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I Introduction

The nature of work in the United States has changed dramatically in recent decades. As

technology advances, are employers shifting their demands towards specific specialized skills,

or are they seeking a broader range of skills? Moreover, if there’s an evident trend towards a

mix of skill demands, how should workers adapt to this change? A vast literature documents

the decline in the demand for “routine” tasks and related worker skills due to technological

shifts (i.e., Autor, Levy, and Murnane 2003; Acemoglu and Autor 2011) and the rising

importance of social skills (Cortes, Jaimovich, and Siu 2021; Deming 2017). This evidence

points toward changes in the mixtures of skills that appear in occupations as employers adopt

new technologies. The degree of skill mixing among occupations has important and distinct

implications: if occupations demand more of a particular skill, evidencing specialization in

skill demand, then it benefits workers to become experts; if, however, occupations mix their

use of different skills, evidencing “skill mixing,” multidisciplinary schooling and training is

more advantageous.

This paper studies the phenomenon of employer skill mixing, exploring its implications

for workers, and seeks to understand the underlying sources of these shifts. The analysis

begins with the aggregation of suitable data and the creation of measures to assess skill

mixing. For this purpose, this paper primarily draws on the Occupational Information

Network (O*NET), which gathers surveys from incumbent workers of their current jobs and

provides the importance of different skill requirements. By considering longer time spans and

focusing on continually updated occupations, I show that O*NET allows a credible analysis

of longitudinal changes in skill demand. Supplementing this, the second dataset, Lightcast

(formerly known as Burning Glass), provides real-time skill demand from millions of online

job vacancies, enabling the measurement of the extensive margin share of jobs that require

specific skills. Equipped with these datasets, I evaluate the degree of skill mixing within each

occupation by calculating the cosine similarity between an occupation’s skill vector and the

unit vector on which skills along several domains are equally important; consequently, this

“mixing index” increases as an occupation’s demand for different skills gets closer.

Drawing on information about skill demand for both incumbent jobs and newly posted

job vacancies, this paper presents evidence that from 2005 to 2018, occupations in the United

States increasingly demand mixtures of different skills. Leveraging the O*NET dataset, I
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show that even at the 7-digit occupation level, there is a sizable increase in the degree of skill

mixing, particularly for analytical, computer, and interpersonal skills that are considered to

be non-routine. Compared to their distributions in 2005, the skill mixing indexes of these

skills in year 2018 have increased by 9 percentiles on average for the whole economy, and by

4 percentiles for occupations that are constantly updated every 6 years. The growth of skill

mixing is even starker in higher-level 4-digit occupations, by 14 and 11 percentiles respectively.

Such increases persist within gender, industry, and occupation groups, are unaffected by

controls of workers’ labor supply, and are robust to alternative measures of skills and indexes

of mixing. Lightcast data further confirms the trend of skill mixing: the share of online posted

vacancies demanding a mixture of the non-routine skills has increased by 5.1 percentiles in

2017 compared to 2007.

Two facts stand out for the phenomenon of skill mixing. First, a shift-share decomposition

shows that skill mixing has occurred primarily within-occupation, with worker reallocation

playing a minor role. For example, for the 14 percentile increase in the mixing of the

analytical, computer, and interpersonal skills in the full O*NET data, within-occupation

increase contributed 9.5 percentiles; in Lightcast data, 4.4 percentiles of the 4.7 percentile

increase in the mixing of the four skills are attributable to within-occupation increases. Thus,

the intensive margin shift in occupational skill requirements drives skill mixing, distinguishing

it from other labor market changes for which worker reshuffling plays a key role, or the

change is mainly across-occupation.1 Second, the greatest increase in the mixing of the four

non-routine skills appear among service and white-collar occupations, while for routine skill,

mixing happened at a higher level for blue-collar occupations. Thus, low- to medium-wage

occupations are the main drivers of skill mixing. While both genders experience an increase in

skill mixing, male workers are more likely to see a higher rise in skill mixing in higher-wage

occupations.

The phenomenon of skill mixing bears significant distributional consequences in the labor

market. A notable structural shift in the U.S. labor market since the 1980s has been job

polarization (Acemoglu and Autor 2011; Goos, Manning, and Salomons 2014), a trend that

continues to be evident in the data from 2005 to 2018. Skill mixing emerges as a key factor in

explaining these distributional dynamics. For occupations within similar wage ranks in 2005,

1For example, in Autor and Dorn (2013), the polarization of the labor market is attributed to the substitution
of medium-skill workers in routine jobs and their flow into service jobs; in Deming (2017) across-occupation
employment shift drives the rising importance of social skills.
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it is observed that those that have become more skill-mixed experience greater growth in both

employment share and wages. Remarkably, the growth in employment and wages during

this period is almost exclusively attributed to occupations that have seen an increase in skill

mixing. Therefore, skill mixing provides a novel and multi-dimensional lens to understand

these labor market transformations.

To evaluate the impact of skill mixing on workers’ labor market outcomes, I estimate

the wage returns to skill mixing by combining the National Longitudinal Survey of Youth

1979 and 1997 (NLSY 79 & 97), taking advantage of the rich information on participant’s

abilities employment and educational histories. I find a significant return to skill mixing for

both occupational choices and worker skills. To assess the wage premium, I run a regression

with multiple skills and their interactions, both for occupations and individual workers with

two-way fixed effects in the spirit of Abowd, Kramarz, and Margolis (1999) (hereafter AKM).

My preferred specifications indicate that workers in occupations that demand one standard

deviation higher in the mixture of analytical and computer, or analytical and interpersonal

skills, gain a 1.3 to 1.5 percent wage premium; meanwhile, workers who are more mixed

of these skills earn 2.8 to 4.4 percent more. Further, leveraging the education information

in NLSY, I calculate the skill content and degree of mixing for each college major. I find

that workers studying a college major a standard deviation more mixed of analytical and

computer or of computer and interpersonal skills earn 2.1 to 6.5 percent more.

The rich empirical findings on skill mixing necessitate a need for a comprehensive

understanding of the underlying driving forces. To meet this challenge, I build a directed

search model with several novel features. First, the model represents both firms and workers

through multi-dimensional skills, laying the basis for an examination of skill mixing. Second,

firms will need to design their occupations before meeting workers, incurring a cost upon

hiring depending on their skill demand choices, as in Acemoglu (1999).2 This endogenous

occupation design is crucial in delivering the dynamic choices of skill mixing based on the

skill distribution in the labor market. Third, the model incorporates non-linear production and

cost technologies, departing from the common assumption of linear production functions in

standard search models. This non-linearity allows the model to capture the varying degrees of

2The endogenous choices of the intensity of inputs were first studied in the appropriate technology literature
(Atkinson and Stiglitz 1969; Basu and Weil 1998; Acemoglu and Zilibotti 2001; Jones 2005; Caselli and Coleman
2006; León-Ledesma and Satchi 2019). Several studies in the labor literature allow firms to adjust labor usage
besides the quantity margin. In Lazear (2009), firms choose the weight on the skills workers supplied, and in
Eeckhout and Kircher (2018), firms trade-off between more versus higher quality workers.
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skill complementarity in production and the increasing marginal costs of combining skills in

occupations. Despite the rich setup, the model remains tractable satisfying Block Recursivity

as in Menzio and Shi (2011).

The model provides clear insights into changes in skill mixing, wages, and employment

that are tied closely to the empirical observations. Central to its insights is the notion that

as skills become more complementary in production or as their costs increase, firms find it

more profitable to mix skills than to specialize. Consequently, jobs demanding a mixture

of skills become increasingly prevalent. The model further predicts that these shifts in the

production and cost environment enhance the productivity of worker-firm matches, leading

to wage growth and improved job-finding probabilities for workers. Together, these model

predictions offer a theoretical lens to understand the empirical trends.

I quantitatively evaluate the model to assess the relative importance of various channels

that contribute to the observed skill mixing and to investigate their implications for wages

and employment. Employing two periods of NLSY data, I calibrate the model parameters,

which provide some key statistics on the elasticity of substitution in production and the

cost structure. The results reveal that in a multi-dimensional matching framework, skills are

substitutable in production, and firms face increasing marginal costs in operating occupations.

Notably, sizable technology shifts have occurred: from the early 2000s to the late-2010s, there

has been an increase in the complementarity of skills in production and also in firms’ cost

of skills for occupation operation. Meanwhile, the efficiency differential between high- and

low-type workers has increased for analytical, computer, and interpersonal skills, but has

declined substantially for routine skills.

Counterfactual analyses further illustrates that the technology shifts reflected in the in-

crease in skill complementarity in production and in costs of occupation operation appear as

the main drivers of skill mixing variations. For changes in wage and employment distribu-

tions, these same forces compress the high-skill occupations’ wage premium, although the

increased skill complementarity has positively affected high-skill occupation’s employment

gains. In contrast, efficiency differential changes of high-type workers negatively affects the

degree of skill mixing across the periods, and contribute to the rise in relative wage and

employment gains in high-skill occupations. Together, these results point to the important

role technological advancements play in driving both changes in skill mixing and the wage

and employment dynamics.
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The rest of the paper is organized as follows. The ensuing section connects this paper

to a broader set of literature and discusses the contributions. Section III presents the main

empirical findings about skill mixing and many of its features. In section IV, I show the returns

to mixing both at the occupation and worker levels. Section V presents a directed search

model with occupation design to study the skill mixing problem and derive comparative

statistics. Estimation of the model parameters and counterfactual analysis are discussed in

Section VI. Section VII concludes.

II Literature Review

I study labor market dynamics emphasizing skill mixtures and explore new theoretical

perspectives to explain them. The empirical objective aligns with the literature investigating

the long-term trend of skill demand and biased technological changes (i.e., Tinbergen 1974,

1975; Katz and Murphy 1992; Autor, Katz, and Krueger 1998; Autor, Levy, and Murnane 2003;

Goldin and Katz 2010; Acemoglu and Autor 2011; Autor and Dorn 2013; Deming and Kahn

2018; Deming and Noray 2020).3 My finding that the intensive margin within-occupation

changes drive skill mixing is consistent with other studies that find the major role played by

within-occupation variation for aggregate job attributes (Autor and Handel 2013; Atalay et al.

2020; Freeman, Ganguli, and Handel 2020; Cortes, Jaimovich, and Siu 2021).4 Unlike these

studies, this paper studies skills in their conjunction, i.e., as mixtures, which leads to unique

policy implications and broadens the understanding of the influence of technological change

on the labor market.

Two papers closely related to the empirical phenomenon documented in this paper are

Hershbein and Kahn (2018) and Deming (2017). The former illustrates that employers in

metropolitan areas hit harder by Great Recession were more likely to post jobs demanding

cognitive and computer skills, particularly in routine-cognitive occupations. My analysis

3The changes in relative efficiency of inputs is the focus of the skill-biased technological change (SBTC)
literature, and has been shown to successful account for the major U.S. wage dynamics. See for example, Katz
and Murphy (1992), Autor, Katz, and Krueger (1998), and Goldin and Katz (2010). This paper incorporates both
changes in relative skill efficiency and changes in the skill complementarity, and show the latter’s important
role in determining skill mixing, wage shifts, and employment distribution post 2000s.

4Extracting task information from job ads, Atalay et al. (2020) revealed that the major change in job content
during 1950-2000 occurred within-occupation, a pattern that is found to persist post-2000 by Freeman, Ganguli,
and Handel (2020). Cortes, Jaimovich, and Siu (2021) discovered that from 1980 to post-2010, high-paying
occupations in the United States require more social skills. Using worker-reported job tasks, Autor and Handel
(2013) found that there is significant within-occupation variation in task requirements.
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differs by demonstrating that skill mixing occurs for a broad set of skills, within a wide array

of granular occupations, and is not specific to regions or economic downturns. Deming (2017)

highlights that occupations requiring higher math and social skills based on O*NET 1997

have seen increased employment and wage growth from 1980 to 2012. In contrast, I use

various versions of O*NET to capture longitudinal changes in skill demand and explore the

wage and employment gains stemming from within-occupation skill mixing shifts.

Theoretically, I build a directed search model with multi-dimensional skills and endoge-

nous occupation design, following the literature on directed search (i.e., Menzio and Shi

2010, 2011; Kaas and Kircher 2015; Schaal 2017; Baley, Figueiredo, and Ulbricht 2022; Braxton

and Taska 2023). Two main contributions of this paper are: First, I allow firms to have

endogenous skill demand in the spirit of Acemoglu (1999), which delivers the comparative

statics regarding skill mixing. Second, I model skills in a multi-dimensional environment

with non-linearity technologies. As such, the model incorporates directed search on both

the worker and firm sides with high-dimensional heterogeneity on the two sides, which

departs from most search models, but allows me to analyze the changes in skill mixing and

the contribution of skill complementarity and cost factors.

The foundational model for worker sorting can be traced back to the seminal work of Roy

(1951). Within this framework, occupations are treated as distinct categories, each requiring

unique skills, and workers possess skills specific to particular occupations, preventing the

exploration of skill mixing.5 An earlier tradition, including theoretical work by Shi (2001)

and empirical investigations such as Hagedorn, Law, and Manovskii (2017), adopt a single-

dimensional index to represent worker heterogeneity. By design, these models preclude

discussions on skill mixing. A burgeoning literature explores the multidimensional matching

of workers and firms that features two-sided heterogeneity and skill transferability (i.e.,

Yamaguchi 2012; Lindenlaub 2017; Lise and Postel-Vinay 2020). While much of this literature

focuses on the assortative nature of worker-firm matching and the evolution of worker

skills6, this study instead examines firms’ endogenous skill demand trade-offs in response to

technological advancements or shifts in skill supply.

