Identifying Roles of Preferences and Shocks in Labor Supply using Retirement Decisions

Nataliya Gimpelson

University of Rochester

Introduction

Goal of the Paper

> What drives variation in how much people work at ages 30-50?

INTRODUCTION

Goal of the Paper

- > What drives variation in how much people work at ages 30-50?
- > quantify the importance of:
 - preference heterogeneity (disutility of labor, bequest motives)
 - ▶ labor market constraints (unemployment, inability to find full-time job)

Introduction

Goal of the Paper

- > What drives variation in how much people work at ages 30-50?
- > quantify the importance of:
 - preference heterogeneity (disutility of labor, bequest motives)
 - ▶ labor market constraints (unemployment, inability to find full-time job)

Approach

> in prime-age difficult to separate the two mechanisms

Introduction

Goal of the Paper

- > What drives variation in how much people work at ages 30-50?
- > quantify the importance of:
 - preference heterogeneity (disutility of labor, bequest motives)
 - ▶ labor market constraints (unemployment, inability to find full-time job)

Approach

- > in prime-age difficult to separate the two mechanisms
 - New: use retirement decisions and how they interact with assets and labor history
 - ▶ retirement and assets choice variables → reflect preferences
 - ▶ labor history reflects both preferences and constraints

Main Idea

Two key moments to look at:

- 1. correlation between retirement hazard and assets
 - no preference heterogeneity: > 0 (wealth effect)
 - preference heterogeneity: < 0 for higher asset quartiles intuition</p>
- 2. correlation between retirement hazard and cumulative work history
 - ▶ no preference heterogeneity: ≥ 0
 - preference heterogeneity
 - ▶ no employment constraints: < 0 (intuition)
 - employment constraints: ambiguous

OVERVIEW OF THE PAPER.

Data (SOEP for Germany)

- > document correlations between retirement hazard and assets/work history
 - ► < 0 for higher asset quartiles
 - ightharpoonup > 0 for work history

OVERVIEW OF THE PAPER

Data (SOEP for Germany)

- > document correlations between retirement hazard and assets/work history
 - < 0 for higher asset quartiles</p>
 - ightharpoonup > 0 for work history
 - \rightarrow preference heterogeneity and employment constraints

OVERVIEW OF THE PAPER

Data (SOEP for Germany)

- > document correlations between retirement hazard and assets/work history
 - ► < 0 for higher asset quartiles
 - ightharpoonup > 0 for work history
 - \rightarrow preference heterogeneity and employment constraints

- > setup a life-cycle model with heterogeneity and constraints
- > calibrate to match standard moments + key moments from above
- > perform counterfactuals with constraints and preferences shut down
- > welfare implications of the constraints (partial equilibrium)

Overview of the Paper

Data (SOEP for Germany)

- > document correlations between retirement hazard and assets/work history
 - ► < 0 for higher asset quartiles
 - ightharpoonup > 0 for work history
 - ightarrow preference heterogeneity and employment constraints

- > setup a life-cycle model with heterogeneity and constraints
- > calibrate to match standard moments + key moments from above
 - significant bequest heterogeneity and persistent constraints
- > perform counterfactuals with constraints and preferences shut down
- > welfare implications of the constraints (partial equilibrium)

Overview of the Paper

Data (SOEP for Germany)

- > document correlations between retirement hazard and assets/work history
 - ► < 0 for higher asset quartiles
 - ightharpoonup > 0 for work history
 - ightarrow preference heterogeneity and employment constraints

- > setup a life-cycle model with heterogeneity and constraints
- > calibrate to match standard moments + key moments from above
 - significant bequest heterogeneity and persistent constraints
- > perform counterfactuals with constraints and preferences shut down
 - ► constraints explain 82% of the residual employment variation
- > welfare implications of the constraints (partial equilibrium)

Overview of the Paper

Data (SOEP for Germany)

- > document correlations between retirement hazard and assets/work history
 - ► < 0 for higher asset quartiles
 - ightharpoonup > 0 for work history
 - ightarrow preference heterogeneity and employment constraints

