Adapting to Misspecification

${\sf Tim \ Armstrong^1 \ \ Patrick \ Kline^2 \ \ Liyang \ Sun^3}$

¹USC; ²UC Berkeley and NBER; ³CEMFI

August 2023

Motivation: robustness-efficiency tradeoff

- When studying a scalar estimand θ , empirical researchers commonly report "robustness exercises" comprised of
 - an asymptotically unbiased estimate Y_U
 - a restricted estimate Y_R with asymptotic bias b, but asymptotically more efficient if no bias
- This paper: a novel way to combine Y_U and Y_R into an optimally *adaptive* estimate

Local misspecification framework

- More generally, the bias can arise from using (potentially misspecified) overidentifying restrictions
- Let $Y_O = Y_R Y_U$ be an estimate of the bias b
- Asymptotic approximation:

$$\begin{pmatrix} Y_{U} \\ Y_{O} \end{pmatrix} \sim_{a} N\left(\begin{pmatrix} \theta \\ b \end{pmatrix}, \Sigma \right), \quad \Sigma = \begin{pmatrix} \Sigma_{U} & \rho \sqrt{\Sigma_{U}} \sqrt{\Sigma_{O}} \\ \rho \sqrt{\Sigma_{U}} \sqrt{\Sigma_{O}} & \Sigma_{O} \end{pmatrix}$$

 Most of our examples are linear so the asymptotic approximation is also valid globally

• Common to report $T_O = Y_O / \Sigma_O^{1/2}$ as an over-identification test

This paper: Adapting to misspecification (1/2)

Overview of logic:

i) If b were known, efficient to use GMM imposing that

$$\mathbb{E}[Y_R - b] = \mathbb{E}[Y_U] = \theta$$

ii) If only know $|b| \le B$, natural to seek an estimator that minimizes the *worst-case risk* over the parameter space $|b| \le B$

We call such an estimator the "*B*-minimax" estimator and denote $R^*(B)$ to be its *worst-case risk*

Dobkin, Finkelstein, Kluender and Notowidigdo (2018)

Panel A. Out-of-pocket medical spending

Survey wave relative to hospitalization

- Estimates the effects of an unexpected hospitalization on medical spending
- The researchers report Y_{11} , assuming a linear pre-trend
- Imposing no pre-trend, can also report a more precise Y_R

Illustration: *B-minimax* estimates

• To assess the sensitivity of Y_R to bias, we can also report different B-minimax estimates varying the bound B on the amount of bias

This paper: Adapting to misspecification (2/2)

Overview of logic:

- iii) Propose an optimally *adaptive* estimator without reference to the upper bound B
 - *Adaptation*: how well can a single estimator mimic the oracle that knows *B* ?
 - When *B* is unknown, will always regret not being able to implement relevant *B*-minimax decision
 - The *optimally adaptive estimator* tries to get as close as possible to the oracle risk function over $B \in \mathcal{B}$

Illustration: Adaptive estimate

A B-minimax estimates ---- Oracle risk

Related literature: adaptive estimation

- Common to define a procedure to be "adaptive" over a set of parameter spaces if it is simultaneously near-minimax for all of these parameter spaces.
 - Our definition (best constant multiplicative factor) corresponds to Tsybakov (1998)
- Typically used for *asymptotic* results (rates, sometimes constants) in *nonparametric/high-dimensional* problems: adapting to smoothness/sparsity using cross-validation, etc.
- In contrast to this literature, we focus on *exact* results in *low dimensional* setting
- Exception: Bickel (1984) considers adapting between B=0 and $B=\infty$
- Robustness-efficiency tradeoffs: Hodges and Lehmann (1952); Bickel (1983, 1984)

Related literature

- Specification testing: Hausman (1978); Breusch and Pagan (1980); Sargan (1988); Guggenberger (2010)
- Model averaging: Akaike (1973); Mallows (1973); Schwarz (1978); Claeskens and Hjort (2003); Hansen (2007); Hansen and Racine (2012); Cheng, Liao and Shi (2019); Fessler and Kasy (2019); de Chaisemartin and D'Haultfœuille (2020)
- Adaptive confidence interval: impossible to tighten minimax CI and maintain coverage for all b (Low, 1997; Armstrong and Kolesar, 2018)
 - Worst-case asym. variance of our adaptive estimator is bounded by Σ_U
 - Adaptive estimate is always included in the robust CI
- Computation: Chamberlain (2000); Elliott, Müller and Watson (2015); Müller and Wang (2019); Kline and Walters (2021)

