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Motivation: robustness-efficiency tradeoff

When studying a scalar estimand θ, empirical researchers commonly
report “robustness exercises” comprised of

an asymptotically unbiased estimate YU

a restricted estimate YR with asymptotic bias b, but asymptotically
more efficient if no bias

This paper: a novel way to combine YU and YR into an optimally
adaptive estimate
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Local misspecification framework

More generally, the bias can arise from using (potentially
misspecified) overidentifying restrictions

Let YO = YR − YU be an estimate of the bias b

Asymptotic approximation:(
YU

YO

)
∼a N

((
θ
b

)
,Σ

)
, Σ =

(
ΣU ρ

√
ΣU

√
ΣO

ρ
√

ΣU

√
ΣO ΣO

)
Most of our examples are linear so the asymptotic approximation is
also valid globally

Common to report TO = YO/Σ
1/2
O as an over-identification test
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This paper: Adapting to misspecification (1/2)

Overview of logic:

i) If b were known, efficient to use GMM imposing that

E[YR − b] = E[YU ] = θ

ii) If only know |b| ≤ B, natural to seek an estimator that minimizes the
worst-case risk over the parameter space |b| ≤ B

We call such an estimator the “B-minimax” estimator and denote
R∗(B) to be its worst-case risk
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Dobkin, Finkelstein, Kluender and Notowidigdo (2018)

Estimates the effects of an unexpected hospitalization on medical
spending

The researchers report YU , assuming a linear pre-trend

Imposing no pre-trend, can also report a more precise YR
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Illustration: B-minimax estimates

To assess the sensitivity of YR to bias, we can also report different
B-minimax estimates varying the bound B on the amount of bias
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This paper: Adapting to misspecification (2/2)

Overview of logic:

iii) Propose an optimally adaptive estimator without reference to the
upper bound B

Adaptation: how well can a single estimator mimic the oracle that
knows B ?

When B is unknown, will always regret not being able to implement
relevant B-minimax decision

The optimally adaptive estimator tries to get as close as possible to the
oracle risk function over B ∈ B
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Illustration: Adaptive estimate
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Related literature: adaptive estimation

Common to define a procedure to be “adaptive” over a set of
parameter spaces if it is simultaneously near-minimax for all of these
parameter spaces.

Our definition (best constant multiplicative factor) corresponds to
Tsybakov (1998)

Typically used for asymptotic results (rates, sometimes constants) in
nonparametric/high-dimensional problems: adapting to
smoothness/sparsity using cross-validation, etc.

In contrast to this literature, we focus on exact results in low
dimensional setting

Exception: Bickel (1984) considers adapting between B = 0 and
B =∞

Robustness-efficiency tradeoffs: Hodges and Lehmann (1952); Bickel
(1983, 1984)
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Related literature

Specification testing: Hausman (1978); Breusch and Pagan (1980);
Sargan (1988); Guggenberger (2010)

Model averaging: Akaike (1973); Mallows (1973); Schwarz (1978);
Claeskens and Hjort (2003); Hansen (2007); Hansen and Racine
(2012); Cheng, Liao and Shi (2019); Fessler and Kasy (2019); de
Chaisemartin and D’Haultfœuille (2020)

Adaptive confidence interval: impossible to tighten minimax CI and
maintain coverage for all b (Low, 1997; Armstrong and Kolesar,
2018)

Worst-case asym. variance of our adaptive estimator is bounded by ΣU

Adaptive estimate is always included in the robust CI

Computation: Chamberlain (2000); Elliott, Müller and Watson
(2015); Müller and Wang (2019); Kline and Walters (2021)
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Setup

General setup

Researcher observes data or initial estimates Y = (YU ,YO)

Distribution of Y depends on unknown parameters (θ, b)

Use Pθ,b and Eθ,b to denote probability and expectation under (θ, b)

Decision rule δ() maps Y to an action a

Loss function L(θ, b, a) measures disutility of action a when the
parameter is (θ, b)

Risk:

R(θ, b, δ) = Eθ,bL(θ, b, δ(Y )) =

∫
L(θ, b, δ(y)) dPθ,b(y)

E.g. estimation with squared error loss L(θ, b, a) = (a− θ)2, implying
risk is given by mean squared error (MSE)
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Setup

Constrained minimax estimation

The researcher entertains multiple parameter spaces:

CB = {(θ, b) : |b| ≤ B} = R× [−B,B]

The parameter spaces are indexed by B ∈ B for B = [0,∞]

Given a parameter space CB , the worst-case risk is

Rmax(B, δ) = sup
(θ,b)∈CB

R(θ, b, δ)

The minimax estimator under CB (“B-minimax estimator” for short)
optimizes Rmax(B, δ), thereby obtaining the minimax risk for CB :

R∗(B) = inf
δ
Rmax(B, δ) = inf

δ
sup

(θ,b)∈CB
R(θ, b, δ)

Sensitivity analysis: compute “B-minimax estimator” for a range of
B ∈ B

Under MSE, the “B-minimax estimator” is GMM when B = 0 and YU

when B =∞
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Main results The adaptation problem

What is the cost of committing to a single decision δ ?

