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Motivation

The literature on structural vector autoregressions (Svar) is vast.
Popular identification schemes include:

Short- and long-run homogenous restrictions (see, e.g., Sims (1980)
and Blanchard and Quah (1989)),

Sign restrictions (see, e.g., Faust (1998) and Uhlig (2005)),

Time-varying heteroskedasticity (Sentana and Fiorentini (2001)) or

External instruments (see, e.g., Mertens and Ravn (2012), or Stock
and Watson (2018)).

Recently, identification through independent, non-Gaussian
shocks has become increasingly popular after Lanne, Meitz and
Saikkonen (2017) and Gouriéroux, Monfort and Renne (2017).
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Motivation

Consider an N-variate Svar process of order p:

yt = τ +∑p
j=1 Ajyt−j +Cε∗t , ε∗t |It−1 ∼ i .i .d . (0, IN ),

where ε∗t and C are the structural shocks and their impact multipliers,
respectively, and It−1 the information available at time t − 1.

Identification Assumption

1) the N shocks in ε∗t are cross-sectionally independent,
2) at least N − 1 of them follow a non-Gaussian distribution, and
3) C is invertible.

Amengual, Fiorentini and Sentana ()Specification tests for non-Gaussian SVARs 30/08/2023 3 / 41



Motivation

Failure of any of those conditions results in an underidentified model
e.g.:

Gaussian ε∗: one can only identify V (y) = CC′ but not C despite the
fact that the elements of ε∗ are cross-sectionally independent.

Non-Gaussian spherical distribution for ε∗: lack of identifiability of C
despite the non-normality because orthogonal rotations of the
structural shocks share not only their mean and covariance, but also
their non-linear dependence.

Multivariate location-scale mixture of normals for ε∗: Same reason.

The signal processing literature on Independent Component
Analysis popularised by Comon (1994) shares the same identification
scheme.
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Motivation

In Amengual, Fiorentini and Sentana (2022), we proposed to assess
the potential cross-sectional dependence among two or more shocks
by comparing the integer (product) moments of those shocks in the
sample with their population counterparts.

Specifically, we assessed the statistical significance of their third and
fourth cross-moments, which should be equal to the product of the
corresponding marginal moments under independence.
The problem with these tests is twofold:

1 Standard asymptotic theory provides poor finite sample approximations
to moment tests based on higher-order moments, which are quite
sensitive to outliers.

2 Tests based on a finite number of moments are not consistent.
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A distribution with zero co-skewness and co-kurtosis
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The independence copula

Amengual, Fiorentini and Sentana ()Specification tests for non-Gaussian SVARs 30/08/2023 7 / 41



What we do

In this paper, we propose to assess the potential cross-sectional
dependence among two or more shocks by comparing the joint
empirical cdf to the product of the marginal empirical cdfs.

We do so for:

1 A discrete grid of values of the arguments of the joint cdf, which
provides the intuition for our approach.

2 A continuum grid of values using the continuum of moments
inference procedures in Carrasco and Florens (2000).
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What we do

Our discrete grid test, which is closely related to the classical
independence test in contingency tables proposed by Pearson in 1900,
is very simple to compute.

The main difference is that we use shocks obtained with estimated
parameter values, as well as intervals based on the empirical quantiles
of those estimated shocks, so the asymptotic covariance matrix of the
average influence functions must reflect these two different sources of
sampling variability.

Nevertheless, a finite grid test is not consistent either for any fixed
partition of the domain of the shocks.

In contrast, our continuum of grid values test is consistent.
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A distribution with an equiprobable 2× 2 contingency table
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A distribution with an equiprobable 3× 3 contingency table
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What we do

We focus on latent shocks rather than observed variables because the
Identification Assumption is written in terms of ε∗ rather than y.

If we knew the true values of µ and C in the static case, or τ, Aj
(j = 1, . . . , p) and C in the dynamic one, our tests would be
straightforward.

In practice, though, all those mean and variance parameters are
unknown, so we need to estimate them before computing our tests.