Outline

2 Main results

3 Empirical exercise

4 Conclusion

General setup

- Researcher observes data or initial estimates $Y = (Y_U, Y_O)$
- Distribution of Y depends on unknown parameters (θ, b)
- Use $P_{\theta,b}$ and $E_{\theta,b}$ to denote probability and expectation under (θ, b)
- Decision rule $\delta()$ maps Y to an action a

General setup

- Researcher observes data or initial estimates $Y = (Y_U, Y_O)$
- Distribution of Y depends on unknown parameters (θ, b)
- Use $P_{\theta,b}$ and $E_{\theta,b}$ to denote probability and expectation under (θ, b)
- Decision rule $\delta()$ maps Y to an action a
- Loss function $L(\theta, b, a)$ measures disutility of action a when the parameter is (θ, b)

Risk:

$$R(\theta, b, \delta) = E_{\theta, b}L(\theta, b, \delta(Y)) = \int L(\theta, b, \delta(y)) \, dP_{\theta, b}(y)$$

• E.g. estimation with squared error loss $L(\theta, b, a) = (a - \theta)^2$, implying risk is given by mean squared error (MSE)

Constrained minimax estimation

• The researcher entertains multiple parameter spaces:

$$\mathcal{C}_B = \{(\theta, b) : |b| \leq B\} = \mathbb{R} \times [-B, B]$$

• The parameter spaces are indexed by $B \in \mathcal{B}$ for $\mathcal{B} = [0,\infty]$

Constrained minimax estimation

• The researcher entertains multiple parameter spaces:

$$\mathcal{C}_B = \{(\theta, b) : |b| \le B\} = \mathbb{R} \times [-B, B]$$

- The parameter spaces are indexed by $B \in \mathcal{B}$ for $\mathcal{B} = [0,\infty]$
- Given a parameter space C_B , the worst-case risk is

$$R_{\max}(B,\delta) = \sup_{(heta,b)\in\mathcal{C}_B} R(heta,b,\delta)$$

The minimax estimator under C_B ("B-minimax estimator" for short) optimizes R_{max}(B, δ), thereby obtaining the minimax risk for C_B:

$$R^*(B) = \inf_{\delta} R_{\max}(B, \delta) = \inf_{\delta} \sup_{(\theta, b) \in \mathcal{C}_B} R(\theta, b, \delta)$$

- Sensitivity analysis: compute "B-minimax estimator" for a range of $B\in \mathcal{B}$
 - Under MSE, the "B-minimax estimator" is GMM when B=0 and Y_U when $B=\infty$

Outline

Setup

Main results

- The adaptation problem
- \bullet Behavior of the adaptive estimator as a function of ρ^2
- Behavior of the adaptive estimator when $ho^2
 ightarrow 1$
- 3 Empirical exercise
- 4 Conclusion

Outline

Setup

Main results

• The adaptation problem

- \bullet Behavior of the adaptive estimator as a function of ρ^2
- \bullet Behavior of the adaptive estimator when $\rho^2 \rightarrow 1$

3 Empirical exercise

4 Conclusion

What is the cost of committing to a single decision δ ?

• We define the *adaptation regret* under C_B of δ to be :

$$A(B,\delta) = rac{R_{\max}(B,\delta)}{R^*(B)}$$

that is, the proportional increase in worst-case risk relative to the *minimax risk* (oracle)

What is the cost of committing to a single decision δ ?

