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Motivation



The machine learning (ML) setting

Everything here is about supervised learning, i.e. minimising an error

min
θ

EΩ

[
||y − f̂θ‖l

]
.

However, many aspects can be transferred to unsupervised or reinforcement learning

(only need some form of model prediction).

Problem: θ not identifying, i.e. degeneracy of parameter sets.

⇒ Black box problem.
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Key assumption: Key theorem of statistical learning holds

The problems we consider are learnable. The empirical risk Re(y , f̂ (x , θ)) converges

uniformly in probability to the actual risk R(y , f̂ (x , θ)), i.e. let δ > 0, then

lim
m→∞

P
(

sup
θ

(R − Re) > δ
)

= 0 . (1)

That is, our ML models are error consistent.

See Vapnik (1999), but also Shalev-Shwartz et al. (2010).

NB: Inference on some low dimensional objects still possible when (1) not given (see

Chernozhukov et al. (2023)).
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Pros & Cons of ML relative to econometric approach

Advantages

� Often higher accuracy

� Lower risk of misspecification

� Return richer information set

Disadvantages

� Higher model complexity (“black box

critique”)

� Less analytical guarantees, e.g. risk of

overfitting

� Often larger data requirement
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Well, universal learning from data is great, BUT ...

� ... how to understand what the model is actually doing?

� ... how to relate ML models to an econometric approach, e.g. hypothesis testing?

� ... how to quantify the learning process, e.g. its state of convergence?

� ... how to communicate results for non-linear models?
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ML workflow



The ML workflow

1. Comparison of model predictions (“horse race” if accuracy is the goal)

⇒ Is there gain in using ML, should I continue?

2. Model decomposition into Shapley values

⇒ Identify important features & uncover learned functional forms

3. Statistical testing: “Shapley regression”

⇒ Establish confidence & standard communication
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Recap: Steps for statistical inference

I Magnitude measurement: Sample mean, regression coefficients, treatment

effects, etc.

II Hypothesis testing (certainty assessment): t, F -tests, CLTs, etc.
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The linear regression model (LR)

(I ) : f̂ (xi ) = xi β̂ =
n∑

k=0

xi ,k β̂k + ε̂ with (II ) : Hk
0 : βk = 0 (2)

� Workhorse of econometric analysis

� Special: local and global model inference (β̂ = const.)

� Widely accepted to be interpretable (if not too many regressors)

� Belongs to class of additive local variable attributions

Φ(xi ) ≡ φ0 +
n∑

k=1

φk(xi ) = f̂ (xi ) (3)
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Detour: Shapley values in cooperative game theory

� How much does player A contribute a

collective payoff f obtained by a group

of n? (Shapley, 1953).

� Observe payoff of the group with and

without player A.

� Contribution depends on the other

players in the game.

� All possible coalitions S need to be

evaluated.

φA =
∑

S⊆n\A

|S |!(|n| − |S | − 1)!

|n|!
[f (S∪{A}−f (S)]

(4)

2|n|−1 coalitions are evaluated.

Computationally complex!
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Shapley values as analogy between game theory and (ML) models

Cooperative game theory Machine learning

n Players Predictors / variables

f̂ /ŷ Collective payoff Predicted value for one observation

S Coalition of players Group of predictors in model

Source Shapley (1953) Štrumbelj and Kononenko (2010)

Lundberg and Lee (2017)

Model Shapley decomposition: f̂ (xi ) = φ0 +
∑n

k=1 φ
S
k (f̂ ; xi )

Why Shapley values? Because they are the only attribution scheme which is

local, linear, exact, respects the null, is consistent (Young, 1985), and allows for

interactions (Agarwal et al., 2019).
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Shapley regression (SR) for statistical inference (Joseph, 2020)

Auxiliary inference analysis on f̂ in the space of Shapley values:

yi =
n∑

k=0

φSki β̂
S
k + ε̂i with Hk

0 (Ω) : βSk ≤ 0 (5)

Universality: f̂ can be any model.

Interpretation: β̂S measures the alignment of model components with the target.

Validity: Eq. 5 relates to generated regressors (Pagan (1984)) imposing minor

conditions. Inference generally only valid on test set (standard in ML) and some

consideration on convergence rates (cross-fitting helpful).
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SR interpretation: alignment & learning progress

The true value of each βSk is either 1 (signal) or 0 (pure noise).

If Hk
1 (Ω) : βSk = 1 is not rejected, we can say that information from variable k has

been learned robustly (perfect alignment between y and φSk ).