A related literature, inspired by Rosen (1983), Murphy (1986), and Heckman and Sedlacek

(1985), features skill indivisibility or bundling, allowing for nonlinear wage schedules and a

5In Roy or Ricardian type of models, workers will also specialize in a particular skill based on comparative
advantages, making it harder to study skill mixing’s implications for workers.

6A notable deviation is Ocampo (2022), which introduces the optimal combination of tasks, leading to
endogenous occupational heterogeneity.
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flexible degree of occupational specialization. Choné and Kramarz (2021) introduce a skill

bundling framework featuring heterogeneous firms and using Swedish matched employer-

employee data, they find that generalist workers earn more over time. In a separate study,

Edmond and Mongey (2021) show that when skill are priced differently across occupations,

firms tend to adopt technology that reflect these skill prices, leading to opposing within-

occupation changes in inequality. A critical aspect of these models is the need to take a stance

on the aggregation of worker skills within firms, as discussed by Eeckhout and Kircher (2018).

Different from this approach, I apply a matching model to address the indivisibility of skills

and endogenous skill demand at the worker level, inherently delivering nonlinear wages and

skill mixing.

Quantitatively, I provide model-based identifications of the elasticity of substitution

parameters among a number of different skills and the relevant cost parameters under a

tractable general equilibrium model of the labor market with endogenous skill intensities.

Meanwhile, These results contribute to the recent work on task-based models that has

typically assumed exogenously the elasticity of substitution among different types of skills

(i.e., Autor, Levy, and Murnane 2003; Autor and Dorn 2013), and also relates to studies on the

elasticity of substitution among different types of workers (Johnson 1997; Heckman, Lochner,

and Taber 1998; Krusell et al. 2000).

III Evidence of Skill Mixing

In this section, I examine the shifts in the extent of skill mixing in the economy. I start by

showing that an angle-based index can effectively measure the magnitude of skill mixing

within a multi-dimensional skill space. Using both O*NET and Lightcast data at varying

levels of granularity, I explore the growth in skill mixing, decomposing it into across- and

within-occupation changes. I further explore the primary sources of this variation and the

differences across occupation and gender groups. Lastly, I underscore the significance of the

mixing of different skills by illustrating its consequential effects on employment and wage

distributions.

7



Figure 1: Illustrating Skill mixing

Analytical

Interpersonal
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!
Notes: This figure contrasts three occupations—A, B, and C—in the skill space of analytical and interpersonal
skills. Each occupation is characterized by its skill vector (yA, yB, yC), and also by the angle between the skill
vector and the 45-degree line. The angle is used to measure skill mixing as it illustrates the trade-off between
skills.

III.A Measures and Data

The Degree of Skill Mixing: An intuitive approach to assess the degree of mixing of an

occupation’s skill demands is by examining the angular discrepancy between the occupation’s

skill vector and the unit vector, on which different skill requirements are equivalent. As

depicted in Figure 1, occupations A and C exhibit greater specialization as their skill vectors

deviate from the diagonal. In contrast, occupation B is considered to have a higher level of

skill mixing with a smaller angle (θ).7 I formalize the idea behind figure 1 by measuring skill

mixing using cosine similarity.8 Specifically:

Definition 1 (Degree of Skill Mixing of an occupation). The skill mixing index for an occupation

j in a K-dimensional space characterized by the skill intensity vector yj = {αj1, ..., αjK} ∈ Y ⊆ RK+

is the cosine similarity between its skill vector and the norm v̂ in the skill space.

7A nice feature of angle difference is that it doesn’t depend on the length of the skill vector, only on the
degree of skill mixing.

8Cosine similarity together with other measures, such as Euclidean distance and Manhattan distance, have
been used to calculate the similarity between vectors (i.e., Xia, Zhang, and Li 2015). An angle-based measure is by
no means the only measure of skill mixing, though it has the clearest graphical illustration of the trade-off among
skills. Online Appendix A.5 discusses two alternative skill mixing indexes: inverse Herfindahl–Hirschman
Index (HHI) and normalized absolute distance.
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Mix(yj) =
yjv̂

||yj|| · ||v̂||
, where v̂ = [1, 1, ..., 1]′ ⊆ RK+ (1)

Data Construction: To evaluate the extent of skill mixing within occupations over time, I

calculate the above index using the Occupational Information Network (O*NET). Specifically,

I rely on four versions of O*NET published between 2008 and 2022, and I focus exclusively

on data sourced from worker surveys. Below I discuss the details of data processing.

Developed by the North Carolina Department of Commerce and administered by the U.S.

Department of Labor, O*NET is a successor to the Dictionary of Occupational Titles (DOT).

It has become a primary resource for analyzing occupational skill requirements and work

environments (i.e., see Acemoglu and Autor 2011; Yamaguchi 2012; Deming 2017). O*NET

offers an comprehensive picture of occupations, covering approximately 270 descriptors

categorized into nine modules.9 While the earlier versions of O*NET include legacy ratings

from DOT analysts, a shift occurred in 2003 when O*NET began sourcing responses from

random samples of workers (job incumbents). To ensure consistent measurement, I choose

descriptors from questionnaires updated based on these worker surveys.10

A key challenge when using O*NET comes from employing the longitudinal variation in

occupation descriptors. Specifically, while each version of O*NET contains roughly 970 7-digit

occupations, an average of 110 occupations undergo updates annually.11 Such a pattern of

updates could introduce selection bias when constructing measures of skill demand based on

the descriptors. Contrasting prior research, which often explores worker reallocation across

occupations using a single O*NET version, this paper’s emphasis on the dynamics of skill

demand requires the examination of these longitudinal changes.

To examine these longitudinal shifts in skill demand via O*NET data, I employ two

approaches, following works such as Ross (2017); Freeman, Ganguli, and Handel (2020). First,

I focus on broader year intervals. For the time frame spanning 2005 to 2018, I analyze the

differences in skill requirements between the start and end of this period, during which most

occupations are updated at least twice. To capture more granular time patterns, I use 4-year

intervals, ensuring updates to cover over half of the occupations within these intervals. Given

9For a comprehensive overview of O*NET, refer to online Appendix A.1, and for a discussion on the
descriptors employed, see online AppendixA.2.

10Specifically, I use descriptors from the Work Context, Work Activities, Knowledge, and Skills questionnaires.
11The decision of occupation updating is based on analysts’ evaluations of factors such as the size of

employment, the demand for labor, and alterations in the type of work involved. See Tippins and Hilton (2010)
for more details.
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that each ONET version retains data from prior years, I make a distinction between the release

year and the represented year when integrating ONET with other datasets. Online Appendix

A.1 shows the specific O*NET versions used, their release dates, and the corresponding

years.12 Second, 274 7-digit occupations consistently receive updates between 2005, 2011,

and 2018. While these occupations don’t represent the entire economy, their trends—under

continual updates—supplements the broader occupation analysis.

Furthermore, I use data from online job postings from Lightcast (formerly “Burning Glass

Technologies”) for the years 2007 and from 2010 to 2017. Lightcast is a labor market analytics

firm that collects and analyzes millions of online job postings and provides detailed profiles

of each job posting, including education requirements and thousands of codified skills ex-

tracted and standardized from the posting text. The key advantage of Lightcast data is that it

provides comprehensive and up-to-date information on labor market conditions, and many

recent studies have used this dataset to analyze trends in job skill demand (see, i.e., Deming

and Kahn (2018); Hershbein and Kahn (2018); Braxton and Taska (2023)). It is essential

to recognize that Lightcast’s skill measurements differ from O*NET’s in their information

content. While O*NET gauges the level and importance of a skill (intensive margin), Lightcast

identifies whether a skill is required for a job (extensive margin). Additionally, Lightcast

might overlook jobs advertised through other means, possibly over-representing jobs or

sectors that tend to advertise online, inherently favoring growing firms (Davis, Faberman,

and Haltiwanger 2013). I employ Lightcast as a additional source to complement the picture

of skill mixing changes over time.

Skill Measures: Leveraging the O*NET occupation descriptors, I first derive skill mea-

sures in line with Acemoglu and Autor (2011).13 Specifically, I construct two non-routine

skills, analytical and interpersonal; to streamline the dimensions of skills for clear analysis,

I consolidate routine skills, both cognitive and manual into one. Meanwhile, non-routine

analytical and interpersonal skills have been kept distinct.14 To capture the rise of computer

technology post-2000, I construct a computer skill measure based on two components related

to operating a computer. Appendix Table A2 shows the detailed composing descriptors for

12Specifically, O*NET versions 13.0, 18.0, 22.0, and 25.0 of were released in 2008, 2013, 2017, and 2022,
respectively. These versions are interpreted as representing the years 2005, 2009, 2013, and 2018.

13Their approach is widely applied and facilitates comparisons with other studies.
14Since I only use descriptors updated by job incumbents in this study, I didn’t use non-routine manual skill

since part of the composing descriptors comes from surveys of job analysts exclusively.
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each of the skill measures.

While these four skill measures serve as the core of this study’s analysis, I’ve also

introduced two novel skills that are relatively non-routine—leadership and design—to provide

a more comprehensive perspective on evolving skill demands. To enhance the reliability of

these skill measures, especially for granular longitudinal time patterns, I apply principal

component analysis (PCA) on the chosen descriptors following Guvenen et al. (2020) and

Yamaguchi (2012). The final skill measures are linearly rescaled to lie in [0,1].15 As a check of

validity, online Appendix Table A3 shows that my constructed skills correlate highly with

other similar skill measures used in the literature. In Online Appendix A.2, I build “broader”

skill measures that each include more relevant descriptors, which are also highly correlated

with the benchmark ones. Along with the discussion of my empirical results, I demonstrate

their robustness to using alternative measures of skills and indexes of skill mixing.

Regarding the Lightcast data, I directly use the measures from Braxton and Taska (2023),

which in turn are based on the methodology of Hershbein and Kahn (2018). Specifically, for

the years 2007 and 2010-2017 of Lightcast data that this study uses, a vacancy is defined to

use the analytical skill if any of the codified job skills contain keywords such as “research”,

“analy”, and “decision”. Similarly, a vacancy is defined to require interpersonal skill if

the codified job skills contain keywords such as “communication” or “teamwork”.16 Each

occupation’s skill measure is then determined by the proportion of vacancies demanding that

specific skill, capturing the extensive margin of firm skill demand. To classify occupations

within the Lightcast data, I used a 4-digit consistent census occupation code, as developed by

Autor and Dorn (2013) to ensure matching with other datasets.

III.B Aggregate Trends

From 2005 to 2018, occupations in the U.S. economy has seen a significant increase in skill

mixing, with the rise particularly pronounced for non-routine skills. I start by showing

15Based on Definition 1, it is crucial that skill vectors are in the positive real space for an angle-based measure
to be appropriate. In that regard, normalization by standard deviation won’t work unless with additional
re-normalization, and linear transformation to a positive interval appears most desirable as it also retains the
cardinal information that is likely to be useful for an easily interpretable skill comparison (e.g., Autor and
Handel (2013), Deming (2017), and Lise and Postel-Vinay (2020)). Alternative measures of skills and skill mixing
are discussed in online Appendixes A.5 and A.6.

16More specifically, the keywords used to capture analytical skill are: "research", "analy", "decision", "solving",
"math", "statistic", and "thinking". The keywords used to capture interpersonal skills are "communication",
"teamwork", "collaboration", "negotiation", and "presentation".
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Figure 2: Density for Skill Mixing Indexes (Cosine Distances), 2005 vs. 2018
 Figure 2. Density for Skill Mixing Indexes (Cosine Distances), 2005 vs. 2018 

   
(1) RNR Skills (2) Non-routine Skills (3) Other Non-routine 

Notes: These figures plot the kernel density of different skill mixing indexes in 2005 (light blue line) and 2018 (dark blue 
line). The x-axis displays the value of skill mixing indexes with a maximum of 1 by construction. “RNR” indicates routine 
and non-routine skills that are defined by Autor and Acemoglu (2011). “Other non-routine” include leadership and design 
skills. These plots are created using O*NET at 7-digit occupations without employment weighting. 
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Notes: These figures plot the kernel density of different skill mixing indexes in 2005 (light blue line) and 2018
(dark blue line). The x-axis displays the value of skill mixing indexes with a maximum of 1 by construction.
“RNR” indicates routine and non-routine skills that are defined by Acemoglu and Autor (2011). Non-routine
skills include non-routine analytical and interpersonal skills, as well as computer skill, as detailed in online
Appendix table A1. “Other non-routine” include leadership and design skills to the aforementioned non-routine
skills. These plots are created using O*NET at 7-digit occupations without employment weighting.

that this trend happens at even granular 7-digit occupations from O*NET data. Figure 2

depicts the density and median values of three skill mixing indexes: one combining routine

and non-routine (RNR) skills, a second focusing solely on non-routine skills, and a third

examining other non-routine skills. As these indexes remain unweighted by employment,

the shifting distributions solely represent changes in occupations’ skill mixing, unaffected by

worker reallocation.

Panel (1) first reveals a modest rightward shift in the density of skill mixing index for

RNR skills during this period. The Kolmogorov-Smirnov (KS) test confirms the distributional

difference as statistically significant at the 5 percent level. Nonetheless, the density shift is

even more pronounced for analytical, computer, and interpersonal skills (Panel 2) and if one

includes other non-routine leadership and design skills (Panel 3). By 2018, the density of the

skill mixing indexes of these skills peaks at a much higher value than 2005. The KS test shows

these differences in distributions are significant at the 1 percent level, indicating a substantial

growth in occupations demanding a high level of skill mixing of non-routine skills.