• We define the *adaptation regret* under C_B of δ to be :

$$A(B,\delta) = rac{R_{\max}(B,\delta)}{R^*(B)}$$

that is, the proportional increase in worst-case risk relative to the *minimax risk* (oracle)

The optimally adaptive estimator δ^{adapt} minimizes over B ∈ B the worst-case adaptation regret :

$$A^*(\mathcal{B}) = \inf_{\delta} \sup_{B \in \mathcal{B}} A(B, \delta) = \inf_{\delta} \sup_{B \in \mathcal{B}} \frac{R_{\max}(B, \delta)}{R^*(B)}$$

Following Tsybakov (1998), we refer to $A^*(\mathcal{B})$ as the loss of efficiency under adaptation

Adaptation as weighted minimax

Optimally adaptive estimator solves

$$\begin{split} &\inf_{\delta} \sup_{B \in \mathcal{B}} A(B, \delta) = \inf_{\delta} \sup_{B \in \mathcal{B}} \frac{R_{\max}(B, \delta)}{R^*(B)} & (\text{def. of adaptation regret}) \\ &= \inf_{\delta} \sup_{B \in \mathcal{B}} \sup_{(\theta, b) \in \mathcal{C}_B} \frac{R(\theta, b, \delta)}{R^*(B)} & (\text{def. of worst-case risk}) \\ &= \inf_{\delta} \sup_{(\theta, b) \in \cup_{B' \in \mathcal{B}'} \mathcal{C}_{B'}} \omega(\theta, b) R(\theta, b, \delta) & (\text{reordering of sup}) \end{split}$$

- We derive the general formula for the weights in the paper
- For nested sets $\mathcal{C}_B = \mathbb{R} \times [-B, B]$ and $R^*(B)$ is increasing in B
- The weight is $\omega(heta,b)=R^*(|b|)^{-1}$

Solving minimax problems

 Consider the general problem of computing a minimax decision over a parameter space C for a parameter θ under loss L(θ, a)

• Let
$${\it R}(artheta,\delta)={\it E}_arthetaar{L}(artheta,\delta)$$
 denote risk

• Letting π denote a *prior* distribution on $\mathcal{C},$ the *Bayes risk* of δ is given by

$$R_{\mathsf{Bayes}}(\pi,\delta) = \int R(\vartheta,\delta) \, d\pi(\vartheta) = \int E_{\vartheta} \bar{L}(\vartheta,\delta(Y)) \, d\pi(\vartheta)$$

The adaptation problem

Solving minimax problems

- Let Γ denote the set of priors π supported on \mathcal{C} .
- Under regularity conditions, a *minimax theorem* says that

$$\min_{\delta} \max_{\vartheta \in \mathcal{C}} R(\vartheta, \delta) = \min_{\delta} \max_{\pi \in \Gamma} R(\vartheta, \delta) = \max_{\pi \in \Gamma} \min_{\delta} R(\vartheta, \delta)$$

The maximizing π is called *least favorable prior*

- The inner minimization is solved by the Bayes decision $\delta_{\pi}^{\text{Bayes}}$, e.g. for estimation under squared error loss, it's the posterior mean
- The outer maximization is concave in π .

We solve for least favorable π by using a grid approximation and convex optimization, following, e.g., Chamberlain (2000)

B-minimax estimator

Further simplification under squared error loss: $L(\theta, b, a) = (\theta - a)^2$.

Theorem 1.

In the local misspecification setting, the B-minimax estimator is given by

$$Y_{U} - \rho \sqrt{\Sigma_{U}} T_{O} + \rho \sqrt{\Sigma_{U}} \delta^{BNM} (T_{O}; B/\sqrt{\Sigma_{O}})$$

and the minimax risk is

$$R^{*}(B) = \rho^{2} \Sigma_{U} r^{BNM} \left(\frac{B}{\sqrt{\Sigma_{O}}}\right) + \Sigma_{U} - \rho^{2} \Sigma_{U}$$

where $\delta^{BNM}(y; \tau)$ denotes the minimax estimator and $r^{BNM}(\tau)$ denotes minimax risk in the bounded normal mean problem, in which we observe $Y \sim N(\vartheta, 1)$ and impose $|\vartheta| \leq \tau$

Optimally adaptive estimator

Theorem 2.

In the local misspecification setting, the optimally adaptive estimator is given by

$$Y_U -
ho \sqrt{\Sigma_U} T_O +
ho \sqrt{\Sigma_U} \tilde{\delta}^{adapt}(T_O;
ho)$$

where $\tilde{\delta}^{adapt}(T_O; \rho)$ solves

$$\inf_{\delta} \sup_{\tilde{b} \in \mathbb{R}} \frac{E_{T \sim \mathcal{N}(\tilde{b}, 1)}(\tilde{\delta}(T) - \tilde{b})^2 + \rho^{-2} - 1}{r^{\mathcal{BNM}}(|\tilde{b}|) + \rho^{-2} - 1}$$

The loss of efficiency under adaptation is given by the value of the above display.