We follow Fiorentini and Sentana (2023), who showed that if the
univariate log-likelihoods are based on an unrestricted finite
Gaussian mixture, then all conditional mean and variance
parameters will be consistently estimated (under standard
regularity conditions) when the Identification Assumption holds.
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Set up

Let εt = Cε∗t denote the reduced form innovations, so that
εt |It−1 ∼ i .i .d . (0,Σ) with Σ = CC′.
Let θ = [τ′, vec ′(A1), . . . , vec ′(Ap), vec ′(C)]

′ = (τ′, a′, c′) denote
the structural parameters characterising the first two conditional
moments of yt .
In addition, we assume ε∗it |It−1 ∼ i .i .d . D(0, 1, $i ), where $i is a
qi × 1 vector of variation-free shape parameters so that

l(yt ;φ) = − ln |C|+ ln f [ε∗1t (θ); $1] + . . .+ ln f [ε∗Nt (θ); $N ],

where φ = (θ′, $′)′, f [ε∗it (θ); $i ] is the log-likelihood for the i
th shock,

ε∗t (θ) = C−1εt (θ), and εt (θ) = yt − τ −A1yt−1 − . . .−Apyt−p .
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Set up

Let φ∞ = (θ
′
0, $
′
∞)
′ so that

A(φ∞;ϕ0) = −E [∂sφt (φ∞)/∂φ′)|ϕ0]

and
B(φ∞;ϕ0) = V [sφt (φ∞)|ϕ0]

denote the (-) expected value of the log-likelihood Hessian and the
variance of the score, respectively, where:

$∞ are the pseudo true values of the shape parameters of the
distributions of the shocks assumed for estimation purposes, and
υ contains the potentially infinite-dimensional shape parameters of the
true distributions of the shocks, and
ϕ= (θ′, υ′)′.

Then, the asymptotic distribution of the PMLEs of φ, φ̂T , will be
given by
√
T (φ̂T −φ∞)→ N [0,A−1(φ∞;ϕ0)B(φ∞;ϕ0)A−1(φ∞;ϕ0)].
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Going beyond integer moments: an event-based approach

To keep the notation simple, consider the bivariate case.

For each i define H points, k1 < · · · < kh < · · · < kH , so that we
can form a partition of the support of ε∗it into H + 1 intervals after
suitably defining k0 = −∞ and kH+1 = +∞.

Let IA(x) denote the usual indicator function for x ∈ A.
Independence implies that the joint probability of any combined
event is the product of the marginal probabilities.

Specifically, if πih = Pr[I(kh−1,kh)(ε
∗
it ) = 1] for i = 1, 2, then

Pr[I(kh−1,kh)(ε
∗
1t ) = 1, I(kh′−1,kh′ )(ε

∗
2t ) = 1] = π1h × π2′h′ ,

so that we can use as testing moment,

E [I(kh−1,kh)(ε
∗
1t )I(kh′−1,kh′ )(ε

∗
2t )]− π1hπ2h′ = 0

with the πih’s identified from E [I(kh−1,kh)(ε
∗
it )]− πih = 0 for all i , h.
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Going beyond integer moments: an event-based approach

Intuitively, we will have the following contingency table:

ε∗2
1 H + 1

1 n1,1 · · · n1,H+1 n1,•

ε∗1
...

. . .
...

...
H + 1 nH+1,1 · · · nH+1,H+1 nH+1,•

n•,1 · · · n•,H+1 T

where:
ni ,j = # of times that ε1t ∈ (khi−1, khi ) and ε2t ∈ (khj−1, khj ),
ni ,• = # of times that ε1t ∈ (khi−1, khi ), and
n•,j = # of times that ε2t ∈ (khj−1, khj ).
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Going beyond integer moments: an event-based approach

In turn, in the trivariate case we will have...

something like this:
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Going beyond integer moments: an event-based approach

Let p[ε∗t (θ)] denote a vector containing the collection of
non-redundant influence functions.

We can easily obtain the moment test statistic after providing
expressions for V {p[ε∗t (θ)]} that account for estimation uncertainty
about both πih’s and θ.

Importantly, we show that we can write this Pearson-type test for
independence as a moment test of independence of the cdf at a finite
grid of points because the moment conditions of the latter are a
simple full-rank linear transformation of the former with known
coeffi cients.
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Going beyond integer moments: a copula approach

A practical issue is how to partition the support of ε∗it for a given H.