This trend of escalating skill mixing becomes even sharper when accounting for the

evolving composition of labor force across occupations. In online A2, I merge O*NET data

with employment weights from the Occupational Employment and Wage Statistics (OEWS) at

12



Figure 3: Trend of Skill Mixing in the US Economy, 2005-2018Figure 3. Trend of Skill Mixing in the US Economy, 2005-2018 
 

   
(1) Full O*NET (2) Constant Updates (3) Lightcast 

Notes: These figures plot the employment-weighted skill mixing indexes in the U.S. economy from 2005-2018. The y-axis is 
the percentile of skill indexes in year 2005. By construction, each index has a mean of 50 percentiles in 2005; succeeding 
points are employment-weighted means mapped to its percentile in 2005. Panel (1) and (2) combine O*NET and ACS data 
with consistent 4-digit occupation codes from Autor and Price (2013) and Deming (2017). The matching of different O*NET 
releases and ACS years are detailed in online Appendix Table 1. Panel (1) show the trend for the universe of occupations 
while Panel (2) only include 274 7-digit occupations that are constantly updated between 2005, 2011, and 2018. Panel (3) 
combines Lightcast job posting data and ACS with same occupation coding. Employment weights from ACS are the total 
hours of work aggregated to sex-education-industry-occupation cells.  

 
 

45

50

55

60

65

2005 2009 2013 2017

RNR Skills
Non-routine Skills

45

50

55

60

65

2005 2009 2013 2017

RNR Skills
Non-routine Skills

45

50

55

60

65

2007 2010 2013 2016

Non-routine Skills

Notes: These figures plot the employment-weighted skill mixing indexes in the U.S. economy from 2005-2018.
The y-axis is the percentile of skill indexes in year 2005. By construction, each index has a mean of 50 percentiles
in 2005; succeeding points are employment-weighted means mapped to its percentile in 2005. Panel (1) and
(2) combine O*NET and ACS data with consistent 4-digit occupation codes from Autor and Price (2013) and
developed by Deming (2017). The matching of different O*NET releases and ACS years are detailed in online
Appendix Table 1. Panel (1) show the trend for the universe of occupations while Panel (2) only include 274
7-digit occupations that are constantly updated between 2005, 2011, and 2018. Panel (3) combines Lightcast
job posting data and ACS with same occupation coding. Employment weights from ACS are the total hours of
work aggregated to sex-education-industry-occupation cells.

the 6-digit level. The rightward shift of all the skill mixing indexes becomes more pronounced

when weighted by employment shares over the years.17 This result implies that occupations

with larger employment have exhibited a more significant rise in skill mixing; therefore, a

greater portion of the labor market now demands a higher degree of skill mixing.

In addition to index-based evaluation of skill mixing, one can also non-parametrically

examine occupation skill requirements in two-dimensional spaces. Online Appendix A.3

discusses and presents non-parametric plots for six skill pairs from both 2005 and 2018,

confirming the observed increase in skill mixing, particularly for non-routine skills.

Time Pattern: To more carefully examine the time profile of the changing skill mixing

and understand the sources of variation, I combine the longitudinal variation in skill mixing

from O*NET as well as ACS to conduct further analysis. I show the trend pattern at 4-year

intervals so that more than half of the occupations (about 60% of employment) are updated

17The OEWS uses 6-digit SOC codes, while O*NET uses 7-digit occupation codes that are based on 6-digit
SOC. I match OEWS with O*NET at a 6-digit SOC level and distribute the employment weight evenly for 7-digit
O*NET occupations within a 6-digit occupation.
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between observations. By construction, each index has a mean of 50 percentile in 2005;

succeeding points are employment-weighted means of each index mapped to its percentile

in 2005. I weight each skill requirement from O*NET by the total hours of work in each

sex-education-industry-occupation cell in ACS to implicitly control for changes in task inputs

due to variations in gender, education, industry, and occupation mixes in the U.S. economy

(see Autor, Levy, and Murnane (2003) and Deming (2017) for other examples).

Figure 3 demonstrates that the degree of mixing of non-routine skills has risen substantially

and steadily between 2015 and 2018. By 2018, the degree of mixing among non-routine skills

for an average occupation in the economy is 12.6 percentile higher than its 2005 level. The

degree of skill mixing of RNR has also increased steadily to a slightly lesser extent, averaging

10.3 percentiles higher. As mentioned, a potential concern of using O*NET data to obtain the

longitudinal variation of skill demand is that the trend could be affected by the inconsistency

in occupation updating. In Panel (2) of Figure 3, I compute these trends focusing solely on 274

7-digit occupations that are constantly updated between 2005, 2011, and 2018, thus reflecting

a consistent updating of skill demand among these occupations. The same qualitative pattern

holds, that is, there has been a sharp increase in the degree of skill mixing, particularly of non-

routine skills between 2005 and 2018. Nonetheless, for the constantly updated occupations,

the shift is mostly pronounced before 2011.18

In Panel (3) of Figure 3, I complement the picture of changing degree of skill mixing using

the Lightcast data through a similar paring with O*NET data starting in 2007, the first year

when the company starts to collect job postings. Overall, firms are also more likely to post

job requirements that contain more mixed-skill demands. By 2017, the degree of skill mixing

in job postings averaged 5.1 percentiles higher compared to 2007. The time pattern of skill

mixing among online job postings appears to be more volatile, first peaking in 2011, then

sliding down until 2014, before dramatically rising afterward until 2017. Despite the greater

variance, the same qualitative pattern holds that occupations have a higher demand for the

mixing of non-routine skills.19

18In online Appendix Figure A3, I show employment percentages and hourly wages across various job
categories in the full and the sample for constantly updated occupations. The hourly wage rates across the
categories seem fairly consistent between the full and selected samples with minor discrepancies, only that the
selected sample has less presence of professionals and sales occupations.

19The higher degree of volatility is partly driven by the nature of the measure and the data. The measures of
skills from job postings are whether firms require a particular skill in the text of job ads, naturally noisier than
the question on level and importance from O*NET. Moreover, firm job posting is more influenced by firm entry
and exit patterns.
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Table 1: Time Trend of Skill Mixing Indexes

 

Table. Shift-Share Decomposition of Skill Mixing Indexes’ Changes 

  
Skill Groups 

6-digit Occupations  4-digit Occupations 

total within across  total within across 

Full O*NET 
RNR Skills  6.78  4.93  1.85   12.23  9.26  2.97  

Non-routine Skills 9.21  5.62  3.59   14.07  9.53  4.54  

Constant Updates 
RNR Skills  5.59  6.73  -1.14    9.70  10.57  -0.87  

Non-routine Skills 4.05  5.33  -1.29   10.58  9.50  1.09  

Lightcast Non-routine Skills         4.66  4.37  0.28  

Notes: This table shows the shift-share decomposition of changes in the average level of different hybrid indexes 
between 2000-2020 in centile units. Specifically, for a change in the centile of a hybrid index ℎ over two periods 𝑡 
and 𝜏 , its change ∆𝑇ℎ𝜏 = 𝑇𝜏 − 𝑇𝑡 which can be decomposed to ∆𝑇ℎ = ∑ (∆𝐸𝑗𝜏𝛼𝑗ℎ)𝑗 + ∑ (𝐸𝑗∆𝛼𝑗ℎ𝜏 ) = ∆𝑇ℎ

𝑎 +𝑗
∆𝑇ℎ

𝑤 , where 𝐸𝑗𝜏  is employment weight in occupation 𝑗 in year 𝜏 , and 𝛼𝑗ℎ𝜏  is the level of hybrid index ℎ in 
occupation 𝑗  in year 𝜏 , 𝐸𝑗 = 1

2 (𝐸𝑗𝑡 + 𝐸𝑗𝜏)  and 𝛼𝑗ℎ = 1
2 (𝛼𝑗ℎ𝑡 + 𝛼𝑗ℎ𝜏) . ∆𝑇ℎ

𝑎  and ∆𝑇ℎ
𝑤  then represent across-

occupation and within-occupation change.

Notes: This table shows the shift-share decomposition of changes in the average level of different mixing
indexes between 2005-2018 in percentile units. Specifically, for a change in the percentile of a mixing index
h over two periods t and τ, its change ∆Thτ = Tτ − Tt which can be decomposed to ∆Th = ∑j

(
∆Ejταjh

)
+

∑j

(
Ej∆αjhτ

)
= ∆Ta

h + ∆Tw
h where Ejτ is employment weight in occupation j in year τ, and αjhτ is the level

of mixing index h in occupation j in year τ, Ej =
1
2 (Ejt + Ejτ) and αjh = 1

2 (αjht + αjhτ). ∆Ta
h and ∆Tw

h then
represent across-occupation and within-occupation change.

One may be concerned about that the overall patterns shown so far are driven by the

choice of skill measures or the choice of skill mixing index. To address this, in online

Appendix A.5 and A.6, I demonstrate the robustness of these trends across varying skill

measures, alternative skill mixing indexes, and skill mixing indexes of distinct skill pairs

rather than multi-dimensional ones. For example, using standardized (or broader) measures

of skills, the increase in the degree of mixing of non-routine skills is 6 (or 13) percentiles from

2005 to 2018; using inverse Herfindahl-Hirschman Index, the increases in the mixing indexes

of any given skill pairs are above 10 percentiles during the same period. Across these checks,

the qualitative picture remains consistent: there has been a notable rise in the degree of skill

mixing, particularly for non-routine skills.

Decomposing the Sources: To gain a deeper understanding of the variations underlying

changes in skill mixing, I undertake two exercises. First, I decompose the longitudinal

changes in skill mixing in the U.S. economy, differentiating between intensive margin skill

mixing index changes within occupations and extensive margin employment shifts across

occupations. This analysis reveals that within-occupation skill mixing shifts play a more

influential role in driving skill mixing than across-occupation employment shifts. Second, I

perform a regression analysis that include extensive controls, including various skill supply

measures, as well as gender, industry, and occupation fixed effects. I find that the pronounced
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Table 2: Time Trend of Skill Mixing Indexes Table. Time Trend of Skill Mixing Indexes 

  RNR Skills Non-routine Skills 

Full O*NET 0.70*** 0.71*** 
[0.10] [0.09] 

Constant Updates 0.75*** 0.65*** 
[0.11] [0.11] 

Lightcast  0.33** 
 [0.15] 

Sex ✕ Industry ✕ Occ. FE X X 
Exp. and edu. controls X X 

Notes: This table shows the shift-share decomposition of changes in the average level of different hybrid indexes 
between 2000-2020 in centile units. Specifically, for a change in the centile of a hybrid index ℎ over two periods 𝑡 
and 𝜏 , its change ∆𝑇ℎ𝜏 = 𝑇𝜏 − 𝑇𝑡 which can be decomposed to ∆𝑇ℎ = ∑ (∆𝐸𝑗𝜏𝛼𝑗ℎ)𝑗 + ∑ (𝐸𝑗∆𝛼𝑗ℎ𝜏 ) = ∆𝑇ℎ

𝑎 +𝑗
∆𝑇ℎ

𝑤 , where 𝐸𝑗𝜏  is employment weight in occupation 𝑗 in year 𝜏 , and 𝛼𝑗ℎ𝜏  is the level of hybrid index ℎ in 
occupation 𝑗  in year 𝜏 , 𝐸𝑗 = 1

2 (𝐸𝑗𝑡 + 𝐸𝑗𝜏)  and 𝛼𝑗ℎ = 1
2 (𝛼𝑗ℎ𝑡 + 𝛼𝑗ℎ𝜏) . ∆𝑇ℎ

𝑎  and ∆𝑇ℎ
𝑤  then represent across-

occupation and within-occupation change. 

Notes: This table reports the results of regressing values of RNR skills and Non-routine skills on a time trend
variable (year values) for the full O*NET, Constant Updates, and Lightcast datasets combined with ACS. See
online Appendix A.1 and A.5 for the data construction. The regressions include controls for sex—industry-
occupation fixed effects, as well as 5-category (no high-school, high-school graduate, some college, college
graduate, post-college) education fixed effects, polynomials of years of work experience up to power 4, and
the interaction of experience polynomials and education fixed effects and gender. Robust standard errors are
reported in brackets. *** p<0.01, ** p<0.05, and * p<0.1.

trend of increasing skill mixing persists.

Table 1 shows the decomposition of the changes in the employment-weighted skill mixing

indexes into within-occupation index shifts and across-occupation employment changes,

at both 6-digit SOC and 4-digit census occupation levels. I conduct the analysis both for

the full ONET dataset and the subset of persistently updated occupations, alongside the

Lightcast dataset. Irrespective of the dataset or skill groupings, within-occupation variation

predominantly drives the rise in skill mixing. For example, for the 9.2 percentile increase in

the mixing of non-routine skills in the full O*NET data, within-occupation increase contributes

5.6 centiles while only 1.1 percentiles stem from worker reallocation; for the 4.7 percentile

increase in the mixing of non-routine skills in Lightcast data, within-occupation increase

accounts for 4.4 percentiles.20 Interestingly, for the constantly updated occupations at 6 digits,

worker reallocation actually contributes negatively to the increase in skill mixing. This pattern

implies that for these granular occupations under regular updates, the contribution of within-

occupation variation to the skill mixing increase is even stronger. At 4-digit occupations,

worker reallocation does contribute positively to the increase in the mixing of non-routine

skills, but the influence is still marginal compared to within-occupation variation.