- > setup a life-cycle model with heterogeneity and constraints
- > calibrate to match standard moments + key moments from above
 - significant bequest heterogeneity and persistent constraints
- > perform counterfactuals with constraints and preferences shut down
 - ► constraints explain 82% of the residual employment variation
- > welfare implications of the constraints (partial equilibrium)
 - ▶ shutting down the constraints is equivalent to 13% increase in consumption

LITERATURE

> preference heterogeneity and labor supply

Heathcote et al. (2014), Mustre-Del-Rio (2015), Heathcote et al. (2017), Kaplan and Sam Schulhofer-Wohl (2018)

> employment constraints

Low et al. (2010), Krusell et al. (2020), Mukoyama et al (2021)

> retirement decisions

French (2005), Rogerson and Wallenius (2013), Fan et al. (2022)

- \rightarrow in this paper:
 - combine theoretical implications from these literatures
 - propose a novel approach to disentangle preferences and constraints

SPECIFICATION

- > relationship between retirement, assets and work history
- > right-censored data: some people leave the sample without retiring
- > use Cox model from survival analysis to retain all the information

$$h(t) = h_0(t)exp(\beta_1 wkhist_i + \beta_2 logwage_{i,t-1} + \sum_{j=2}^{4} \beta_j assets_{i,t}^j + \gamma X_{i,t})$$

- > t: age
- $> h_0(t)$: baseline hazard function
- > X family status, health, birth year

Data and Variable Definitions

- > SOEP survey panel data for Germany
 - allows to construct labor histories spanning over 30 years
 - can be merged to administrative data: SOEP-RV

constructing work history

- > retrospective history: whether works full-time, part-time or not working
- > generate cumulative history at ages 30-49 by summing imputed hours
 - 2000 hrs if worked full-time
 - ▶ 1000 hrs if worked part-time
- > very concentrated distribution \rightarrow create a dummy variable:
 - wkhist = 1 if on average work more than 1800 hrs
 - wkhist = 0 if on average work less than 1800 hrs

RESULTS: MEN

	retirement hazard
more than 1800hrs	0.18+
	(0.11)
log past wage	0.11*
	(0.05)
2nd quart assets	0.10
	(0.09)
3rd quart assets	0.00
	(0.09)
4th quart assets	-0.20*
	(0.09)
bad health	0.32***
	(0.07)

- > negative coefficient on assets
- > marginally positive coefficient on work history

SETUP

- > life-cycle model with endogenous retirement
- > uncertainty in wages and employment constraints
- $> \ \mathsf{labor} \ \mathsf{supply} \in \{0, 0.25, 0.5, 0.75, 1\}$
- > labor history dependent pension pension
- > permanent heterogeneity in disutility of labor
- > permanent heterogeneity in bequest motives
 - ▶ key for matching relationship b/w assets and retirement

HOUSEHOLD PROBLEM

$$\max_{\{c_j, h_j, R_j\}_{j=t}^T} u_i(c_t, h_t) + E_t \left[\sum_{j=t+1}^T \beta^j u_i(c_j, h_j) + b_i(a_{T+1}) \right]$$

Household Problem

$$\max_{\{c_j, h_j, R_j\}_{j=t}^T} u_i(c_t, h_t) + E_t \left[\sum_{j=t+1}^T \beta^j u_i(c_j, h_j) + b_i(a_{T+1}) \right]$$

$$c_{it} = a_{it}(1+r) + w_{it}h_{it} + p\mathbb{1}(t \ge \bar{t}) - a_{i,t+1}, \ a_{i,t+1} \ge 0$$

$$h_j = 0 \ \forall j \ge t, \ \text{if } R_{it} = 1$$

HOUSEHOLD PROBLEM

$$\max_{\{c_{j},h_{j},R_{j}\}_{j=t}^{T}} u_{i}(c_{t},h_{t}) + E_{t} \left[\sum_{j=t+1}^{T} \beta^{j} u_{i}(c_{j},h_{j}) + b_{i}(a_{T+1}) \right]$$