٠

Illustration: Adaptive prior over b

Note: Adaptive prior works especially well when $b \approx 0$ and limits risk when |b| is large

Outline

Setup

Main results

- The adaptation problem
- \bullet Behavior of the adaptive estimator as a function of ρ^2
- Behavior of the adaptive estimator when $ho^2
 ightarrow 1$
- 3 Empirical exercise

4 Conclusion

Weighted average interpretation

Adaptive estimator takes the form:

$$\underbrace{Y_{U} - \rho \sqrt{\Sigma_{U}} T_{O}}_{\text{O} \text{ or } \rho} - \underbrace{(-\rho) \sqrt{\Sigma_{U}} \tilde{\delta}^{\text{adapt}}(T_{O}; \rho)}_{\text{O} \text{ or } \rho}$$

optimal GMM using b = 0

shrinkage estimate of bias

- Bias estimator $\tilde{\delta}^{adapt}(\cdot; \rho)$ yields non-linear shrinkage
- Equivalently: a weighted average of Y_U and GMM, with convex weighting function $w(T_O) = \tilde{\delta}^{adapt}(T_O; \rho)/T_O$
- Tuning free shrinkage with n < 3 !

Weighted average interpretation

Adaptive estimator takes the form:

$$\underbrace{Y_{U} - \rho \sqrt{\Sigma_{U}} T_{O}}_{\text{O} \text{ or } \rho} - \underbrace{(-\rho) \sqrt{\Sigma_{U}} \tilde{\delta}^{\text{adapt}}(T_{O}; \rho)}_{\text{O} \text{ or } \rho}$$

optimal GMM using b = 0

shrinkage estimate of bias

- Bias estimator $\tilde{\delta}^{adapt}(\cdot; \rho)$ yields non-linear shrinkage
- Equivalently: a weighted average of Y_U and GMM, with convex weighting function $w(T_O) = \tilde{\delta}^{adapt}(T_O; \rho)/T_O$
- Tuning free shrinkage with n < 3 !
- Shape depends only on correlation ρ between Y_U and Y_O
- Compute via convex programming and provide a simple "lookup table" taking as inputs (Y_U, Y_R, Σ)

Simple "nearly-adaptive" estimator

$$\underbrace{Y_U - \rho \sqrt{\Sigma_U} T_O}_{\text{optimal GMM using } b = 0} - \underbrace{(-\rho) \sqrt{\Sigma_U} \tilde{\delta}^{\text{adapt}}(T_O; \rho)}_{\text{shrinkage estimate of bias}}$$

• Simple "nearly-adaptive" estimator: replace $\tilde{\delta}^{adapt}(T_O; \rho)$ with soft thresholding estimator:

$$\delta_{S,\lambda}(T_O) = \max\left\{|T_O| - \lambda, 0\right\} \operatorname{sgn}(T_O)$$

where the threshold λ is optimized over the same criterion, and therefore depends on ρ

Simple "nearly-adaptive" estimator

$$\underbrace{Y_U - \rho \sqrt{\Sigma_U} T_O}_{\text{optimal GMM using } b = 0} - \underbrace{(-\rho) \sqrt{\Sigma_U} \tilde{\delta}^{\text{adapt}}(T_O; \rho)}_{\text{shrinkage estimate of bias}}$$

• Simple "nearly-adaptive" estimator: replace $\tilde{\delta}^{adapt}(T_O; \rho)$ with soft thresholding estimator:

$$\delta_{S,\lambda}(T_O) = \max\left\{|T_O| - \lambda, 0\right\} \operatorname{sgn}(T_O)$$

where the threshold λ is optimized over the same criterion, and therefore depends on ρ

• Naive pre-test estimator corresponds to hard thresholding

$$\delta_{H,\lambda}(T_O) = T_O \cdot I(|T_O| > \lambda)$$

with $\lambda = 1.96$

Illustration: Three estimators of bias

Note: Estimators of scaled bias for Dobkin et al. example ($\rho = -0.524$)