An alternative explanation of the employer-side shifts in accounting for skill mixing could

20Online Appendix A4 shows the decomposition results using skill mixing indexes for different skill pairs
and a similar result holds.
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Figure 4: Skill Mixing Index Change by Occupation Groups and Gender, 2005-2018Figure 4. Skill Mixing Index Change by Occupation Groups and Gender, 2005-2018 

  
(1) Male (2) Female 

Notes: This figure plots the changes in skill mixing indexes across different occupation groups for male and female workforce. 
The units of the index changes are percentiles of their distributions in 2000. Workers are categorized into four occupation 
groups – High Skill, White Collar, Blue Collar, and Service following Acemoglu & Autor (2011). O*NET and ACS data are 
combined for these figures with consistent occupation codes from Autor and Price (2013) and Deming (2017).  
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Notes: These figures plots the changes in skill mixing indexes across different occupation groups for male
and female workforce. The units of the index changes are percentiles of their distributions in 2000. Workers
are categorized into four occupation groups – High Skill, White Collar, Blue Collar, and Service following
Acemoglu and Autor (2011). O*NET and ACS data are combined for these figures with consistent occupation
codes Autor and Price (2013) and developed by Deming (2017).

be that even within occupations, the supply of labor might have changed, due to, i.e., rising

human capital, or labor force participation of female workers. To further shed light on the

sources, Table 2 shows a regression of skill mixing indexes on linear time trend (years) across

combinations of O*NET and Lightcast with ACS data. I further control the interaction of

gender, industry, and occupation effects, and flexible polynomials and interactions of years of

education and experiences. The table shows a universal increase in the degree of skill mixing

in the magnitude of 0.65 to 0.75 percentile per annum using O*NET data, and 0.33 per annum

using Lightcast data. Moreover, this increase persists within gender, industry, and occupation

groups and is unaffected by controls of worker’s labor supply. This finding suggests that the

primary drivers for skill mixing are not from the worker side, but rather highly related to

demand-side dynamics.

III.C Skill Mixing Changes by Occupation

Beneath these general trends of skill mixing are diverse patterns among occupations and

gender groups. Figure 4 illustrates the changes of skill mixing indexes from 2005 to 2018

across four primary occupation categories, grouped by wage levels and encompassing all non-
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agricultural employment in the U.S.21 This is done for both male and female workers, with

changes presented in percentiles relative to their respective 2005 counterfactual distributions,

similar to the approach in Figure 3.

Considering the occupational trends, service and white-collar occupations predominantly

contribute to the increase in the mixing of non-routine skills. In contrast, blue-collar occupa-

tions demonstrate the most pronounced rise in mixing RNR skills, with service occupations

following closely. This pattern highlights that the bulk of skill mixing occurs in lower-wage

professions, especially within the service sector. In terms of gender differences, male workers

in white-collar and high-wage roles exhibit a greater rise in skill mixing across both skill

categories. Conversely, female workers experience more pronounced growth in skill mixing

within lower-wage blue-collar and service roles.22 This suggests the trend that male workers

gravitate towards higher-wage roles with increased skill mixing, whereas females are more

commonly found in lower-wage roles that become more skill mixed.23

In online Appendix A.4, I show the decomposition of skill mixing by industries, and a

similar pattern holds. The private service sector followed by retail trade and construction

lead others in the growth of skill mixing, while public, social and professional services

sectors demonstrate only modest increases, particularly for RNR skills.2425 I also show the

decomposition of occupations’ changing mixing of distinct skill pairs, which confirms that

non-routine skills drive skill mixing in all occupations, while routine skills are only more

mixed with other skills in blue-collar and service occupations.

Distributional Implications: One of the key structural changes in the U.S. labor market

post-1980 is the pronounced job polarization or hollowing out of middle-skill employment

and wage growth, due potentially to the routine-biased technological change and offshoring

(Acemoglu and Autor 2011; Goos, Manning, and Salomons 2014). To see how much skill

mixing can relate to these distributional dynamics, Figure 5 depicts the smoothed observed

changes in both the share of total hours worked and log wage in 2005-2018 for occupations

21The grouping is based on Acemoglu and Autor (2011).
22To clarify this distinction, a separating line is presented in the figure.
23While a comprehensive discussion on the gender gap is beyond this paper’s scope, it’s plausible that males

might have greater access to mixed-skill roles at the higher end of the wage distribution due to persistent gender
segregation. For a deeper analysis into gender segregation trends, see Blau, Brummund, and Liu (2013).

24The sectors that have the least growth in skill mixing are public and education and social services.
25This result is consistent with Hershbein and Kahn (2018) that industries with locally consumed goods are

more likely to change skill demand.
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Figure 5: Smoothed Employment and Wage Changes by Skill Percentile, 2005-2018Figure 5. Smoothed Employment and Wage Changes by Skill Percentile, 2005-2018 

  
Notes: These figures plot the smoothed observed as well as counterfactual changes of employment share (Panel A) and 
hourly wage (Panel B) for occupations between 2000-2020. On the x-axis, occupations are ranked into 100 percentiles by 
the average log wages of workers in those occupations in 2000. The changes in the share of hours worked and percent wage 
growth are then calculated for each percentile, which fit into smoothed lines using cubit polynomial fit. Counterfactual lines 
are the smoothed employment/wage changes only for occupations with above-median increases in the hybrid indexes. 
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Notes: These figures plot the smoothed observed as well as counterfactual changes of employment share (Panel
A) and hourly wage (Panel B) for occupations between 2005-2018. On the x-axis, occupations are ranked
into 100 percentiles by the average log wages of workers in those occupations in 2000. The changes in the
share of hours worked and percent wage growth are then calculated for each percentile, which fit into smoothed
lines using cubit polynomial fit. Counterfactual lines are the smoothed employment/wage changes only for
occupations with above-median increases in the skill mixing indexes.

ranked by their hourly wage percentiles in 2005. I reconstruct these smoothed employ-

ment/wage changes for two groups of occupations: those with above-median increases in

skill mixing indexes and those below the median.

Figure 5 first confirms the inverted bell shape (polarization) of observed employment

and to a lesser extent, the change of wages. Furthermore, it illustrates key differences for

occupations that have become more skill mixed. For occupations within similar wage ranks in

2005, those that become more mixed in skill use have a higher increase in employment share

and wage growth. In fact, almost the entirety of employment and wage growth is accounted

for by occupations that have become more skill mixed during this period. Therefore, relating

to polarization, the differential growth in employment and wage among occupations at the

top and bottom end of 2005’s wage distributions entirely stems from skill-mixing occupations

during this period. Besides being an important phenomenon for labor market dynamics,

skill mixing also provides a unified and multi-dimensional perspective of the polarization

changes.
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IV Returns to Skill Mixing

In order to better understand the influence of skill mixing on workers’ labor outcomes, this

section will examine the wage returns associated with skill mixing in relation to occupational

choices and inherent worker skills. Additionally, the return on investment for a college major

with a more mixed skill set will be discussed.

IV.A Data and Measurement

To assess wage returns associated with skill mixing, I use the National Longitudinal Survey

of Youth (NLSY) datasets from both 1979 and 1997 cohorts, which offer comprehensive

records of the participant’s employment and educational histories. I combine these two

cohorts to increase the sample size, limiting to the period from 2005 to 2019 to align with the

timing of my skill mixing measurements from O*NET as discussed in the previous section.26

The NLSY data is connected with O*NET via the census occupation data in NLSY and the

crosswalk formulated by Autor and Dorn (2013). My principal focus is the real log hourly

wage, adjusted to 2013 dollars. As Altonji, Bharadwaj, and Lange (2012), I trim values of the

real hourly wage below 3 or above 200. The results of wage returns are robust to considering

alternative sample constructions, such as excluding respondents over the age of 55 or using

the unprocessed real hourly wage. The key advantage of NLSY is that it is a worker-level

panel, and also contains information on worker’s pre-market abilities. This allows for the

control of worker characteristics in assessing occupational wage returns to skill mixing and

also facilitates the evaluation of return to a worker-level degree of skill mixing. The selected

measures of worker abilities are chosen to align well with the skill measures in O*NET:

the Armed Forces Qualifying Test (AFQT) scores represent analytical skill; the social skills

measure developed by Deming (2017) is employed to represent interpersonal skill.27; routine

skill is measured by the workers’ Armed Services Vocational Aptitude Battery (ASVAB)

26The NLSY 1979 and NLSY 1997 are nationally representative surveys of youth, capturing data from
individuals aged 14 to 22 in 1979 and 12 to 16 in 1997 respectively. During my sample period, the median age is
37, and 91 percent of the sample aged below 50.

27I use the AFQT scores constructed by Altonji, Bharadwaj, and Lange (2012) that are consistent across NLSY
waves and account for age-at-test, test format, and other peculiarities. For interpersonal skills, I use the social
skill measure developed by Deming (2017) assessing extraversion, which is constructed based on sociability in
childhood and adulthood in NLSY79, and two questions from the Big 5 inventory in NLSY97 respectively

20



mechanical orientation scores.28 As NLSY offers scant information on workers’ computer

skills, I adopt the worker’s occupation or college major’s computer skill value in the year

2005 as a proxy for the worker’s initial endowment of computer skill. Online Appendix Table

10 lists the corresponding measures.

Moreover, the college education information in NLSY allows me to evaluate the return

to studying college majors with different degrees of skill mixing.29 I calculate for workers

who studied a particular major, the employment weighted average of skill intensities and

skill mixing indexes of their occupations contained in O*NET, to be used as measures of

skills and skill mixing for that major.30 In Online Appendix Table A8, I list the top majors

both in terms of the levels and changes in the degrees of skill mixing for different skill pairs.

Agriculture and Natural Resources stand out as it is the highest in mixing all different skills.

Two other majors: Architecture and Environmental Design and Mathematics are among the

top majors in mixing analytical, computer, and interpersonal skills. Whereas Engineering

and Law surpass other majors in becoming more mixed of routine skills and other skills.

IV.B Wage Returns

To test for the returns to skill mixing, I regress the log wage of worker i in occupation j on

the levels of different skills k required by that occupation, as well as their degrees of mixing:

ln(wageijt) = ∑
k

∑
h 6=k

[
βkskillk,jt + βkh Mix({skillk,jt, skillh,jt}

]
+

∑
k

∑
h 6=k

[
ωkskillk,ijt + ωkh Mix({skillk,ijt, skillh,ijt})

]
+ γXijt + δj + δt + δi + εijt

where skillk, skillh ∈ {ananlytical, computer, mechanical, interpersonal}

(2)

Conditional on skill levels, the coefficients on skill mixing indexes βkh identify the returns

to working in occupations more mixed of those skill combinations. To further examine the

worker level returns to skill mixing, I add to the right-hand side the levels of the skills that

28ASVAB test scores are only available for the NLSY79 survey. For NLSY97, I impute their ASVAB scores
using a regression model with indicators for gender and ethnicity, and fixed effects that include age, year, census
division, metropolitan area, and urbanity.

29There are some inconsistencies in NLSY’s field of study coding: NLSY79 uses its own major codes that
contain 25 two-digit categories, while NLSY97 uses another set codes for years leading to 2010 and transfers to
National Center for Education Statistics (NCES)’s 2010 College Course Map (CM10) for years after 2010. For
consistency, I map the two different types of major codes in NLSY97 to the 25 two-digit major categories in
NLSY79. Online Appendix Table A9 shows the crosswalk of different types of major field of study codes.

30I take the first field within a year as representing a worker’s major field in the case of multiple fields.

21



workers have, and their degrees of mixing. The coefficients on worker-level mixing indexes

ωkh then identify the wage premium to the mixing of worker skills conditional on occupation

skill requirements. Throughout all the specifications, I include ethnicity by gender, age,

metropolitan status, individual year, years of education, census region, and urbanity fixed

effects. I also include occupation fixed effect to control time-invariant differences across

occupations and focus on how the changes in skill requirements within the occupation are

affecting wage returns, consistent with the empirical finding that this margin is the main

driver of skill mixing. Standard errors are clustered at the individual worker level to account

for within-group correlation and heteroskedasticity among repeated observations at the

individual level. To focus the discussion on the wage returns to skill mixing, I only present

the results on the skill mixing index βkh and ωkh, and discuss the returns to individual skills

and how they interact with skill mixing in online Appendix A.7.
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Table 3: Return to Skill Mixing of Occupation and Worker SkillsTable. Return to Skill Mixing of Occupation and Worker Skills 

Dependent: ln(hourly wage) (1) (2) (3) (4) 
Occupation Skills     

 Mix (analytical + computer) 0.007 0.011** 0.013*** 0.011 

  [0.005] [0.005] [0.005] [0.008] 

 Mix (analytical + interpersonal) 0.016*** 0.016*** 0.015*** 0.027*** 

  [0.005] [0.005] [0.004] [0.007] 

 Mix (computer + routine) -0.022** -0.029*** -0.021*** -0.026** 

  [0.009] [0.009] [0.008] [0.012] 

 Mix (computer + interpersonal) -0.008 -0.012** -0.014*** -0.011 

  [0.006] [0.006] [0.005] [0.009] 

 Mix (routine + analytical) -0.050*** -0.056*** -0.050*** -0.057*** 

  [0.008] [0.009] [0.008] [0.012] 

 Mix (routine + interpersonal) 0.023*** 0.029*** 0.019** 0.023* 

  [0.008] [0.009] [0.008] [0.012] 

Worker Skills 
    

 Mix (afqt + computer) 
 

0.044* 
 

0.021* 

  
 

[0.023] 
 

[0.013] 

 Mix (afqt + social) 
 

0.028* 
 

-0.081*** 

  
 