Learning asymptotics: βSk track learning progress and distinguish between signal

from noise.
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SR graphical representation
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Practical approach to valid inference

Let ξml ≤ 1
2 be the convergence rate of our ML model, then we have

mtest ≤ m2ξml
train . (6)

Sample inefficiency can be avoided by cross-fitting with K partitions,

K ≥
⌈
m1−2ξml + 1

⌉
. (7)

Unknown ξml can be approximated with a conservative estimate like ξml = 1
4

The resulting sampling uncertainty can be addressed using adjusted variance estimates

(Chernozhukov et al. (2018)) over multiple random draws.

However, as K increases with m, the model variation between splits will decrease.
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SR communication: Shapley share coefficients (SSC)

Normed summary statistic for the importance of xk to the model f̂ within a region Ω.

ΓS
k (f̂ ,Ω) ≡

[
sign

(
β̂k
) 〈 |φSk (f̂ )|∑m

l=1 |φSl (f̂ )|

〉
Ω

](∗)

∈ [−1, 1]

f̂ (x)=x β̂
= β̂

(∗)
k ·

〈
|(xk − 〈xk〉)|∑m

l=1 |β̂k(xl − 〈xl〉)|

〉
Ω

(8)

3 parts: sign (alignment of xk and y), size (model fraction attributed to xk) and

significance level of β̂Sk against Hk
0 (Ω).

ΓS
k (f̂ ,Ω) is proportional to the coefficient of the linear model in the linear regression

case (equivalence to SR).

Full recipe
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Application



Forecasting setup

� Target: YoY change in US unemployment on a 1 year horizon

� Predictors: FRED-MD data base, McCracken and Ng (2016); 9 selected variables,

lagged target

� Sample period: 1962:M2 - 2019:M11 (no Covid, no stress)

� validation & training (yearly): Until 1989:M12

� Testing: 1990:M1–2019:M11 (pseudo real-time), out-of-bag (full)

� Models:
� classical ML model: Artificial neural networks (MLP), random forest, support vector

regression (SVR), gradient boosted trees

� linear regressions: OLS, Ridge, Lasso

� auto-regressions: AR(1), AR(p) with p ≤ 12 by AIC

� Hyper-parameters: (time series) 5-fold cross-validation, every 3 years

� Model-aggregation: Bootstrap aggregation (‘bagging’ over 100 draws)
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Variable selection: Capture different economic channels

Variable Transformation Name in Source

Unemployment changes UNRATE

3-month treasury bill changes TB3MS

Real personal income log changes RPI

Consumption log changes DPCERA3M086SBEA

Industrial production log changes INDPRO

S&P 500 log changes S&P 500

Business loans second order log changes BUSLOANS

CPI second order log changes CPIAUCSL

Oil price second order log changes OILPRICEx

M2 Money second order log changes M2SL

Transformations as suggested in McCracken and Ng (2016), using quarterly changes.
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Step 1: Horse race results

Time period 01/1990– 01/1990– 01/2000– 09/2008–

11/2019 12/1999 08/2008 11/2019

Gradient boosting 0.559 - 0.460 - 0.466 - 0.718 (0.353)

SVR 0.565 (0.323) 0.470 (0.328) 0.489 (0.219) 0.709 -

Forest 0.581 (0.018) 0.472 (0.240) 0.471 (0.413) 0.762 (0.005)

Neural network 0.589 (0.009) 0.468 (0.336) 0.503 (0.070) 0.762 (0.001)

AR1 0.608 (0.063) 0.472 (0.382) 0.503 (0.216) 0.811 (0.064)

AR12 0.626 (0.001) 0.543 (0.011) 0.482 (0.356) 0.810 (0.001)

Lasso regression 0.637 (0.000) 0.498 (0.061) 0.474 (0.378) 0.886 (0.000)

Ridge regression 0.639 (0.000) 0.497 (0.065) 0.481 (0.272) 0.886 (0.000)

OLS regression 0.648 (0.000) 0.516 (0.016) 0.508 (0.053) 0.872 (0.000)

Forecast comparison in the baseline set-up using MAE. P-values in parentheses indicate the statistical significance

for (one-sided) DM test. Sources: McCracken and Ng (2016) and authors’ calculation. 17



Step 2: Shapley value variable importance
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Step 2: Learned functional forms (I): Non-linearities

Lines shows a polynomial fit of Shapley values (dots). Source: Authors’ calculations. 19



Step 2: Learned functional forms (III): Regime learning
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Interaction between lagged unemployment and recessions (red) as learned by the boosted tree. LEFT: Baseline

model. RIGHT: Unemployment-recession interaction with a recession dummy in the model. Source: Authors’

calculations.
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Step 3: Statistical inference and communication