For that reason, we consider a variant of our independence test in
which, instead of fixing arbitrary points of the range of each of the
ε∗i ’s, we look at fixed fractions of the observations.

These tests can be understood as independence copula tests.
We show that for a common a priori partition, both tests are
asymptotically equivalent under the null and sequences of local
alternatives.
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Going beyond integer moments: about the partition

The number of elements of the partition is crucial for both small
sample performance and power considerations because:

1 A fine partition relative to the sample size will lead to size distortions
since the joint probability of some individual cells will be poorly
estimated.

2 Even in large samples, a fine partition will generate substantial
correlation between the influence functions, potentially causing
numerical instability.

3 There is a power trade-off between the size of the non-centrality
parameter and the number of degrees of freedom of the limiting
distribution.
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A continuous grid: extant tests

As previously illustrated, the finite grid tests we have just discussed
are not consistent for any specific finite partition of the domain of the
shocks.

Consistent tests for independence based on comparing the joint cdf to
the product of the marginal ones go back at least to Hoeffding
(1948), who considered a Cramér-von Mises type-test based on the
integral of the square differences between the joint cdf and the
product of the marginal cdfs.

In turn, Blum, Kiefer and Rosenblat (1961) also considered
Kolmogorov-Smirnov-type tests based on the maximum absolute
discrepancy.
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A continuous grid: exploiting correlation

However, these tests rely on specific functionals of the difference,
while our discrete grid tests also take into account not only the
asymptotic variance of the influence functions for each value of the
arguments, like an Anderson-Darling (1961) test would do, but also
the covariance between those influence functions for different values
of the arguments.

In principle, we could try to find the limiting distribution of our
discrete grid tests in a double asymptotic framework in which the
partitions get finer and finer as the sample size increases.

However, this is really unnecessary because the influence functions
indexed with respect to the arguments of the joint cdf over the entire
real line give rise to a continuum of moments.
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A continuous grid: overidentification tests

We can then follow Carrasco and Florens (2000) in constructing a J
test for overidentifying restrictions based on these moments, but with
a covariance operator playing the role of the usual covariance matrix.

Specifically, define

pt (x) = I [εit (θ0) ≤ xi , εi ′t (θ0) ≤ xi ′ ]−P [εit (θ0) ≤ xi ]P [εi ′t (θ0) ≤ xi ′ ]

so that

p̄T (x) =
1
T

T

∑
t=1
pt (x),

can be regarded as the sample version of p(x) = F (x)−∏N
i=1 Fi (xi ).

For any random vector with continuous joint cdf, p(x) should be
identically 0 for all x iff the underlying random variables are
independent, which justifies consistency.
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A continuous grid: empirical cdfs

In practice, the marginal cdfs Fi (xi ) will typically be unknown, but we
can similarly estimate them from the continuum of influence functions

pit (xi ) = I [εit (θ0) ≤ xi ]− P [εit (θ0) ≤ xi ],

which effectively leads to the empirical cdf of the i th shock.

An extension of our earlier results implies that the continuum of
moments test that looks at pT (x) over the entire real line will be
numerically equivalent to the one that looks at the difference between
the copula and the unit hyperplane over the unit hypercube.

Like in the discrete grid test, though, we must correct for the
sampling variability in estimating marginal cdfs as well as mean and
variance parameters.

We do so by applying the Carrasco and Florens (2000) approach to
first-order expansion of the influence functions previously discussed
taken with respect to the off-diagonal elements of C.
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Monte Carlo evidence: model and estimation

We look at bivariate and trivariate DGPs with VAR(1) dynamics.

We consider both:

T = 250, realistic in most macro applications, and
T = 1, 000, representative of financial applications.

To estimate the model parameters, we assume that ε∗it’s follow serially
and cross-sectionally independent standardised discrete mixture of two
normals, which provides consistent estimators under the null
regardless of the true distribution of the shocks.