$$c_{it} = a_{it}(1+r) + w_{it}h_{it} + p\mathbb{1}(t \geq \bar{t}) - a_{i,t+1}, \ a_{i,t+1} \geq 0$$

$$h_{j} = 0 \ \forall j \geq t, \ \text{if } R_{it} = 1$$

$$u_{i}(c_{t},h_{t}) = \frac{c_{t}^{1-\sigma}}{1-\sigma} - \frac{\phi_{h}^{i}}{1+\sigma_{h}} (h_{t} + \theta_{h} \mathbb{1}_{h \geq 0})^{1+\sigma_{h}} \left[1 + \mathbb{1}_{t \geq \bar{t}} \left(\frac{t-\bar{t}}{\xi_{2}} \right)^{\xi_{1}} \right]$$

$$b_{i}(a_{t+1}) = \phi_{b}^{i} \left(1 + \frac{a_{t+1}}{\gamma_{0}} \right)^{1-\sigma_{b}}$$

HOUSEHOLD PROBLEM

$$\max_{\{c_j, h_j, R_j\}_{j=t}^T} u_i(c_t, h_t) + E_t \left[\sum_{j=t+1}^T \beta^j u_i(c_j, h_j) + b_i(a_{T+1}) \right]$$

$$c_{it} = a_{it}(1+r) + w_{it}h_{it} + p\mathbb{1}(t \ge \bar{t}) - a_{i,t+1}, \ a_{i,t+1} \ge 0$$

$$h_j = 0 \ \forall j \ge t, \ \text{if } R_{it} = 1$$

$$u_i(c_t, h_t) = \frac{c_t^{1-\sigma}}{1-\sigma} - \frac{\phi_h^i}{1+\sigma_h} (h_t + \theta_h \mathbb{1}_{h \ge 0})^{1+\sigma_h} \left[1 + \mathbb{1}_{t \ge \bar{t}} \left(\frac{t-\bar{t}}{\xi_2} \right)^{\xi_1} \right]$$

 $b_i(a_{t+1}) = \phi_b^i \left(1 + \frac{a_{t+1}}{2a_t} \right)^{1-\sigma_b}$

 $> \phi_h^i$: disutility of labor, ϕ_h^i : bequest motive

EMPLOYMENT CONSTRAINTS VS PREFERENCES

- > employment constraints
 - three realizations:
 - ▶ no wage draw → unemployment
 - ▶ at most part-time employment ($h \le 0.5$)
 - ▶ full choice
 - follow Markov process

EMPLOYMENT CONSTRAINTS VS PREFERENCES

> employment constraints

- three realizations:
 - ▶ no wage draw → unemployment
 - ▶ at most part-time employment $(h \le 0.5)$
 - full choice
- follow Markov process

> preferences

- two values of disutility of labor (ϕ_h^1, ϕ_h^2)
- two values of bequest motives (ϕ_b^1, ϕ_b^2)

EMPLOYMENT CONSTRAINTS VS PREFERENCES

> employment constraints

- three realizations:
 - ▶ no wage draw → unemployment
 - ▶ at most part-time employment $(h \le 0.5)$
 - ▶ full choice
- follow Markov process
- > preferences
 - two values of disutility of labor (ϕ_h^1, ϕ_h^2)
 - two values of bequest motives (ϕ_b^1,ϕ_b^2)
- \to the goal of the paper: which part of employment variation can be explained by preferences (ϕ^h,ϕ^b) vs employment constraints

CALIBRATION

- > four types of people: (ϕ_h^1,ϕ_b^1) , (ϕ_h^1,ϕ_b^2) , (ϕ_h^2,ϕ_b^1) , (ϕ_h^2,ϕ_b^2)
- > each type is a fraction π_{ij}
- > transition probabilities for labor market constraints
 - ightarrow calibrate 15 parameters using SMM

CALIBRATION

- > four types of people: (ϕ_h^1,ϕ_b^1) , (ϕ_h^1,ϕ_b^2) , (ϕ_h^2,ϕ_b^1) , (ϕ_h^2,ϕ_b^2)
- > each type is a fraction π_{ij}
- > transition probabilities for labor market constraints
 - \rightarrow calibrate 15 parameters using SMM