[0.015] 
 

[0.021] 

 Mix (computer + asvab mech) 
 

0.013 
 

-0.081*** 

  
 

[0.025] 
 

[0.027] 

 Mix (computer + social) 
 

0.008 
 

0.065*** 

  
 

[0.013] 
 

[0.020] 

 Mix (asvab mech + afqt) 
 

0.001 
 

0.115*** 

  
 

[0.009] 
 

[0.042] 

 Mix (asvab mech + social) 
 

-0.040*** 
 

-0.064 

  
 

[0.011] 
 

[0.044] 
      
 Ethnicity ✕ Gender, Age, Region, Edu FE X X X X 
 Occupation FE X X X X 
 Worker FE   X X 
 Observations 87,655 78,719 87,655 50,580 
  R-squared 0.426 0.439 0.758 0.762 

 
Notes: This table reports the result of estimating equation (2) using pooled NLSY79&97 data for employed workers from 
2000-2019. The occupational skill and hybrid measures come directly from O*NET and are merged to NLSY79&97 based 
on census occupation codes. The worker-level skill measures are constructed as in Table 4 and skill mixing indexes are then 
calculated accordingly. All measures of skill and skill mixing are normalized to have mean 0 and standard deviation 1. 
Ethnicity-by-gender, age, year, census region, urbanicity, and a 5-category (no high-school, high-school graduate, some 
college, college graduate, post-college) education fixed effects are included for all regressions, with additional fixed effects as 
indicated in the table. Standard errors are clustered at the individual level. *** p<0.01, ** p<0.05, * p<0.10  

Notes: This table reports the result of estimating equation (2) using pooled NLSY79&97 data for employed
workers from 2005-2019. Log hourly wages are the outcome variables and person-year is the unit of observation.
The occupational skill and skill mixing measures come directly from O*NET and are merged to NLSY79&97
based on census occupation codes. The worker-level skill measures are constructed as in Table 10 and skill
mixing indexes are then calculated accordingly. All measures of skill and skill mixing are normalized to have
mean 0 and standard deviation 1. Ethnicity-by-gender, age, year, census region, urbanicity, and a 5-category
(no high-school, high-school graduate, some college, college graduate, post-college) education fixed effects are
included for all regressions, with additional fixed effects as indicated in the table. Standard errors are clustered
at the individual level. *** p<0.01, ** p<0.05, * p<0.10.

Occupation and Worker Level Returns: Table 3 shows the wage returns to skill mixing

at both the occupation and individual levels and indicates a positive premium of mixing

23



non-routine skills. Column (1) shows that workers in occupations that become one standard

deviation more mixed of analytical and interpersonal skills earn a wage gain of 1.6 percent

per year, significant at the 1 percent level. Workers in occupations that become more mixed

of analytical and computer skills also reap wage increases though not significant. Other

the other hand, workers in occupations more mixed of routine and other skills saw a wage

decline, except for routine and interpersonal, the mixing of which gives a 2.3 percent wage

gain.

One potential concern is that workers sort into occupations in which their skills are

rewarded higher, making it difficult to estimate the returns to the mixing of occupational

skills across workers. In column (2), I further include worker abilities and their degree

of mixing. Such a specification serves two purposes. On the one hand, the inclusion of

additional worker characteristics improves the precision of the identified wage premiums at

the occupation level; on the other, it sheds light on the return to skill mixing at the worker

level conditional variations in the workers’ occupations. The results indicate that on the

occupational level, the wage premium for analytical and interpersonal, as well as routine

and interpersonal skills persist, while for analytical and computer has become stronger, at

1.1 percent per year, and significant at 5 percent level. Turning to the worker side, workers

that are a standard deviation more mixed of analytical and computer, as well as analytical

and interpersonal also earn a wage premium of 3-4 percent, though is not very precisely

estimated.

In column (3), I further restrict the analysis to within worker variation by adding worker

fixed effects; along with the occupation fixed effects, this specification essentially resembles

an AKM model.31 The magnitudes of the returns to skill mixing shown in column (3) are

similar to those in column (2). Workers who are in an occupation that are one standard

deviation more mixed of analytical and computer as well as analytical and interpersonal skills

see their wage increase by 1.3 and 1.5 percent respectively, and those who are in occupations

that are one standard deviation more mixed of mechanical and interpersonal skills earn 1.9

percent more. Contrarily, workers in occupations that are more mixed with the rest of the

skill combinations are associated with a wage reduction of 1.4 to 5 percent.

In online Appendix Table A6, I show that the occupational level returns to skill mixing

31Using within worker variation to study wage growth has been discussed and applied in i.e., Neal (1999);
Gibbons et al. (2005); Lazear (2009) and Deming (2017). Choné and Kramarz (2021) found that under a worker
assignment model with bundled skills, the implied wage equation also has an AKM form.
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conditional on worker fixed effects is robust to alternative measures of skills and mixing.

Across all these robustness checks, a similar qualitative pattern holds. Specifically, there is

about a 1 to 2.5 percent wage premium for working in occupations more mixed of analytical

and computer as well as analytical and interpersonal skills and a 3 percent of a wage premium

for routine and interpersonal skills. The mixing of other skill combinations is associated with

negative wage returns at the occupation level. Further, in online Appendix Table A6 I show

that there is also a positive employment premium for workers with a more mixed skill set:

workers with a more mixed level of all the skill pairs except for routine and interpersonal are

also more likely exit unemployment.32

Returns to College Major’s Skill Mixing: With the calibrated skill accumulation of workers,

I test the return to obtaining a more mixing skill set in column (5), conditional on occupational

skill requirements and worker fixed effects. Workers don’t seem to earn a wage premium as

they become more mixing of most skills in switching occupations, except for mechanical and

interpersonal skills, the mixing of which brings a 10.8 percent return.33 At the same time,

the positive and significant returns to switching to an occupation more mixing of analytical

and computer as well as analytical and interpersonal skills persist conditional time-varying

worker characteristics, validating their robustness.

To focus on the role that schooling and college education play in workers’ human capital

formation and return to skill mixing, in column (6) I represent a worker’s human capital

by the skill content of a worker’s accumulated education experience.34 Such a designation

necessarily restricts the analysis to those who have entered college and brings up selection

concerns; however, controlling worker fixed effects and fixed and time-varying occupation

attributes, the evidence will imply whether it is rewarding to transition to a more mixing

major conditional on one’s job choices. The result in column (6) shows a positive return of

around 5 percent to switching to a college major a standard deviation of more mixing of

32Throughout my analysis, I classify a worker as employed if the worker earns a wage greater than zero and
has held one or more jobs since the last NLSY interview, consistent with Altonji, Bharadwaj, and Lange (2012)
and Deming (2017). Further, workers without a paying job for 24 months are considered to be out of the labor
force.

33This is consistent with the evidence in Autor and Dorn (2013) that low-skill service occupations attract
workers from mid-skill routine occupations and are associated with a wage gain; the result here indicates that
such transition is likely to be also accompanied by the mixing of mechanical and interpersonal skills on the
workers’ side.

34I apply rolling averages of skill and mixing measures of a worker’s entire education history to represent
that worker’s education skill content, therefore, there is worker-level variation.
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analytical and computer or of mechanical and interpersonal skills. The wage premium to

skill mixing appears to be larger for college major choices relative to occupation choices.

V A Directed Search Model with Occupation Design

The rich empirical findings on skill mixing pose challenges in understanding their driving

forces. In what follows, I attempt to provide an overarching framework to investigate the

mechanisms. For this purpose, I build a directed search model with several unique features:

First, both firms and workers are represented by multi-dimensional skills; Second, firms must

make decisions about occupation design before meeting workers, a process that involves a

cost payable upon meeting as in Acemoglu (1999);35 Third, the model incorporates non-linear

production and operation cost technologies. Despite the rich setup, the model remains

tractable satisfying Block Recursivity as in Menzio and Shi (2011). Under these specifications,

the model offers clear insights regarding changes in skill mixing, wages, and employment

that are linked to the empirical findings.

V.A Environment

Workers: Time is discrete. At each period t, there is a unit measure of heterogeneous work-

ers that lives forever. Each worker is characterized by a vector of multi-dimensional skills

x = {x1, ..., xk, . . . , xK} ∈ S ⊂ RK, where K is the dimension of a closed skill space S. Workers

are risk-neutral, have linear utilities equal to their consumption, and discount the future with

a factor β.

Firms: On the other side of the market, there is an endogenous measure of risk-neutral

firms each running one vacancy. Potential entrant firms pay a cost c to post their vacancies

across different occupations j = {1, ..., J}, with J ≥ 2. Each occupation is characterized in

the same multi-dimensional skill space as workers’ skills, y = {y1, ..., yk, . . . , yK} ∈ S ⊂ RK,

which has the interpretation of a vector skill requirement or skill importance for each of the

worker skills. Firms share workers’ discount factor β. In the exposition below, I subsume

time subscript in describing worker and firm characteristics.

35As such, the model incorporates directed search on both the worker and firm sides with high-dimensional
heterogeneity on the two sides.
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The production function of each worker-firm pair takes a CES form of the skill inputs of

workers and skill requirements of occupation j that the firm runs the job:

f (x, y) =

[
K

∑
k=1

(xkyk)σ

] 1
σ

, (3)

where the elasticity of substitution between the two skills is 1
1−σ .36 This production technology

represents an extension of the production technology used in the multi-dimensional skill

matching literature (i.e., Lise and Postel-Vinay 2020; Lindenlaub 2017; Ocampo 2022), where

there is within-match complementarity between worker and firm attributes, but I also allow

complementarity across skills regulated by σ. When multi-dimensional skill distributions of

workers and firms are available, such a production technology gives a clearer portrayal of the

interaction between skill demand and supply.

A unique feature of this model is that I allow firms to actively design the job before meet-

ing the worker (Acemoglu (1999)), delivering a flexible degree of skill mixing. Specifically,

firms with both filled and unfilled vacancies design their occupations by optimally choosing

the occupational skill requirements y(j) in each period.37 Such an intensity choice of each

skill in an occupation alters the efficiency of that skill will and essentially leads to different

production technologies for that occupation, capturing the overall quality of the occupation

and the optimal degree of skill mixing. In designing the occupation, both worker skill profiles

and skill complementary play an important role, as firms would want to exploit what skills

that the workers supply given the technology.38 Nonetheless, such a job design incurs a cost

C(y) that is payable upon meeting with a worker. This cost increases in the skill level that

the firm chooses (C′(y) > 0), and represents the necessary expenses to operate an occupation.

This cost can be understood as an operation cost as in Hopenhayn (1992) that is depends on

the skill-level of the occupation.39

36Since labor is the only input in the model, it can be understood as “equipped” labor, and occupations’ skill
requirement or importance y takes a factor augmenting form.

37This feature is consistent with the empirical finding that both incumbent jobs and vacancies have changing
degrees of skill mixing.

38For example, in designing an occupation (i.e., sales persons) for lower-skill workers who might have a
greater supply of interpersonal than analytical skill, firms may want interpersonal skill to be more intensively
used to take advantage the labor supply; on the contrary, if online marketing has increased the complementarity
between analytical and interpersonal skills, firms may adjust accordingly to let the analytical skill to be more
intensive. In equilibrium, this endogenous intensity will depend on other forces in the model.

39For example, to design and operate an occupation that employs high-skill workers, a firms will need to
incur higher expenses in terms of better offices and equipment rentals.
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Labor Market: There is a continuum of submarkets that are indexed by worker and oc-

cupation skill profiles (x, y), as well as the share of worker-firm output ω that firms promise

to workers.40 Workers with skill profile x direct their search towards different occupations and

promised utilities, meeting one vacancy at a time. Matching between workers and firms is fric-

tional and is regulated by a standard constant to scale matching function. Under this directed

search environment, each submarket has a separate tightness (vacancy-unemployment ratio),

denoted by θ(x, y, ω). In each submarket, workers find job with probability p(θ(x, y, ω)), and

firms fill the vacancy with probability q(θ(x, y, ω)) = p(θ(x, y, ω))/θ(x, y, ω).41

The timing of the model evolves as follows. At the beginning of each period, a fraction

δ of worker-firm pairs separate exogenously. Before the labor market opens and unlike

standard search models, firms will first need to design the occupations at this stage before

they post vacancies across submarkets. The labor market then opens, and both unemployed

and employed search for unfilled vacancies and form matches with firms under the constant

return to scale matching technology. The labor market then closes, firms produce the output,

pay the occupation operation cost, as well as the wage which is a share of output to workers.

Unemployed workers receive a transfer with a value of b. Lastly, workers are able to be

learning-by-doing, and their skills evolve according to the Markov process depending on

their employed occupations.

Aggregate and Individual State: The aggregate state of the economy is the distribution

of workers across employment status, skill profiles, occupational skill requirements, and

promised utilities, denoted as ψ ∈ Ψ. I subsume aggregate state in the exposition of model

equilibrium in the next section and show that in fact, the model equilibrium is independent

of the aggregate state.

Nonetheless, in the model, I allow workers to learn on the job, and their subsequent skill

profiles are contingent upon their current employment status, as in Lise and Postel-Vinay

(2020). Specifically, considering each skill j in the worker’s skill profile x as an element of the

40This arrangement can be considered as an employment contract simply specifies the output share ω
promised to the worker contingent on the state for the current period, as well as the continuation value of the
match in the subsequent period (see next section). The contract is assumed to be fully committed by both the
workers and firms.