We compare our tests not only to the co-skewness/co-kurtosis tests in
Amengual, Fiorentini and Sentana (2022), but also to the
Kolmogorov-Smirnov test that imposes the independent copula under
the null, like in Blum, Kiefer and Rosenblat (1961), as well as to the
Matteson and Tsay (2017) statistic based on the ICA criterion
function.
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Monte Carlo evidence: DGPs design

The bivariate DGP for the standardised shocks that we consider under
the null of independence imposes that one of them follows a Student
t with 10 degrees of freedom, while the other one an asymmetric t
with kurtosis and skewness coeffi cients equal to 4 and −.5,
respectively, while in the trivariate case, ε3t follows an asymmetric t
with the same kurtosis but opposite skewness coeffi cient as ε2t .
Additionally, we consider as alternative hypotheses:

1 Standardised scale mixture of two zero mean normals with scalar
covariance matrices.

2 Standardised mixture of two normal vectors.
3 Asymmetric t with skewness vector β = −10`N and degrees of freedom
parameter ν = 12 (see Mencía and Sentana (2012) for details).

To gauge the small-sample properties of our tests, we generate
(10,000) 2,500 samples for each of the designs under the null
(alternative), systematically using 99 additional samples that impose
the null to obtain resampling critical values.
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Scale mixture of normals
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Finite normal mixture
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Asymmetric Student t distribution
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Monte Carlo evidence: Size properties

Discrete Q tests Continuous Q tests
Asymptotic Resampling Resampling
critical values critical values critical values

H 10% 5% 1% 10% 5% 1% α 10% 5% 1%
N = 2, T = 250

3 8.4 4.0 0.9 9.2 4.5 0.8 10−6 9.4 4.5 0.8
5 8.6 4.4 0.8 9.2 4.4 0.8 10−8 9.3 4.5 0.9

N = 3, T = 250
3 8.2 3.8 0.8 9.2 4.3 0.9 10−6 8.3 3.8 0.7
5 8.5 4.1 0.9 9.5 4.5 0.9 10−8 8.0 4.1 0.7

N = 2, T = 1, 000
3 9.2 4.3 0.9 9.4 4.8 0.9 10−6 10.7 5.5 1.3
5 9.6 4.6 0.8 10.3 5.2 1.0 10−8 10.6 5.4 1.2
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Monte Carlo evidence: Power properties (N=2 & T=250)

Scale mixture Finite normal Asymmetric
of two normals mixture Student t

10% 5% 1% 10% 5% 1% 10% 5% 1%
H Discrete Q tests
3 54.8 41.4 16.4 89.3 81.7 55.1 34.9 23.0 7.0
5 36.6 23.0 7.1 90.4 81.9 56.1 33.5 21.1 6.3
α Continuous Q tests
10−6 46.5 33.0 11.7 95.0 90.1 69.8 43.9 30.1 12.1
10−8 45.7 32.2 11.4 94.7 90.1 69.7 42.9 29.8 11.8

Moment tests
Skew 9.4 4.4 0.6 32.7 21.3 7.7 89.1 80.9 52.5
Kurt 14.3 8.0 1.7 28.8 17.8 5.2 60.4 48.8 23.0

Other tests
MT 15.1 7.2 1.0 89.7 79.9 48.2 70.4 58.3 29.6
KS 18.9 9.6 2.0 76.2 65.5 40.4 34.4 21.7 6.1
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Monte Carlo evidence: Power properties (N=3 & T=250)

Scale mixture Finite normal Asymmetric
of two normals mixture Student t

10% 5% 1% 10% 5% 1% 10% 5% 1%
H Discrete Q tests
3 90.8 84.3 61.4 98.1 96.2 86.3 19.6 11.2 2.8
5 61.6 46.2 22.8 98.4 96.1 83.0 16.8 9.6 1.2
α Continuous Q tests
10−6 68.5 53.9 23.3 99.6 98.8 92.7 58.4 44.4 20.0
10−8 66.9 51.9 21.6 99.3 98.6 91.9 58.4 45.2 21.2

Moment tests
Skew 9.6 4.7 1.0 38.8 25.8 9.4 94.8 88.4 69.2
Kurt 13.2 7.2 1.3 38.6 26.3 8.1 73.2 66.4 40.8

Other tests
MT 19.6 9.0 1.6 95.3 89.1 59.7 76.0 63.2 32.4
KS 11.3 5.7 1.0 28.6 16.8 4.5 32.8 15.6 2.8
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Monte Carlo evidence: Power properties (N=2 & T=1,000)