Illustration: Risk functions

Note: MSE as a function of $b/\sqrt{\Sigma_O}$ for Dobkin et al. example ($\rho = -0.524$)

Intuition for optimally adaptive estimator

- Hard thresholding (pre-test) seems like a reasonable candidate for an adaptive estimator:
 - |b| small \implies pre-test fails to reject \implies use Y_R (or optimal GMM)
 - |b| large \implies pre-test rejects \implies use Y_U
- Actually, it's pretty terrible but we can improve it by
 - i) smoothing the indicator function (soft thresholding instead of hard thresholding)
 - ii) optimizing λ for adaptation (rather than just using 1.96)
- Optimally adaptive estimator improves further, but it basically looks like soft thresholding, which is already close to optimally adaptive
- This matches findings of Bickel (1984) for the version of our problem where $\mathcal{B}=\{0,\infty\}$

Outline

Setup

Main results

- The adaptation problem
- Behavior of the adaptive estimator as a function of ho^2
- \bullet Behavior of the adaptive estimator when $\rho^2 \rightarrow 1$

3 Empirical exercise

4 Conclusion

Behavior of the adaptive estimator when $ho^2 ightarrow 1$

- For a fixed ρ^2 , the adaptive estimator δ^{adapt} achieves *worst-case risk* as close to the Oracle as possible
- Intuition for why the *worst-case adaptation regret* increases in ρ^2 :
 - Suppose Y_R is efficient when b = 0, then we have $\rho^2 = \frac{\Sigma_U \Sigma_R}{\Sigma_U}$
 - As Y_R gets more precise (and ρ^2 gets larger), adaptation places more weight on Y_R
- We show that the asymptotic worst-case adaptation regret and the worst-case risk grow at the rate of (log of) $\frac{\Sigma_U \Sigma_R}{\Sigma_R} = \frac{\rho^2}{1 \rho^2}$
- We also show that the adaptive soft-thresholding estimator attains the same rate

Soft-thresholding tracks nonlinear adaptive estimator well

Extension: constrained adaptation

• We can bound the increase in minimax risk when the worst-case adaptation regret is large

$$\inf_{\delta} \sup_{B \in \mathcal{B}} \frac{R_{\max}(B, \delta)}{R^*(B)} \quad \text{and} \quad \sup_{B \in \mathcal{B}} R_{\max}(B, \delta) \leq \overline{R}$$

• Operationally, this constrained adaptation is equivalent to solving

$$\inf_{\delta} \sup_{B \in \mathcal{B}} \frac{R_{\max}(B, \delta)}{\min\{R^*(B), t\}}$$

where $t = \overline{R}/A^*(\mathcal{B})$

• A variant of the original adaptation problem by putting more weights on adaptation regret at *B* where *R*^{*}(*B*) is large

Still achieves relative risk reduction

Note: Always more to gain than to lose with constrained adaptation

Outline

Main results

3 Empirical exercise

• Adapting to a pre-trend

Outline

Main results

3 Empirical exercise

• Adapting to a pre-trend

Dobkin et al (2018) original estimates

- Parameter of interest θ are impact of hospitalization on out-of-pocket (OOP) spending for the non-elderly insured (ages 50 to 59) in the Health and Retirement Studies (HRS) in the US
- We take Y_U to be the "parametric event study" estimates, where the authors control for a linear pretrend.
- We take Y_R to be estimates that impose a zero pretrend.
- The bias *b* is the amount of a linear pretrend. Without a pretrend, the bias is zero.

Dobkin et al (2018) adaptive estimates

Dobkin et al (2018) first year

						Soft-	Pre-
	Y_U	Y_R	Y_O	GMM	Adaptive	threshold	test
Estimate	2,217	2,409	192	2,379	2,302	2,287	2,409
Std Error	(257)	(221)	(160)	(219)			
Max Regret	38%	∞		∞	15%	15%	68%
Threshold						0.52	1.96

Dobkin et al (2018) risk profiles

The correlation coefficient ranges from -0.524 in the early years to -0.813 in the later years.