We define the adaptation regret under CB of δ to be :

A(B, δ) =
Rmax(B, δ)

R∗(B)

that is, the proportional increase in worst-case risk relative to the
minimax risk (oracle)

The optimally adaptive estimator δadapt minimizes over B ∈ B the
worst-case adaptation regret :

A∗(B) = inf
δ

sup
B∈B

A(B, δ) = inf
δ

sup
B∈B

Rmax(B, δ)

R∗(B)

Following Tsybakov (1998), we refer to A∗(B) as the loss of efficiency
under adaptation
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Main results The adaptation problem

Adaptation as weighted minimax

Optimally adaptive estimator solves

inf
δ

sup
B∈B

A(B, δ) = inf
δ

sup
B∈B

Rmax(B, δ)

R∗(B)
(def. of adaptation regret)

= inf
δ

sup
B∈B

sup
(θ,b)∈CB

R(θ, b, δ)

R∗(B)
(def. of worst-case risk)

= inf
δ

sup
(θ,b)∈∪B′∈B′CB′

ω(θ, b)R(θ, b, δ) (reordering of sup)

We derive the general formula for the weights in the paper

For nested sets CB = R× [−B,B] and R∗(B) is increasing in B

The weight is ω(θ, b) = R∗(|b|)−1
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Main results The adaptation problem

Solving minimax problems

Consider the general problem of computing a minimax decision over a
parameter space C for a parameter ϑ under loss L̄(ϑ, a)

Let R(ϑ, δ) = EϑL̄(ϑ, δ) denote risk

Letting π denote a prior distribution on C, the Bayes risk of δ is given
by

RBayes(π, δ) =

∫
R(ϑ, δ) dπ(ϑ) =

∫
EϑL̄(ϑ, δ(Y )) dπ(ϑ)
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Main results The adaptation problem

Solving minimax problems

Let Γ denote the set of priors π supported on C.

Under regularity conditions, a minimax theorem says that

min
δ

max
ϑ∈C

R(ϑ, δ) = min
δ

max
π∈Γ

R(ϑ, δ) = max
π∈Γ

min
δ

R(ϑ, δ)

The maximizing π is called least favorable prior

The inner minimization is solved by the Bayes decision δBayes
π , e.g. for

estimation under squared error loss, it’s the posterior mean

The outer maximization is concave in π.

We solve for least favorable π by using a grid approximation and convex
optimization, following, e.g., Chamberlain (2000)
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Main results The adaptation problem

B-minimax estimator

Further simplification under squared error loss: L(θ, b, a) = (θ − a)2.

Theorem 1.

In the local misspecification setting, the B-minimax estimator is given by

YU − ρ
√

ΣUTO + ρ
√

ΣUδ
BNM(TO ;B/

√
ΣO)

and the minimax risk is

R∗(B) = ρ2ΣU r
BNM

(
B√
ΣO

)
+ ΣU − ρ2ΣU

where δBNM(y ; τ) denotes the minimax estimator and rBNM(τ) denotes
minimax risk in the bounded normal mean problem, in which we observe
Y ∼ N(ϑ, 1) and impose |ϑ| ≤ τ

details
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Main results The adaptation problem

Optimally adaptive estimator

Theorem 2.

In the local misspecification setting, the optimally adaptive estimator is
given by

YU − ρ
√

ΣUTO + ρ
√

ΣU δ̃
adapt(TO ; ρ)

where δ̃adapt(TO ; ρ) solves

inf
δ

sup
b̃∈R

ET∼N(b̃,1)(δ̃(T )− b̃)2 + ρ−2 − 1

rBNM(|b̃|) + ρ−2 − 1
.