TABLE: calibrated parameters

	ϕ_1^h	ϕ_2^h	ϕ_1^b	ϕ_1^b	p_{11}	p_{21}	p_{12}	p_{22}	ψ_2	c_h
params	2.07	2.45	1499.87	2.89	0.28	0.02	0.05	0.65	16.15	0.09

takeaway:

- > 28% of population has very strong bequest motive, 65% very weak
- > correlation b/w bequest and disutility of labor = -0.85

RESULTS

	data	full model	model w/o constr	$\ensuremath{\text{w}/\text{o}}$ constr and pref
more than 1800hrs	0.18	0.14	-0.45	0.12
	(0.11)	(0.02)	(0.04)	(0.06)
log past wage	0.11	0.63	0.68	-0.54
	(0.05)	(0.02)	(0.02)	(0.03)
2nd quart assets	0.10	0.14	0.02	0.02
	(0.09)	(0.03)	(0.03)	(0.03)
3rd quart assets	0.00	-0.01	-0.11	0.23
	(0.09)	(0.03)	(0.03)	(0.03)
4th quart assets	-0.20	-0.35	-0.49	1.30
	(0.09)	(0.03)	(0.03)	(0.03)

takeaways:

- > shutting down the constraints \rightarrow negative corr b/w retirement and work history
- > shutting down preferences \rightarrow standard wealth effect

Counterfactual

> look at variation in hours defined as: std(log(ave hours 30-49))

	full model	no constr	no constr and no pref
variation in hours 0.10		0.05	0.04

takeaway: constraints explain 83% of the variation unexplained by wages and assets, while preference heterogeneity explains the remaining 17%.

Welfare Implications of Employment Constraints

How costly are the constraints in terms of welfare?

> by what percentage Δ_i should consumption of individual i increase in the presence of labor market constraints to make them as happy as if they did not face those constraints:

$$\sum_{i=1}^{T} \beta^{j-1} \frac{[c_{it}(1+\Delta_i)]^{1-\sigma}}{1-\sigma} - V_i^h + V_i^{beq} = V_i',$$

takeaway:

- > on average consumption should increase by 13%
- > for a median individual consumption should increase by 6%

Conclusion

What I do in the paper:

- > a new method to identify roles of preferences and constraints in labor supply
 - retirement decisions and their interactions with assets and labor history are KEY
- > document:
 - positive relationship between retirement hazard and work history
 - negative between assets and retirement
- > quantitatively disentangle the two channels through the lens of the model

Main takeaways:

- > heterogeneity in bequest motives is needed to explain retirement vs assets
- > employment constraints are needed to explain retirement vs work history
- > constraints are responsible for 82% of unexplained employment variation

GERMAN PENSION SYSTEM

- 1. three pillars
 - statutory (PAYGO)
 - occupation
 - private
- 2. age of eligibility for pension benefit
 - currently 65 y.o.
 - early claim at 63 y.o. if contributed for more than 35 years
 - can get higher pension if postpone the claim
 - do not have to stop working or reduce hours

Pension:

- > depends on accumulated pension points
- > get 1 pension point from 1 year of average annual earnings
- > if lower or higher than average get less or more than 1 pension point
- > pension = Σ pension points \times "pension-point value"

WORK HISTORY

ASSETS VS RETIREMENT (BACK)

ASSETS VS RETIREMENT (BACK)

- > assume two types
- for each type: positive corr (ceteris paribus)
- > "low bequest" more likely to retire
- "low bequest" more likely to hold little assets
- how does weighted average look like?

ASSETS VS RETIREMENT (BACK)

- > assume two types
- for each type: positive corr (ceteris paribus)
- > "low bequest" more likely to retire
- "low bequest" more likely to hold little assets
- how does weighted average look like?

WORK HISTORY VS RETIREMENT **CBACK**

> for each type: zero/positive corr

WORK HISTORY VS RETIREMENT •BACK

WORK HISTORY VS RETIREMENT •BACK

WORK HISTORY VS RETIREMENT CBACK