41Functions p and q also satisfy usual regularity conditions: twice continuously differentiable; p′(θ) >
0, p′′(θ) < 0, p(0) = 0; q′(θ) < 0, q′′(θ) > 0, q(0) = 1.
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finite set S, the evolution of this skill follows a Markov process π(x′j|xj, yj), conditional on

the worker’s current skill level and employed occupation. If a worker is matched with an

occupation that requires a skill level exceeding his or her own (xj < yj), the worker’s skill j

will adjust upward in the next period: x′j > xj, and the inverse applies for a worker whose

skill is lower than the requirements of their current occupation. The probability, and thereby

the speed of skill adjustment, is contingent upon the specific j. For unemployed workers,

they are treated such that their present occupation demands a zero level for all skills. The

calibration of the skill adjustment probability is discussed in Section VI.

V.B Model Equilibrium

I shall now characterize the optimal strategies for workers’ job search and firms’ job creation

and continuation. The value functions for workers are described at the point of the production

stage when the labor market comes to a close, while for firms I also consider the job design

stage before the labor market opens.

Worker’s Problem: Let U(x) denote the value of being unemployed and searching for a

worker x at time t. Similarly, let W(x, y, ω) be the total discounted returns from holding a job

of skill requirements y and output share ω at time t. These values can be written as:

U(x) = b + βE
{

max
y′,ω′

p(θt+1(x′, y′, ω′))Wt+1(x′, y′, ω′)

+
[
(1− p(θt+1(x′, y′, ω′))

]
Ut+1(x′)

}
W(x, y, ω) = ω f (x, y)− C(y) + δUt+1(x′) + β(1− δ)E

{
max
y′,ω̃′

p(θt+1(x′, y′, ω̃′))

+ Wt+1(x′, y′, ω̃′)
[
(1− p(θt+1(x′, y′, ω̃′))

]
W(x′, y, ω)

}
(4)

Unemployed workers gain a utility b through the current period’s transfer. In the

subsequent period, their skills may transition to x′, which are likely to depreciate due

to their unemployed status. Meanwhile, within the submarket that aligns with their skill

profiles, workers engage in the search for vacancies that span a variety of occupations y

and output shares ω, looking for the highest continuation value. In choosing y and ω,

workers face the tradeoff between the value of employed and the success probability of a

match p(θt+1(x′, y′, ω′), both of which hinge on the occupation and output share that the
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workers target. Should the match prove successful, the workers enjoy the continued value

that employment offers; otherwise, their status of unemployment persists.

Workers currently employed in a firm characterized by (yω) receive a wage equivalent to

the share omega of the output from their match. When the subsequent period arrives, they

face a probability delta of an exogenous separation, in which case they become unemployed

with a value Ut+1(x′) and engage in job search immediately. Employed workers perform

on-the-job searches in their current match for new occupations and output shares (y′, ω̃′),

on the premise that there is a positive probability p(θt+1(x′, y′, ω̃′)) that the continuation

value from the new match offers exceeds that of the original firm. In the absence of such

possibilities or if the transition is not successful, the worker remains with the initial firm.

Firm’s Problem: Consider a firm running occupation y, offering output share ω, and em-

ploying worker x. Let J(x, y, ω) denote the total discounted profits to this firm:

J(x, y, ω) = max
y

(1−ω) f (x, y)− C(y)

+ β(1− δ)E
{
(1− p(θt+1(x′, y′, ω̃′))J(x′, y, ω)

} (5)

In the current period, firms receive a portion (1− ω) of the worker-firm output, after

paying the workers their wages. In addition, firms also need to cover the occupation operation

cost C(y), which depends on the skill levels required by the occupation in which the firm is

engaged. The labor market operates under free entry for firms, hence, maintaining a vacancy

bears no value. In the case of exogenous separation, or with a probability p(θt+1(x′, y′, ω̃′))

that the worker finds another job at an optimal occupation y′ and output share ω̃′ through

on-the-job search, the firm accrues no profits. In the case where the match persists, the firm

continues to acquire discounted profits from the match.

c = βE
{

q(θ(x, y, ω))J(x, y, ω)
}

(6)

The free-entry condition further highlights firms’ choice of optimal degree of skill mixing

and the tradeoff that agents face in the model. Prior to the opening of the labor market in

each period, incumbent and entrant firms re-design the occupation, taking into consideration

the overall production technology and worker skills within their respective submarkets.42

42Considering that incumbent firms and new entrants utilize identical production technologies and confront
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Given that the value of a vacancy is zero, firms will opt for an optimal skill mixing that

equates the firm’s anticipated discounted profits to the cost of vacancy posting as in equation

(6). This condition implicitly pins down market tightness θ(x, y, ω). If an occupation for a

specific worker type becomes more profitable, the number of vacancies posted will increase,

leading to a rise in market tightness but at the same time a reduction in the job-filling rate.43

The free entry condition also reflects the tradeoff faced by workers. Since workers receive

the remaining output claimed by the firms, in markets with higher job-finding probabilities

(i.e., tighter markets), the value of employment is likely to be lower. Workers’ job finding

probability also feedback to firms’ discounted profits through worker on-the-job search and

the chance that the firm attracts other employed workers.

Block-recursive Equilibrium: Despite the multi-dimensional skill setup, the model still

achieves great analytical tractability by relieving the dependence on the entire distribution

of agents across aggregate states in characterizing agents’ value functions and the market

tightness. Such a convenient feature was coined as “block-recursive” in Menzio and Shi (2010)

and Menzio and Shi (2011) for a broad range of directed search models.44 This is a result

of two features of the model. First, as search is directed and workers choose optimally the

occupation and output share, their life utility does not depend on their outside options, and

workers do not need to forecast the wage depending on the entire distribution of employment.

Second, there are separate markets for workers of different profiles, and workers search for

jobs within their own submarket, in which firms carry different occupations. This additional

degree of seperability implies that the market tightness of a submarket is independent of the

worker distribution in other markets, relieving the burden of workers and firms to forecast

other markets in making their decisions.45 In online Appendix B.2, I formally define a

Block-recursive equilibrium for the economy and show its existence and uniqueness.

the same worker skills within each submarket, their choices align.
43As in other directed search models, only a portion of submarkets may open in equilibrium, depending on

firm’s value and corresponding market tightness in different markets
44Block recursivity allows not only analytical tractability but also enables standard numerical techniques

to solve the model. The framework considered in this paper involves more heterogeneity and requires an
additional degree of directness, as discussed.

45Such additional directness implies that, i.e., computer scientists only confront other computer scientists
in job search, while sales clerks only compete with other sales clerks. In reality, the degree of separability
will depend on specific occupations and the overall economic condition. As reported by Osberg (1993), search
directedness is procyclical and is higher when the market is tight. In bringing the model to the data, I use
economic recovery periods and more coarse occupations to be consistent with the model.
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Skill Mixing, Wages and Employment: The model yields several predictions regarding

changes in skill mixing, wages, and employment that align closely with the empirical findings

detailed in Sections III and IV. These predictions emphasize the role of skill complementarity

within a production framework that features indivisible skills. The formal propositions and

proofs of these outcomes can be found in online Appendix B.1, and a concise discussion is

provided here.

Under the production technology described in equation (3) and the occupational design

cost outlined in (7), increased complementarity in production or a higher degree of increasing

marginal costs leads firms to find it more profitable to employ a mixture of different skills

rather than specializing in one, leading to increased skill mixing. Additionally, the supply of

skills by workers influences these outcomes: as workers supply a more diverse set of skills, it

becomes more efficient to design jobs that require this mix of skills. In terms of wages and

employment, if skills become more complementary in production or less costly to combine,

the output of the worker-firm match rises, leading to wage increases. Through the free entry

condition specified in equation (6), this increased joint worker-firm value results in a tighter

labor market and an elevated job-finding probability for workers. I quantitatively calibrate

the model and test these predictions in the next section.

VI Quantitative Analysis

In this section, I calibrate the model to evaluate the quantitative importance of different

channels contributing to the phenomenon of skill mixing, and explore implications for wages

and employment. I first describe data construction and measurement, followed by a discussion

of calibration strategy, and estimated parameters. I then perform counterfactual analyses

and show that technological shifts embodied in the changes in complementarity of skills in

production, the operation cost of occupation operation, as well as the efficisency differential

of high-type workers have played a major role in driving the variation in skill mixing. I then

show that these forces also account for a significant part of wage and employment shifts.

VI.A Measurement and Calibration

Data and Measurement: I apply the same combination of NLSY 79 & 97 along with O*NET

data as in Section IV to calibrate the model. The datasets provide counterparts to the
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model variables such as worker skills (x), occupational skill requirements (y), employment

distribution, and wage levels. The model is calibrated to two periods of data from early

2000s to late 2010s separately, which coincides with a substantial shift in skill mixing and

abstracts from the financial recession. Specifically, the steady-state of the model is fitted to

the data from 2005–2006 and 2016–2019 to ensure comparability of sample sizes across these

two periods, and I restrict to those workers with information on their skills.46 Finally, for

both worker and job skill profiles, I consider the same set of skills (analytical, computer,

interpersonal, routine) as in Section IV, only combining analytical and computer skills into

one to have a skill dimension of three to be feasible for quantitative analysis.

Considering the potential influence of skill supply variation on skill mixing, I calibrate two

key aspects of it. First, worker skill supply variation across the two data periods is introduced

to align with the workers’ choices of occupation and college major (if attended), as well as

their employment status, following the approach of Lise and Postel-Vinay (2020). Specifically,

a worker accumulates γj times the gap between the worker’s endowment and an occupation’s

requirement of skill j in each year, with the value of γj depending on learning or depreciation

(upward or downward accumulation).47 Second, the Markov process π(x′j|xj, yj) of worker

skill adjustment, detailed in Section V, is calibrated such that if an occupation demands a

higher (or lower) skill level than the worker possesses, the worker skill will adjust upwards

(or downward) in the next model period. Given that a model period equates to a quarter,

the yearly skill adjustment rates are divided by 4 (
γj
4 ). This value is further scaled by the

gap between the worker’s skill set and the occupation’s demands to compute the adjustment

probability.48 Online Appendix B.4 provides further details of the skill supply calibration.

46NLSY 1997 was conducted annually during 2005-2006, but only biannually in 2016-2019, so does NLSY 1979
for the later period. The same sizes for the two selected periods are 30,654 and 43,340 respectively.

47The speed of skill adjustment γj is calibrated using the estimates from Lise and Postel-Vinay (2020) as in
online Appendix Table 10. Workers’ skills can be lost when not employed but can’t be lower than their initial
endowments. For skill changes while in school, I specify that workers spend on average 3 years learning the
skills of their majors.

48In particular, the Markov probability of upward adjustment is determined by:
xup

j −xj

yj−xj
1(xup

j < yj)×
γ

up
j
4 , and

of downward adjustment is given by:
xdown

j −xj
yj−xj

1(yj < xdown
j )×

γdown
j
4 . Here, xj represents the current grid value

of worker skill j, while xup
j or xdown

j denotes the value of worker skill j up or down a grid, respectively. The

indicator variables 1(yj < xdown
j ) or 1(xup

j < yj) evaluates whether the skill j grid value of the worker’s current
employed occupation is greater or smaller than the value of the worker’s skill j grid. This means that a worker
will only adjust up or down a grid if the occupation’s skill is larger or smaller than the corresponding up or
down grid value for the worker’s skill.
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Functional Forms: The model is parameterized as follows. The multi-dimensional skill

production function is defined as in equation (3), which accommodates cross-skill com-

plementarity controlled by σ and enables a sensible interaction between skill demand and

supply, in line with the multi-dimensional matching literature (i.e.,Lise and Postel-Vinay 2020;

Lindenlaub 2017; Ocampo 2022). I allow a flexible form of occupation operation cost C(y)

as in equation (7), where ρ regulates the degree of increasing or decreasing marginal cost of

elevated skill requirements, and τ governs the scale of the cost of operating an occupation.49

C(y) = τ[
K

∑
k=1

(yk)ρ] (7)

The matching function assumes a standard Cobb-Douglas form, M(s, v) = µsηv1−η , indicat-

ing that η is the elasticity of matches concerning total search effort, and µ is the matching

efficiency. This function form leads to the job finding rate being p(θ) = µθ1−η and the

vacancy filling rate being q(θ) = µθ−η .

Calibration Strategy: The calibration of parameters falls into two categories. For param-

eters that regulate the search environment, I follow closely the conventions of the search

and matching literature. However, for those parameters linked to the technology for skills

in production, as well as the efficiency differential of high-type workers, I estimate them

internally through Simulated Methods of Moments (SMM).

The model period is one quarter. Given that all agents are risk-neutral, the discount rate

β is assigned a value of 0.99, corresponding to an annual interest rate of approximately 4

percent. The job separation rate δ is set at 10 percent per quarter, as in Shimer (2005). For

employed workers, their share of output ω is set at 0.6, mirroring the labor share of GDP

in 2005. For unemployed workers, the unemployment benefit b is set at 0.25 as in Braxton

and Taska (2023), which equates to about 51 percent of worker consumption in the calibrated

model. The elasticity of the matching function η is set at 0.5 as is standard, and the matching

efficiency µ is set to 0.65, as in Mercan and Schoefer (2020). Table 5 panel A summarizes

these externally calibrated parameters.