Risk functions for $\rho = -0.813$

Outline

Setup

- 2 Main results
- 3 Empirical exercise

Conclusion

- Applied researchers often estimate a sequence of nested specifications (robustness checks)
- We generalize the classical robustness-efficiency tradeoffs to a continuum of models, indexed by different degrees of misspecification
- Adaptive estimator uses a specification test to refine rather than choose estimate of a parameter by minimizing the worst case "adaptation regret"
- Pre-tabulated solutions \rightarrow researcher only needs to report correlation coefficient ρ with specification test. MATLAB / R code at: https://github.com/lsun20/MissAdapt
- Thank you !

Using invariance

- We focus on an invariant loss function $L(\theta, b, a) = (a \theta)^2$
- Applying invariance arguments (Lehmann and Casella, 1998, pp. 159-161), it follows that the solutions to the minimax problems take the form

$$Y_U + \bar{\delta}(T_O)$$

- Risk of this estimator doesn't depend on θ , so we can search for least favorable prior over *b* only.
- Least favorable prior for (θ, b) combines this with flat (improper) prior for θ.

Outline

• Adapting to heterogeneous effects

• Adapting to non-experimental controls

Negative weights in TWFE specifications

- Recent literature emphasizes that TWFE estimators can identify non-convex weighted averages of treatment effects → potential for biases large enough to flip sign.
- Gentzkow, Shapiro, and Sinkinson (2011) study effect of newspapers on voter turnout by estimating TWFE model via OLS.
- de Chaisemartin and D'Haultfœuille (2020) estimate that 46% of the weights underlying their TWFE specification are negative.
 - We take the GSS TWFE specification as Y_R .
 - They propose a convex weighted alternative that identifies a form of ATT. We take their estimator as Y_U .

Gentzkow, Shapiro, and Sinkinson (2011)

- Y_U exhibits large max regret bc std error $\sim 50\%$ above GMM.
- Pre-test chooses non-convex Y_R but also has large regret.
- Adaptive approach puts roughly 60% of weight on Y_U .

						Soft-	Pre-
	Y_U	Y_R	Y _O	GMM	Adaptive	threshold	test
Estimate	0.0043	0.0026	-0.0017	0.0024	0.0036	0.0036	0.0026
Std Error	(0.0014)	(0.0009)	(0.001)	(0.0009)			
Max Regret	145%	∞		∞	44%	46%	118%
Threshold						0.64	1.96

• Adapting to heterogeneous effects

• Adapting to non-experimental controls

Adapting to non-experimental controls

- LaLonde (1991): compare experimental and quasi-experimental estimates of effects of training
 - Conclusion: estimates highly sensitive to choice of specification
 - Heckman and Hotz (1989): pre-tests would have guarded against bias.
 - But how much bias was there?
- Adapt over finite set of bounds $\mathcal{B} = \{(0,0), (\infty,0), (\infty,\infty)\}$ (assumes Y_{R2} less biased than Y_{R1})
 - Y_U experimental contrast
 - Y_{R1} regression adjusted contrast with non-experimental control ("CPS-1")
 - Y_{R2} regression adjusted contrast with pscore screened non-experimental control (Angrist and Pischke, 2007)

LaLonde (1991) (as in Angrist and Pischke, 2007)

- Substantial gains to combining all 3 estimates via GMM (GMM₃) but J-test rejects at 5% level.
- J-test fails to reject that Y_U and Y_{R2} have same probability limit.
- Adaptive estimate close to *GMM*₂. Near oracle performance.

	Y_U	Y_{R1}	Y_{R2}	GMM_2	GMM ₃	Adaptive	Pre-test
Estimate	1794	794	1362	1629	1210	1597	1629
Std error	(668)	(618)	(741)	(619)	(595)		
Max Regret	26%	∞	∞	∞	∞	7.77%	47.5%
Risk rel. to Y_U							
when $b_1=0$ and $b_2=0$	1	0.853	1.23	0.858	0.793	0.855	0.80
when $b_1 eq 0$ and $b_2 = 0$	1	∞	1.23	0.858	∞	0.925	0.993
when $b_1 \neq 0$ and $b_2 \neq 0$	1	∞	∞	∞	∞	1.077	1.475