The loss of efficiency under adaptation is given by the value of the above
display.
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Main results The adaptation problem

Illustration: Adaptive prior over b

Note: Adaptive prior works especially well when b ≈ 0 and limits risk when |b| is large
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Main results Behavior of the adaptive estimator as a function of ρ2

Weighted average interpretation

Adaptive estimator takes the form:

YU − ρ
√

ΣUTO︸ ︷︷ ︸
optimal GMM using b = 0

− (−ρ)
√

ΣU δ̃
adapt(TO ; ρ)︸ ︷︷ ︸

shrinkage estimate of bias

Bias estimator δ̃adapt(·; ρ) yields non-linear shrinkage

Equivalently: a weighted average of YU and GMM, with convex
weighting function w(TO) = δ̃adapt(TO ; ρ)/TO

Tuning free shrinkage with n < 3 !

Shape depends only on correlation ρ between YU and YO

Compute via convex programming and provide a simple “lookup
table” taking as inputs (YU ,YR ,Σ)
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Main results Behavior of the adaptive estimator as a function of ρ2

Simple “nearly-adaptive” estimator

YU − ρ
√

ΣUTO︸ ︷︷ ︸
optimal GMM using b = 0

− (−ρ)
√

ΣU δ̃
adapt(TO ; ρ)︸ ︷︷ ︸

shrinkage estimate of bias

Simple “nearly-adaptive” estimator: replace δ̃adapt(TO ; ρ) with soft
thresholding estimator:

δS ,λ(TO) = max {|TO | − λ, 0} sgn(TO)

where the threshold λ is optimized over the same criterion, and
therefore depends on ρ

Naive pre-test estimator corresponds to hard thresholding

δH,λ(TO) = TO · I (|TO | > λ)

with λ = 1.96
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Main results Behavior of the adaptive estimator as a function of ρ2

Illustration: Three estimators of bias

Note: Estimators of scaled bias for Dobkin et al. example (ρ = −0.524)
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Main results Behavior of the adaptive estimator as a function of ρ2

Illustration: Risk functions

Note: MSE as a function of b/
√

ΣO for Dobkin et al. example (ρ = −0.524)
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Main results Behavior of the adaptive estimator as a function of ρ2

Intuition for optimally adaptive estimator

Hard thresholding (pre-test) seems like a reasonable candidate for an
adaptive estimator:

|b| small =⇒ pre-test fails to reject =⇒ use YR (or optimal GMM)
|b| large =⇒ pre-test rejects =⇒ use YU

Actually, it’s pretty terrible but we can improve it by

i) smoothing the indicator function (soft thresholding instead of hard
thresholding)

ii) optimizing λ for adaptation (rather than just using 1.96)

Optimally adaptive estimator improves further, but it basically looks
like soft thresholding, which is already close to optimally adaptive

This matches findings of Bickel (1984) for the version of our problem
where B = {0,∞}
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Main results Behavior of the adaptive estimator when ρ2 → 1

Behavior of the adaptive estimator when ρ2 → 1

For a fixed ρ2, the adaptive estimator δadapt achieves worst-case risk
as close to the Oracle as possible

Intuition for why the worst-case adaptation regret increases in ρ2:

Suppose YR is efficient when b = 0, then we have ρ2 = ΣU−ΣR

ΣU

As YR gets more precise (and ρ2 gets larger), adaptation places more
weight on YR

We show that the asymptotic worst-case adaptation regret and the

worst-case risk grow at the rate of (log of) ΣU−ΣR
ΣR

= ρ2

1−ρ2

We also show that the adaptive soft-thresholding estimator attains
the same rate
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Main results Behavior of the adaptive estimator when ρ2 → 1

Soft-thresholding tracks nonlinear adaptive estimator well
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Main results Behavior of the adaptive estimator when ρ2 → 1

Extension: constrained adaptation

We can bound the increase in minimax risk when the worst-case
adaptation regret is large

inf
δ

sup
B∈B

Rmax(B, δ)

R∗(B)
and sup

B∈B
Rmax(B, δ) ≤ R

Operationally, this constrained adaptation is equivalent to solving

inf
δ

sup
B∈B

Rmax(B, δ)

min{R∗(B), t}

where t = R/A∗(B)

A variant of the original adaptation problem by putting more weights
on adaptation regret at B where R∗(B) is large
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Main results Behavior of the adaptive estimator when ρ2 → 1

Still achieves relative risk reduction

Note: Always more to gain than to lose with constrained adaptation
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Empirical exercise Adapting to a pre-trend

Dobkin et al (2018) original estimates

Parameter of interest θ are impact of hospitalization on out-of-pocket
(OOP) spending for the non-elderly insured (ages 50 to 59) in the
Health and Retirement Studies (HRS) in the US

We take YU to be the “parametric event study” estimates, where the
authors control for a linear pretrend.

We take YR to be estimates that impose a zero pretrend.