Before describing the protocol of internal estimation, I outline how to map occupations

and workers in the model to the data and the choice of grid points. I classify occupations

49Besides technical convenience, the functional form (7) also implies that for a given cost, firms need to
tradeoff the choice of altering different skill intensities.
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Table 4: Moments and Model MatchTable. Moments and Model Match 

  
  First Period Second Period 
  Data Model Data Model 

Worker moments     

Relative wage of high type     

 Analytical/computer 1.30  1.29  0.95  1.02  

 Interpersonal  1.00  1.00  1.25  1.28  

 Routine 1.52  1.53  1.54  1.40  

Unemployment rate 0.05  0.06  0.04  0.04  

Occupation moments     

Relative wage of high skill 1.30  1.30  1.56  1.41  

Employ. share (low skill) 0.43  0.42  0.37  0.32  

Employ. share (high skill) 0.57  0.58  0.63  0.68  

100 ✕ Skill mixing (low skill) 97.54  96.83  98.96  99.10  

100 ✕ Skill mixing (high skill) 95.74  96.84  94.12  95.11  

 Notes: This table reports the average values of the targeted and non-targeted moments both in the data and through model 
simulation except. The data used for the moment calculation and for SMM estimation are two periods of pooled NLSY79&97 
for employed workers: period 1 from 2005–2006 and period 2 from 2016–2019. Two types of moments are included: the 
worker moments include the relative wage of high type workers as well as the unemployment rate; the occupation moments 
include the relative wage of high skill occupations, the employment share and the skill mixing in low and high skill 
occupations. 

 

Notes: This table reports the average values of the targeted moments both in the data and through model
simulation. The data used for the moment calculation and for SMM estimation are two periods of pooled
NLSY79&97 for employed workers: period 1 from 2005–2006 and period 2 from 2016–2019. Two types
of moments are included. The worker moments include the relative wage of high type workers as well as
the unemployment rate. The occupation moments include the relative wage of high skill occupations, the
employment share and the skill mixing index of RNR skills in low and high skill occupations.

into high- and low-skill, as in Section IV, with the former group including high-wage

and white-collar jobs, and the latter blue-collar and service jobs. The grid point for an

occupation’s requirement of a skill yj is set such that moving up one grid corresponds

to 50 percent of the median observed value of yj for that occupation.50 On the worker

side, for each of the worker skill xj, a worker belongs to the high type if the skill is above

the median value among all workers.51 For those workers classified as low-type in any

skill, their skill grid is set to be the average observed value within that category. I then

internally estimate the skill level of high-type worker relative to low-type for each skill

(αk, k = {analytical/computer (a), interpersonal (p), routine (r)}).52 Since labor is the only

input in production, these relative efficiencies represent the “efficiency differential” of high-

type workers that leads to higher productivity (i.e., Katz and Murphy 1992; Autor, Katz, and

50As the model calibration uses data of two periods with a consistent grid, I determine grid points by
averaging the occupation’s median values across both periods.

51With three chosen skills, there are 8 worker types in the model.
52As I merge analytical and computer skills into one for calibration using their average values, I denote this

combined skill as “analytical/computer”.
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Krueger 1998; Goldin and Katz 2010).53

The SMM procedure starts with solving the steady state policy for the agents given the

parameters of the model. A panel of workers, each with a lifespan of 80 quarters, is then

simulated. These workers start as unemployed and draw their skill supply from the calibrated

empirical distribution. As each model period concludes, the workers’ skills evolve following

the calibrated Markov process, π(x′|x, y). Each iteration thus results in a distribution of

employment statuses and corresponding labor market outcomes. The parameters are then

estimated minimizing the distance between simulated and empirical moments by searching

over the parameter space, offering local identification. Online Appendix B.5 provides further

details on the numerical implementation.

The estimation targets 9 moments as shown in Table 4 for both periods of data that

include: i) the relative wage of the high-type worker for each skill; ii) the unemployment rate;

iii) the relative wage of high-skill occupation; iv) the share of employment across occupations;

and iv) the skill mixing indexes of occupations. All moments are directly computed from the

two periods of data from NLSY, except for unemployment, for which I use the statistics from

Bureau of Economic Analysis (BEA) to avoid the age composition effects present in NLSY.54

The model parameters are jointly identified from the moments, for which a concise summary

of the key information for identification is given below with more detailed discussion in

online Appendix B.3. I first identify complementarity parameter of skills in production σ

targeting the correlation of within occupation relative wages and worker skills. The cost

parameters ρ is then estimated leveraging the firm’s optimization conditions in skill mixing.

Conditional on parameters estimated at the production side, the model’s employment distri-

bution further aids in estimating τ. Lastly, unemployment rate and relative wage structures

disciplines the vacancy posting cost and the efficiency differential of high-type workers.

Estimation Results: Table 5 panel B presents the internally estimated parameters, which

indicates considerable technological shifts between the two periods. For the initial period,

the estimated σ is 0.5, suggesting that skills are substitutable in production. Firms encounter

53As such, the quantitative analysis explores both the role of changes in relative input efficiency that is the
focus of SBTC literature, and changes in skill complementarity.

54The cohort’s age profile in NLSY data influences the reported employment rate. For example, by the late
2010s, a substantial segment of the NLSY 79 cohort are above age 50, making them more likely to be out of
the labor force. Additionally, the unemployment rate from NLSY, derived from numbers of job held since the
last survey, averages 9 percent, notably higher than BEA data. However, this decision primarily affects vacancy
posting cost parameter.
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Table 5: Parameter EstimatesTable 6. Parameter Estimates 

Parameter Description Value 
A. Externally Calibrated     

𝛽 Discount Rate 0.99 
𝛿 Job separation rate 0.1 
𝜔 Worker share of surplus 0.6 
𝑏 Unemployment benefit 0.25 
𝜂 Elasticity of the matching function  0.5 
𝜇 Matching efficiency 0.65 

B. Internally Estimated Period 1 Period 2 
𝜎 Elasticity parameter of skills in production 0.5  0.3  
𝜏 Scaler of occupation operation cost 1.4  1.9  
𝜙 Rate of increasing marginal cost 1.2  1.7  
𝛼𝑎 Efficiency differential of analytical/computer skill 1.2  1.6  
𝛼𝑝 Efficiency differential of interpersonal skill 1.0  1.5  
𝛼𝑟 Efficiency differential of routine skill 1.2  1.1  
𝑐 Vacancy posting cost as a share of output 0.1  0.4  

Notes: This table shows the exogenously calibrated as well as internally estimated parameters. The data used for estimation 
are two periods of pooled NLSY79&97 with employed workers: period 1 from 2005-2006 and period 2 from 2016-2019. 

 
 
 
  

 

Notes: This table shows the exogenously calibrated as well as internally estimated parameters. The data used for
the internal estimation are two periods of pooled NLSY79&97 for employed workers: period 1 from 2005–2006
and period 2 from 2016–2019.

rising marginal costs as they increase skill requirements (ρ ≥ 1). When it comes to efficiency

differentials, high-type workers in analytical/computer, interpersonal, or routine skills are 1.5

to 2.3 times as productive as their low-type counterparts. Vacancy posting cost is 10 percent

of the quarterly output of a worker-firm match, close to the estimates of Silva and Toledo

(2009).55

In the second period, there is a significant rise in skill complementarity in production,

reflected in the reduction of σ. During this period, the occupation operation cost for firms also

rises, reflected in the increase of both the scale and the convexity of the cost function. As dis-

cussed in Section VI, this increased complementarity as well as cost of skills intensifies firms’

incentives to mix skills. Moreover, efficiency differential increases for analytical/computer

and interpersonal skills, whereas it has considerably declined for routine skills. This pattern

suggests that wage premiums for high-type workers of routine skills become much lower

compared to other skills; it also implies that the incentive to mix routine with other skills in

55Silva and Toledo (2009) estimate that in early 2000s, the vacancy posting cost is 14 percent the average
quarterly compensation of workers. Given that my calibration sets the worker output share at 60 percent, this
suggests that the vacancy posting cost equates to 16 percent of the quarterly worker compensation.
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Figure 6: Model Counterfactual Figure 6. Model Counterfactual 

  
Notes: This figure shows the model generated changes in skill mixing in low-skill occupations (panel 1) and changes in 
relative wage of high-skill occupation (panel 2). Different model channels are shut down sequentially by eliminating the 
relative calibrated values to highlight the contribution of each channel. The full model has all the model features. Worker 
skill supply distribution variation across the periods are calibrated according to Table \ref{appen_tab_evol}. The values 
of efficiency differential, skill level of low-type worker, vacancy posting cost, skill complementarity in production and 
occupational across two periods are shown in Table \ref{tab_params}. 
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Notes: These figures plot the model generated changes in skill mixing in low-skill occupations (panel 1) and
changes in relative wage of high-skill occupation (panel 2). Different model channels are shut down individually
by eliminating the relative calibrated values to highlight the contribution of each channel. The full model has all
the model features. The values of skill complementarity in production, cost of skills in occupation operation,
efficiency differential, and vacancy posting cost across the two periods are shown in Table 5. Worker skill supply
distribution variation across the periods are calibrated according to Table 10.

high-skill occupation will likely decline. Lastly, the cost of posting vacancies has increased

post 2010s, consistent with the finding of Schaal (2017).56

VI.B The Drivers of Skill Mixing and Implications for Wages and Em-

ployment

In this section, I employ the model to perform a series of counterfactual experiments to assess

the relative significance of each model channel in explaining the shifts in the degree of skill

mixing. Additionally, I evaluate the influence of these channels on the changes in earnings

and employment distribution. Specifically, I focus on the roles of changes in skill supply,

efficiency differentials, skill complementarity in production, occupation operation cost, and

vacancy posting cost in generating moment variations that align with the data. To gauge the

importance of each of these channels, I individually suspend the shifts in parameter values

associated with each of these channels and observe the impact on different outcomes.

Counterfactual Skill Mixing: I begin by assessing how different channels contribute to

56Schaal (2017) shows that when incorporating data from these later years, the vacancy posting cost is twice
that of the estimate of Silva and Toledo (2009).
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the growth in skill mixing within low-skill occupations, which has been noticeably observed

in the data.57 The first panel of Figure 6 illustrates that the full model predicts a rise in

skill mixing within low-skill occupations over the two periods. In the absence of changes

in the supply of worker skills across these periods, the predicted increase in skill mixing

remains unchanged. On the other hand, if we ignore changes in the efficiency differential of

high-type workers, the predicted increase in skill mixing increases by nearly 50 percent. This

result implies that the growing efficiency differential of analytical-computer and interpersonal

skills, along with the large decline in the efficiency differential for routine skills, makes their

combination in low-skill occupation less favorable, consistent with our prediction.58

The subsequent counterfactual results indicate that the rise in the complementarity of

skills in production and in the occupational operation costs are the main determinants of

skill mixing. First, if we suppress the increase in skill complementarity while preserving

the variation in parameters, the growth in skill mixing becomes a third of the level under

the full model. Similarly, if we eliminate the changes in occupational operation cost, the

growth in skill mixing reduces by nearly two thirds. These experiments underscore that the

joint evolution of skill complementarity and occupational operation cost is the central force

driving the increase in skill mixing over the two periods.59 Lastly, the costs associated with

posting job vacancies appear to have little impact on skill mixing.

Wage and Employment Effects: I proceed to investigate how the same model channels

influencing skill mixing also impact wage and employment distribution. The second panel of

Figure 6 illustrates the unweighted relative wage changes between high-skill and low-skill

occupations from the early 2000s to the late 2010s, with the model predicting an approximate

12 percent increase. As observed with skill mixing, variations in worker skill supply and

vacancy posting cost appear to have minimal effects. In contrast, the efficiency differential

between worker types emerges as a key driver; without it, the wage premium for high-skill

occupations would have declined to only 3.5 percent. These results are intuitive: as efficiency

57I focus on changes within occupation for my counterfactual analysis, primarily because this appears to be
the main area where skill-mixing changes occur, as shown in Section IV. Additionally, in the quantitative part
of this study, the number of occupations is far fewer than in the actual data, leading to more fluctuations in
employment shares. This could distort the view of skill mixing if worker re-allocation is taken into account.

58The result is similar for high-skill occupation. In online appendix B.6 I show that if we disregard changes in
the efficiency differential, skill mixing rises above the level predicted by the full model in high-skill occupation,
suggesting that these changes actually reduce skill mixing.

59Online Appendix B.6 investigates the implications of τ and φ individually for skill mixing changes and
results show that they are equally important.
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differentials increase, the absolute skill difference between high- and low-type workers grows,

leading to higher wage gains in high-skill occupations that more likely to employ high-type

workers.

Regarding wage distribution, the rise in the complementarity of skills in production and

in occupation operation costs predominantly compress the wage gap between high- and

low-skill occupations. Ignoring skill complementarity while maintaining variation in other

parameters would have shifted the high-skill occupation’s wage premium from a 12 percent

increase to a 20 percent increase. Similarly, if we only vary occupational operation costs, the

increase would become 25 percent. These two factors collectively work to diminish wage

disparities across occupations. In online Appendix B.6, I discuss the effects of these channels

on the employment gains in high-skill occupation. The impact of changes in efficiency

differentials and occupation operation costs on employment mirrors their effects on wages.

However, for high-skill occupation’s employment gains, increased skill complementarity has

been a positive driver, while growing vacancy posting cost has reduced them.

In summary, the growth in complementarity of skills in production and in cost of skills

for occupation operation emerge as the main drivers of skill mixing changes, whereas effi-

ciency differential changes of high-type workers negatively affects the degree of skill mixing

across the periods. For changes in wage and employment distributions, the growth in skill

complementarity and occupation costs compress the high-skill occupations’ wage premium,

although the increased skill complementarity has positively affected high-skill occupation’s

employment gains. Furthermore, the changes in efficiency differentials contribute to the rise

in wage and employment gains in high-skill occupations.