Gradient boosting Ridge regression

βS p-value ΓS βS p-value ΓS

Industrial production 1.132 0.000 -0.217*** 2.280 0.000 -0.185***

S&P 500 0.942 0.000 -0.191*** 0.907 0.000 -0.317***

Consumption 1.103 0.000 -0.177*** 0.966 0.012 -0.173**

Unemployment 1.443 0.000 +0.175*** 9.789 0.000 +0.031***

Business loans 3.086 0.000 -0.066*** 5.615 0.006 -0.035***

3-month treasury bill 4.273 0.000 -0.062*** -6.816 1.000 -0.042

Personal income -0.394 0.682 +0.04 -0.658 0.870 +0.138

Oil price 0.298 0.387 -0.035 -2.256 0.973 -0.055

CPI 0.272 0.438 +0.021 -4.294 0.875 +0.014

M2 Money -8.468 1.000 -0.016 -18.545 0.994 -0.009

Shapley regression of gradient boosting mode (left) and the ridge regression (right) for the forecasting predictions

between 1990–2019. Significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Source: Authors’ calculations.
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Take-away messages

� We propose an interpretable ML workflow

1. Model test evaluation (“horse race”)

2. Shapley decomposition of individual predictions

3. Shapley regression for statistical inference

� Perform macro forecasting exercise of US unemployment

� ML models ...

� outperform conventional ones (step 1)

� learn nuanced, meaningful and stable functional forms, which e.g. allow to identify

different points in the business cycle (step 2)

� distinguish signal from noise variables for different settings and qualify the state of

convergence of the learning process (step 3)

⇒ Approach opens the door to more ML applications. 22



Thanks for listening

contact: andreas.joseph@bankofengland.co.uk.
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Model inference summary (Joseph (2020))

Assume fitted (i.e. trained) model and Shapley decomposition.

1. Shapley regression [Eq. 5] with appropriate standard errors.

2. Assessment of model bias and component robustness based on β̂S

over region Ω:

Robustness: Hc
0 : {β̂Sc = 0|Ω} rejected and Hc

1 : {β̂Sc = 1|Ω} not rejected

for individual components

Unbiasedness: Hc
1 : {β̂Sc = 1|Ω} not rejected ∀c ∈ {1, . . . ,C}, or inclusion

condition

3. Calculate Shapley share coefficients (SSC) ΓS(f̂ ,Ω) [Eq. 8] and their standard

errors



Pros & Cons of ML relative to econometric approach [revisited]

Advantages

� Often higher accuracy

Initial motivation (step 1)

� Lower risk of misspecification

SR distinguishes signal from noise

(step 3)

� Return richer information set

Learned functional forms (step 2)

Disadvantages

� Higher model complexity (“black box

critique”)

Learned functional forms (step 2)

� Less analytical guarantees, e.g. risk of

overfitting

� Often larger data requirement

SR tracks learning (step 3)



Intuitive Shapley value example: the Victorian bad boys

� Three siblings (strong [S], tall [T] &

smart [M]) set off to nick some apples

A (pay-off) from the neighbour’s tree

� For each sibling, sum over marginal

contribution to coalitions of one and

two

� So, the Shapley value of the strong

sibling [S] is then:
Source: 6oxgangsavenueedinburgh

φS =
1

6
[A(S)−A(∅)]+

1

6
[A(T ,S)−A(T )]+

1

6
[A(M, S)−A(M)]+

1

3
[A(T ,M, S)−A(T ,M)]

(9)

Back

http://6oxgangsavenueedinburgh.blogspot.com/2018/08/sunday-post-6-stealing-apples.html


Shapley-Taylor expansion (Agarwal et al., 2019)

The discrete set derivative of model f̂ at point xi with respect to the set of variables x ′

conditioned on active variables x ′′ with x ′′ ⊆ x \ x ′ is

δx ′ f̂ (xi |x ′′) ≡
∑

x ′′′⊆ x ′

(−1)|x
′′′|−|x ′| f̂ (xi |x ′′′ ∪ x ′′) , (10)

with x ′, x ′′ and x ′′′ ⊆ C(x). The case |x ′| = 1 corresponds to (14). Let h ≤ n,

T S
h

(
f̂ , xi | x ′

)
=

δx ′ f̂ (xi | ∅) if |x ′| < h ,

h
n

∑
x ′′⊆C(x)\x ′

δx′ f̂ (xi | x ′′)
(n−1
|x′′|)

if |x ′| = h .
(11)

The efficiency statement takes the form

f̂ (xi ) = φS0 +
∑

x ′⊆C(x), |x ′|≤h

T S
h

(
f̂ , xi | x ′

)
. (12)

This allows us to separate single-variable effects and interactions.



