WEIGHTS? SIMPLE EXAMPLE

• Unit weights can improve prediction over time-varying
unobservables

• Time weights can improve prediction over unit-varying
unobservables

• Simple example: take γt = µt, δi ∈ {0, 1}, δN = 1

Yi,t(0) = δiγt + εi,t, εi,t ∼i.i.d. N(0,σ2)

⇒ dunit(i, j ): weights more units predictive of confounder γT
⇒ dtime: weight more units with similar γt/predictive of δN



TUNING PARAMETERS (WITH TWFE MODEL)
Choose λti, λun jointly by leave-one-out cross-validation

min
λti,λun

Q(λti, λun) = min
λti,λun

N∑
i=1

T∑
t=1

(1 – Wit)
(
Yit – Ŷit(λti, λun)

)2

Ŷit(λti, λun) = α̂i(λti, λun, (i, t)) + β̂t(λti, λun, (i, t))︸ ︷︷ ︸
TWFE Model

α̂i(λti, λun, (i, t)) + β̂t(λti, λun, (i, t)) =

arg min
α,β

N∑
j =1

T∑
s=1

1( j ,s)̸=(i,t)ω
(i,t)
j s (λti, λun)︸ ︷︷ ︸

Cross Validation

(1 – W j s)
(
Y j s – α j – βs

)2
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WEIGHTS IN CROSSVALIDATION

We do not use Yit in construction of unit distance measure:

ω
(i,t)
j s (λti, λun) = exp

(
–λund̃istun(i, j )t – λti|t – s|

)
where

d̃istun(i, j )t =
(∑T

s=1 1s ̸=t(1 – Wis)(1 – W j s)(Yis – Y j s)2∑T
t=1(1 – Wit)(1 – W j t)

)1/2
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SIMPLE NUMERICAL ILLUSTRATION
• The choice of λti may depend on serial correlation. We provide a

simple numerical example with two DGPs below.

• Independence over time:

Yi,t = αi + βt + εi,t, αi,βt ∼i.i.d. N(0, 1), εi,t ∼ N(0, 0.1)

• Serial correlation:

Yi,t = αi,t + βt + εi,t, αi,t|αi,t–1 ∼ N(ραi,t–1,σ2)

where αi,1 ∼ N(0,σ2/(1 – ρ)), ρ = 0.9,σ2 = 0.2.



OBJECTIVE FOR λti WITH INDEPENDENCE



OBJECTIVE FOR λti WITH SERIAL CORRELATION



RMSE FOR SC, SDID, MC, TWFE AND WEIGHTED-TWFE

State Earnings Country GDP State Smoking
N = 50, T = 40 N = 111, T = 48 N = 38, T = 31

SC 0.116 0.129 0.232
SDID 0.111 0.029 0.135
MC 0.110 (3) 0.042 (29) 0.264 (3)
TWFE 0.134 0.358 0.446

DWCP-Intercept 0.146 (12,0.7) 0.065 (24,0.4) 0.207 (18,2.1)
DWCP-TWFE 0.107 (2,0.21) 0.031 (0.8,1.6) 0.137 (0.8,1.4)
DWCP-1 Factor 0.104 (0,0.08) 0.031 (0.15,0.3) 0.161 (0.1,0.1)



NORMALIZED WEIGHTS FOR TWFE, STATE EARNINGS,
T=40, N=50.
λun = 2, λti = 0.21

T(=40) T-1 T-2 . . . 20 . . . 10 . . . 1
CA – 13.0 10.6 . . . 2.4 . . . 0.3 . . . 0.0
NY 12.0 9.8 7.9 . . . 1.8 . . . 0.2 . . . 0.0
HI 11.6 9.4 7.6 . . . 1.8 . . . 0.2 . . . 0.0
... ... ... ... . . . ... . . . ... . . . ...
OH 7.6 6.2 5.0 . . . 1.2 . . . 0.1 . . . 0.0
... ... ... ... . . . ... . . . ... . . . ...
ID 3.9 3.2 2.6 . . . 0.6 . . . 0.1 . . . 0.0
MT 3.6 3.0 2.4 . . . 0.6 . . . 0.1 . . . 0.0



NORMALIZED WEIGHTS FOR INTERCEPT MODEL,
STATE SMOKING DATA, T=31, N=38.
λun = 18, λti = 2.1

T(=31) T-1 T-2 . . . 26 . . . 20 . . . 1
CO – 712.7 87.3 . . . 0.2 . . . 0.0 . . . 0.0
IL 173.2 21.2 2.6 . . . 0.0 . . . 0.0 . . . 0.0
MT 44.0 5.4 0.7 . . . 0.0 . . . 0.0 . . . 0.0
... ... ... ... . . . ... . . . ... . . . ...
ME 0.6 0.1 0.0 . . . 0.0 . . . 0.0 . . . 0.0
... ... ... ... . . . ... . . . ... . . . ...
KT 0.0 0.0 0.0 . . . 0.0 . . . 0.0 . . . 0.0
NH 0.0 0.0 0.0 . . . 0.0 . . . 0.0 . . . 0.0



NORMALIZED WEIGHTS FOR TWFE, STATE SMOKING
DATA, T=31, N=38.
λun = 0.8, λti = 1.4

T(=31) T-1 T-2 . . . 26 . . . 20 . . . 1
CO – 9.8 2.4 . . . 0.0 . . . 0.0 . . . 0.0
IL 33.9 8.4 2.1 . . . 0.0 . . . 0.0 . . . 0.0
MT 31.9 7.9 1.9 . . . 0.0 . . . 0.0 . . . 0.0
... ... ... ... . . . ... . . . ... . . . ...
ME 26.4 6.5 1.6 . . . 0.0 . . . 0.0 . . . 0.0
... ... ... ... . . . ... . . . ... . . . ...
KT 5.5 1.4 0.3 . . . 0.0 . . . 0.0 . . . 0.0
NH 2.7 0.7 0.2 . . . 0.0 . . . 0.0 . . . 0.0



GENERAL ASSIGNMENT PATTERNS

1. Given (λun, λti), impute missing Yit by first minimizing (say, for the
TWFE outcome model) seperately for each missing pair (i, t)

min
α,β

N∑
j =1

T∑
s=1

(1 – W j s) exp
(

–λundistun(i, j ) – λtidistti(t, s)
) (
Y j s – α j – βs

)2

2. Impute Yit as

Ŷit = α̂i + β̂t

3. Repeat for all missing values and average.



FUTURE WORK

• The choice of the time weights must depend on the behavior of
unobserved time-varying factors. Other distance measures are
possible (seasonality, distance analogous to dun, etc.)

• Different weights’ choice may correspond to robustness to
different models of unobserved confounders. Future work may
formalize robustness properties based on the weights’ choice

• Choice of number of factors can use out-of-sample validation or
other model selection criteria
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