The bias b is the amount of a linear pretrend. Without a pretrend,
the bias is zero.
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Empirical exercise Adapting to a pre-trend

Dobkin et al (2018) adaptive estimates

30 / 33



Empirical exercise Adapting to a pre-trend

Dobkin et al (2018) first year

Soft- Pre-
YU YR YO GMM Adaptive threshold test

Estimate 2,217 2,409 192 2,379 2,302 2,287 2,409
Std Error (257) (221) (160) (219)

Max Regret 38% ∞ ∞ 15% 15% 68%
Threshold 0.52 1.96
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Empirical exercise Adapting to a pre-trend

Dobkin et al (2018) risk profiles

The correlation coefficient ranges from -0.524 in the early years to -0.813
in the later years.

Risk functions for ρ = −0.813
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Conclusion

Conclusion

Applied researchers often estimate a sequence of nested specifications
(robustness checks)

We generalize the classical robustness-efficiency tradeoffs to a
continuum of models, indexed by different degrees of misspecification

Adaptive estimator uses a specification test to refine — rather than
choose — estimate of a parameter by minimizing the worst case
“adaptation regret”

Pre-tabulated solutions → researcher only needs to report correlation
coefficient ρ with specification test. MATLAB / R code at:
https://github.com/lsun20/MissAdapt

Thank you !
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Using invariance

We focus on an invariant loss function L(θ, b, a) = (a− θ)2

Applying invariance arguments (Lehmann and Casella, 1998, pp.
159-161), it follows that the solutions to the minimax problems take
the form

YU + δ̄(TO)

Risk of this estimator doesn’t depend on θ, so we can search for least
favorable prior over b only.

Least favorable prior for (θ, b) combines this with flat (improper) prior
for θ.

return

1 / 5
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Adapting to heterogeneous effects

Negative weights in TWFE specifications

Recent literature emphasizes that TWFE estimators can identify
non-convex weighted averages of treatment effects → potential for
biases large enough to flip sign.

Gentzkow, Shapiro, and Sinkinson (2011) study effect of newspapers
on voter turnout by estimating TWFE model via OLS.

de Chaisemartin and D’Haultfœuille (2020) estimate that 46% of the
weights underlying their TWFE specification are negative.

We take the GSS TWFE specification as YR .

They propose a convex weighted alternative that identifies a form of
ATT. We take their estimator as YU .
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Adapting to heterogeneous effects

Gentzkow, Shapiro, and Sinkinson (2011)

YU exhibits large max regret bc std error ∼ 50% above GMM.

Pre-test chooses non-convex YR but also has large regret.

Adaptive approach puts roughly 60% of weight on YU .

Soft- Pre-
YU YR YO GMM Adaptive threshold test

Estimate 0.0043 0.0026 -0.0017 0.0024 0.0036 0.0036 0.0026
Std Error (0.0014) (0.0009) (0.001) (0.0009)

Max Regret 145% ∞ ∞ 44% 46% 118%
Threshold 0.64 1.96
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Adapting to non-experimental controls

Adapting to non-experimental controls

LaLonde (1991): compare experimental and quasi-experimental
estimates of effects of training

Conclusion: estimates highly sensitive to choice of specification

Heckman and Hotz (1989): pre-tests would have guarded against bias.

But how much bias was there?

Adapt over finite set of bounds B = {(0, 0), (∞, 0), (∞,∞)}
(assumes YR2 less biased than YR1)

YU – experimental contrast

YR1 – regression adjusted contrast with non-experimental control
(“CPS-1”)

YR2 – regression adjusted contrast with pscore screened
non-experimental control (Angrist and Pischke, 2007)
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Adapting to non-experimental controls

LaLonde (1991) (as in Angrist and Pischke, 2007)

Substantial gains to combining all 3 estimates via GMM (GMM3) but
J-test rejects at 5% level.

J-test fails to reject that YU and YR2 have same probability limit.

Adaptive estimate close to GMM2. Near oracle performance.

YU YR1 YR2 GMM2 GMM3 Adaptive Pre-test

Estimate 1794 794 1362 1629 1210 1597 1629
Std error (668) (618) (741) (619) (595)

Max Regret 26% ∞ ∞ ∞ ∞ 7.77% 47.5%
Risk rel. to YU

when b1 = 0 and b2 = 0 1 0.853 1.23 0.858 0.793 0.855 0.80
when b1 6= 0 and b2 = 0 1 ∞ 1.23 0.858 ∞ 0.925 0.993
when b1 6= 0 and b2 6= 0 1 ∞ ∞ ∞ ∞ 1.077 1.475
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