SR properties (proofs in Joseph (2020))

� SR identical to LR in case of LR (reassuringly the wheel was not reinvented)

� Inference only strictly valid locally within input region Ω (non-linearity of ML

models)

� βS ∈ {0, 1}m only possible true values, corresponding to the “no-signal” (Hk
0 ) or

“signal” (Hk
1 ) cases, respectively

� SR coefficients β̂S gauge the learning process of f̂ :

� Hk
0 rejected: useful information contained xk

� And Hk
1 not rejected: xk robustly learned (perfect alignment, asymptotic limit)

� Generally, β̂S
k > / < 1 measure under/over-reliance on xk , respectively

� SR allow to control for different error structures within ML models.

� SR coefficients β̂S not really useful for communication (no scale information).



Robustness analysis of horse race (part of it)

MAE for forecasting US unemployment one year out. Source: Author’s calculations.



Experts vs ‘robots’ (I)

We (experts) hand-picked inputs, BUT should we not let data and algorithms speak

freely?

Key features All features PCA1 PCA2 PCA3 PCA5 PCA7

Gradient boosting 0.56 0.58 0.67 0.53 0.52 0.54 0.57

SVR 0.57 0.57 0.61 0.52 0.52 0.55 0.59

Random forest 0.58 0.55 0.62 0.52 0.53 0.55 0.61

Neural network 0.59 0.57 0.69 0.52 0.53 0.55 0.55

Lasso 0.64 0.63 0.65 0.56 0.54 0.56 0.59

Ridge 0.64 0.58 0.65 0.56 0.54 0.56 0.58

OLS 0.65 0.80 0.65 0.56 0.54 0.56 0.59

Comparison of the forecasting performance (MAE) when using different input data. Source: Authors’ calculations.

Yes, to some extent.



Experts vs ‘robots’ (II)

BUT black box problem returns: No consistent signal anymore.

Learned functional forms. Lines shows a polynomial fit of Shapley values (dots). Source: Authors’ calculations.

⇒ Combination of experts and robots best (complements).



Prediction & performance robustness

ML models better overall, BUT show more variability.

Left: model performance by choice. Right: Predictive ranges. Source: Authors’ calculations.



The importance of lagged variables

Higher-order lags make sub-leading contributions.

Shapley values for gradient boosting for different lag-length of inputs. Source: Authors’ calculations.



Shapley values by random seed

Learned functional forms robust, BUT attributions in the tails can be unstable.

Shapley values for gradient boosting with different random seeds. Source: Authors’ calculations.



Numerical calculation of Shapley component for a math. model

The Shapley value of a feature is the weighted sum of marginal contributions to all

possible coalitions of other features (players):

φSk (f̂ , xi ) =
∑

S ⊆C\{k}

|S |!(n − |S | − 1)!

n!

(
f̂ (xi |S ∪ {k})− f̂ (xi |S)

)
(13)

=
∑

S ⊆C\{k}

ωS

(
Eb[f̂ (xi )|S ∪ {k}]− Eb[f̂ (xi )|S ]

)
(14)

with Eb[f̂ (xi )|S ] ≡
∫

f̂ (xi ) db(S̄) =
1

|b|
∑
b

f̂ (xi |S̄) (15)

“Excluded” features are integrated out over background b, which is an informative

dataset determining φ0. E.g. training dataset or sample of untreated population.

There are some challenges (and solutions) to the calculation of (1)–(3).



Challenges in calculating model Shapley values

� Computational complexity: Generally intractable for large feature sets (n! in 1)
⇒ Solutions:

� Coalition sampling

� Feature grouping: important and ‘others’

� Model specific algorithms (e.g. Lundberg et al. (2018))

� Feature dependence: Equation 14 assumes independence
⇒ Solutions:

� Use exact method for trees and compare

� Calculate higher-order terms of Shapley-Taylor index (Agarwal et al., 2019) and

compare relative magnitudes

� Expectation consistency: Integration in (15) can break consistency

⇒ Solutions: When comparing models, their background values φ0 need to

coincide (or close). Mostly the case in practical applications. See Joseph (2020).

Back



Shapley value computation choices

Using KernelShap (Lundberg and Lee, 2017) mostly precise for fast approximations.

Shapley values for gradient boosting with different computational choices. Source: Authors’ calculations.



Shapley value range in high-dim setting

Using ‘too many’ features can create attribution instability.

Shapley share ranges for different models. Source: Authors’ calculations.



Learned functional forms: Stability
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