Scale mixture Finite normal Asymmetric
of two normals mixture Student t

10% 5% 1% 10% 5% 1% 10% 5% 1%
H Discrete Q tests
3 100 99.9 99.2 100 100 100 95.1 90.2 72.6
5 99.8 99.7 96.7 100 100 100 96.6 93.6 78.4
α Continuous Q tests
10−6 98.6 96.7 83.5 100 100 100 94.1 89.8 69.3
10−8 97.4 94.8 78.4 100 100 100 93.5 88.8 67.0

Moment tests
Skew 11.6 6.0 1.5 84.4 76.0 53.4 100 100 99.6
Kurt 50.4 36.8 15.7 80.4 71.9 40.2 95.7 91.1 70.4

Other tests
MT 99.8 98.4 72.2 100 100 100 100 100 99.7
KS 82.0 69.9 36.1 99.9 99.9 98.5 97.2 92.4 67.7
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Empirical application to volatility indices

We consider three weekly series of market-based implied volatilities:
the VIX index, the EVZ EuroCurrency ETF volatility index, and the
GVZ Gold ETF volatility index.

They represent three of the most actively traded asset classes: stocks,
exchange rates and commodities.

Our sample spans 2009/01/21 to 2023/06/21 (753 Wednesday
observations).

Weekly (log) volatility indices show mean reversion over the long run
but persistent mean deviations during extended periods.

But we are really interested in their dynamic linkages.
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Empirical application to volatility indices

Volatility index series (logs)
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Empirical application to volatility indices

We estimate the following trivariate Svar:

xt = τ +A1xt−1 + · · ·+Apxt−p +Cε∗t ,

selecting p = 2 by looking at the Akaike information criterion and the
likelihood ratio test for lack of residual serial correlation.

We consistently estimate (τ, a, c) jointly by PML assuming that
ε∗it ∼ i .i .d . DLSMN(δi , κi ,λi ).
For initial values, we run OLS regressions for each of the three
variables, we apply fastICA routine to the OLS residuals and, finally,
the EM algorithm for mixture parameters.
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Empirical application to volatility indices

Non-Gaussian structural shocks
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Empirical application: Results

If we use the unmixing matrix C−1 to try and intepret the shocks as
“long/short portfolios”of the one-period ahead prediction errors, we
find that each of them “invests” approximately between 130 and
180% on one of the reduced form shocks and between -15 and -40%
on each of the other two.

We can get a more standard intepretation by looking at the IRFs up
to a year ahead.

The strong persistence implied by the Svar(2) parameter estimates
implies that the IRFs decay slowly.

As can be seen, each series reacts mostly to one shock.

Nevertheless, they also react significantly to the other ones, especially
in the case of the Gold volatility index and to some extent the VIX.
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Empirical application to volatility indices

Impulse response functions and FEVDs
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Empirical application: Specification tests

The different test procedures that we have considered fail to reject
the null hypothesis of stochastic independence of the structural
shocks, with the exception of the co-skewness and co-kurtosis tests in
Amengual, Fiorentini and Sentana (2022).

Nevertheless, these rejections seem to be closely associated to the
unusual behaviour of the three series at the onset of the COVID-19
pandemic.

Specifically, if we remove two additive outliers from the observations
of the three series for March 11 and 18, 2020, using the procedures in
Chen and Liu (1993), the moment tests no longer reject.

In contrast, the quantile-based independence tests that we have
proposed in this paper, and indeed the MT and KS tests seem far
more robust to the presence of these ususual observations.
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Conclusions and directions for further research

Identification through independent non-Gaussian shocks is a powerful
result but not without concerns.

For that reason, it would be desirable that empirical researchers
checked the underlying assumptions to increase the credibility of their
findings.

Our proposed tests can be rather useful in this respect.

An important question for further research is what would happen to
our proposed tests when the true joint distribution of the shocks is
Gaussian.

Given that most theoretical models implicitly assume independent
underlying economic shocks even though this is not exploited in
estimation, it should also be of interest to apply our tests to the
shocks of SVAR models identified using more traditional methods.
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