VII Conclusion

Skills are inevitably embedded in workers and understanding the demand for skill mixtures

is important in studying the dynamics of the labor market. I present a rich set of empirical

findings on the phenomenon of “skill mixing”, and show that between 2005-2018, there has

been a sizable growth in the degree of mixing, particularly for analytical, computer, and

interpersonal skills. To understand the heterogeneous within-occupation variation in skill

mixing of different occupations, I provide an integrated explanation incorporating insights

from the directed search and endogenous technological change literature. Bringing the model

to the data, I estimate parameters that are important in understanding the interaction among
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skills and show that technological change is the main driver of skill mixing.

The phenomenon of skill mixing brings forth very different policy implications for worker

training and college consulting. Using NLSY 79 and 97 combined with O*NET data, I

show that workers in occupations that become more mixed of analytical, computer, and

interpersonal skills earn a positive wage premium. Further, I calculated the degree of mixing

for each college major and show that students who have studied a college major more mixed

of analytical and interpersonal skills earn as much as 5 percent more. In sum, this paper’s

results suggest that in a world with an increasing trend of skill mixing with positive wage

premiums due to technological advancements, educators and policymakers should consider

providing more “mixed” skills to workers rather than focusing solely on nurturing expertise

and specialization.
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A ADDITIONAL EMPIRICAL RESULTS

A.1 Data Construction

In this section, I give more details on data construction for the two primary datasets on job

skill demand employed in Section III and IV, namely O*NET (Occupation Information Net-

work) and Lightcast (previously known as "Burning Glass"). Specifically, I discuss strategies

for leveraging the longitudinal information in these datasets with higher precision. I also

present an overview of their inherent characteristics, advantages and disadvantages, and how

they are cross-walked with other datasets used in the analysis.

O*NET: Administered by the U.S. Department of Labor, O*NET is a replacement to the

Dictionary of Occupational Titles (DOT). It is more comprehensive and more frequently up-

dated and has been used widely to analyze occupation skill requirements and work settings

(i.e., Acemoglu and Autor 2011; Yamaguchi 2012; Autor and Price 2013).

Nonetheless, to use the longitudinal variation from O*NET, the key challenge concerns

partial updating – each new version of O*NET only update an average of 110 of targeted

occupations among the 970 7-digit occupations. Online Appendix Table A1 lists different

versions of O*NET, the release year, and the year composition for 3 of the modules. Specifically,

for each release of O*NET, I assign a “Considered Year” such that at least 55% to 60% of

occupations are updated after that year.

Moreover, I use 4-year intervals. The last column of online Appendix Table A1 show the

percent of occupations that are updated from the last considered year of data included in

the analysis. On average, more than 50 percent of the occupations are updated across the

succeeding years included in the analysis.

O*NET contains around 270 descriptors about occupations that are grouped into 9

modules: abilities, knowledge, skills, work context, work activities, experience/education

requirement, job interest, work values, and work styles. For my main analysis, I only use

descriptors from 3 modules: work context, work activities, and knowledge that are more

interpretable as the skill requirements, and are consistently evaluated by incumbent workers

for each new release. These descriptors come as importance, level, extent, and relevance. To

interpret the skill measures as gauging the intensity, I use the importance information, similar

to i.e., Acemoglu and Autor (2011) and Guvenen et al. (2020), but the level and importance
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pieces of information are highly correlated and don’t affect the qualitative patterns of skill

mixing shown in the paper.

In Section III, I show the longitudinal changes in skill mixing by combining O*NET and

ACS datasets. O*NET uses SOC 2000 occupation classification for releases between 2000 and

2010 and SOC 2010 for years after 2010. To link O*NET and ACS, I first bridge SOC codes to

the census’ OCC 2000 and OCC 2010 codes respectively using crosswalks provided by the

Analyst Resource Center and the Bureau of Labor Statistics. Then different years of OCC

codes are homogenized using a balanced and consistent panel of occupation codes developed

by Autor and Dorn (2013) and updated by Deming (2017). The same code is also used for

combining all years of ACS and O*NET data.

Lightcast: Lightcast (formerly "Burning Glass Technologies") is an analytics software com-

pany that has developed a comprehensive and detailed dataset derived from online job

postings, capturing real-time labor market information, reflecting the current demand for

skills and occupations. One of the key advantages of Lightcast data is its extensive coverage

and high-frequency updates. By examining over 40000 online job boards and company

websites, it provides near universe of online posted vacancies; moreover, it provides a level of

detail that is rarely matched by other sources of labor market data, such as job titles, employer

information, and specific skill requirements. This allows for a very granular analysis of job

skill requirements and labor market dynamics.across different industries and regions.

The information that Lightcast collected is then parseed and deduplicated into a systematic

list of thousands of codified skills. Similar to Hershbein and Kahn (2018) and Braxton and

Taska (2023), the dataset that this study uses defines different skills if the codified skills from

Lightcast contains relevant key words. Specifically, the key words used to capture analytical

skill are: "research", "analy", "decision", "solving", "math", "statistic", and "thinking". The key

words used to capture interpersonal skill are "communication", "teamwork", "collaboration",

"negotiation", and "presentation". For each occupation, the share of posted vacancies that

require a particular skill is then the measure of skill for that occupation, capturing the

extensive margin of firm skill demand.

However, like any data source, Lightcast data also has its limitations. For instance, it only

covers online job postings, which may not represent the entire labor market, especially for

low-skilled jobs or jobs in small firms that do not typically advertise online. It may also have

2
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a bias towards certain types of jobs or industries that use online job advertisements more

frequently, and online vacancies by nature overrepresent growing firms (Davis, Faberman,

and Haltiwanger 2013). One note of Lightcast data is that the measure of skill as introduced

above focuses on the extensive margin – whether a job uses a skill or not – this is very

different than the level and importance information that O*NET contains.
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Table A1: O*NET Versions and Corresponding YearsOnline Appendix Table. O*NET Versions and Corresponding Years 

  Released Year Division Work Context Work Activities Knowledge Considered Year Percent Updated 

O*NET 13.0 2008 Post 2005 73.79% 73.79% 73.79% 2005 – 
  Before 2005 26.21% 26.21% 26.21%   

O*NET 18.0 2013 Post 2009 57.15% 57.21% 57.21% 2009 59.8 
  Before 2009 42.85% 42.79% 42.79%   

O*NET 22.0 2017 Post 2013 57.84% 57.67% 57.67% 2013 45.8 
  Before 2013 42.16% 42.33% 42.33%   

O*NET 25.0 2022 Post 2018 54.52% 54.52% 54.52% 2018 64.2 
    Before 2018 45.48% 45.48% 45.48%     

 
Notes: The table summarizes different versions of the O*NET (Occupational Information Network) database, along with their released year, year division for the 5 
modules (work context, work activities, knowledge, skills, abilities), and the considered year for each version. The “Post” and “Before” rows indicate whether the 
data in each version was collected post or before a particular year. The “Considered Year” column represents the year considered to be corresponding to each release 
of O*NET based on the year division of data.  

Notes: The table summarizes different versions of the O*NET (Occupational Information Network) database, along with their released year, year division
for the 5 modules (work context, work activities, knowledge, skills, abilities), and the considered year for each version. The “Post” and “Before” rows
indicate whether the data in each version was collected post or before a particular year. The “Considered Year” column represents the year considered to be
corresponding to each release of O*NET based on the year division of data.
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A.2 Details of Skill Measures

In this section I briefly discuss the choice of skill measures used in the main analysis.

Specifically, I show the composition of descriptors of each skill used in the main analysis. I

also discuss the composite skill measures’ validity and correlation with other measures used

in the literature.

Table A2: O*NET Skill Measures and Composing Descriptors
 Online Appendix Table. Skill Measures and Composing Descriptors 

     

Non-routine Analytical  Routine 

• Analyzing data/information  • Importance of repeating the same tasks 

• Thinking creatively  • Importance of being exact or accurate 

• Interpreting information for others  • Structured v. Unstructured work (reverse) 

Non-routine Interpersonal  • Pace determined by speed of equipment 

• Establishing and maintaining personal relationships • Controlling machines and processes  

• Guiding, directing and motivating subordinates   • Spend time making repetitive motions  

• Coaching/developing others  Leadership 

Computer  • Making Decisions and Solving Problems 

• Interacting With Computers  • Developing Objectives and Strategies 

• Programming  • Organizing, Planning, and Prioritizing Work 

• Computers and Electronics  • Coordinating the Work and Activities of Others 

Design  • Developing and Building Teams 

• Design  • Guiding, Directing, and Motivating Subordinates 

• Drafting, Laying Out, and Specifying Technical 
Devices, Parts, and Equipment  

• Provide Consultation and Advice to Others 

     

     
 Table A2 lists the O*NET descriptors for each of the constructed composite skill measures.

The analytical measure corresponds to “non-routine cognitive analytic” and the interpersonal

measure corresponds to “non-routine interpersonal” from Acemoglu and Autor (2011).

I collapse Acemoglu and Autor (2011)’s “routine cognitive” (the first three items under

Routine) and “routine manual” (the last three items under Routine) into a big routine skill, as

occupations using these skills have been shown to have had similar labor market dynamics

(Autor, Levy, and Murnane 2003; Acemoglu and Autor 2011). I didn’t include the “non-

routine manual” from Acemoglu and Autor (2011), since it involves descriptors from the

“Abilities” module of O*NET that is evaluated solely by job analysts, and for consistency

purposes I focus on occupation descriptors that are evaluated by incumbents workers.
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Further, I include two additional composite skills that are be non-routine. First, I include

a “leadership” composite skill that is comprised of descriptors of problem-solving, strategic

thinking, teamwork, and communication. They all demand an ability to guide and manage

teams, strategize and plan, solve problems, coordinate activities, and communicate effectively

within a team or organizational context. Second, I include a “design” composite skill measure

revolves around technical proficiency and creativity. The composing descriptors necessitate a

strong understanding of design principles, the ability to draft and layout specifications for

technical devices.

Table A3: Correlations Among Skill MeasuresOnline Appendix Table. Correlations Among Skill Measures 

  Skill Measures (1) (2) (3) (4) (5) (6) (7) (8) (9) 
 (1) analytical 1.00 
 (2) routine -0.45 1.00 
 (3) interpersonal 0.44 -0.49 1.00 
 (4) computer 0.92 -0.27 0.25 1.00 
 (5) math skill 0.50 -0.11 0.12 0.46 1.00 
 (6) social skill 0.34 -0.54 0.61 0.24 0.09 1.00 
 (7) analytical (broader) 0.84 -0.59 0.55 0.68 0.63 0.57 1.00 
 (8) mechanical (broader) -0.43 0.58 -0.24 -0.38 -0.11 -0.38 -0.49 1.00 
 (9) interpersonal (broader) 0.10 -0.35 0.73 0.02 -0.09 0.70 0.28 -0.22 1.00 

Notes: This table reports the correlation among different skill measures constructed using O*NET data from 2000-2020. The first four skills measures in rows (1) to 
(4) are the ones used in the main text and are constructed using the O*NET descriptors shown in Table 1. The next three measures in rows (5) to (7)—routine, 
manual and abstract—are constructed based on Autor and Dorn (2013). Math skill and social skill are constructed based on Deming (2017). Math skill is the average 
of 1) mathematical reasoning ability, 2) mathematics knowledge, and 3) mathematics skill. Social skill consists of the average of four variables, 1) social perceptiveness, 
2) coordination, 3) persuasion, and 4) negotiation. ASVAB math is the ASVAB Mathematics Knowledge score constructed using the cross-walk between ASVAB 
test scores to about 25 O*Net descriptors. Rows (11) to (13) contain the broader analytical, mechanical, and interpersonal skills constructed using factor analysis as 
discussed in Online Appendix A with their specific component variables given in Online Appendix Table 3. 
  

Notes: This table reports the correlation among different skill measures constructed using O*NET data from
2000-2020. The first four skills measures in rows (1) to (4) are the ones used in the main text and are
constructed using the O*NET descriptors shown in Table A1. The next two measures in rows (5) to (6), math
skill and social skill are constructed based on Deming (2017). Math skill is the average of 1) mathematical
reasoning ability, 2) mathematics knowledge, and 3) mathematics skill. Social skill consists of the average
of four variables, 1) social perceptiveness, 2) coordination, 3) persuasion, and 4) negotiation. Rows (7) to
(9) contain the broader analytical, mechanical, and interpersonal skills constructed using factor analysis as
discussed in online Appendix A.5 with their specific component variables.

Table A3 shows the correlation among the chosen skills used in the main analysis, as

well as math skill and social skill are constructed based on Deming (2017), and broader skill

measures skills constructed using factor analysis as discussed in online Appendix A.5. It

reveals the analytical skill (row 1), exhibits a strong positive correlation with computer skills

(0.92) and a moderate correlation with math skills (0.50). This pattern suggests that positions

requiring analytical skills frequently necessitate computer and mathematical proficiency.

Interpersonal skills (row 3) indicate a moderate-to-strong positive correlation with social

skills (0.61) and broader interpersonal skills (0.73). This correlation suggests that occupations

demanding interpersonal skill also emphasize social abilities. These results validate the
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interpretation of the analytical and interpersonal skills with strong positive correlation with

math and social skills used in other studies.

On the other, a strong negative correlation exists between routine and interpersonal skills

(-0.49) and between routine and interpersonal skills (-0.45), indicating that these skill sets

rarely overlap in job requirements. The broader skill categories (rows 7 to 9) align well with

their narrower counterparts, reinforcing the validity of these categorizations. In sum there

exist specific, identifiable skills in the labor market, some of which are more align with each

other, but they tend not to overlap, reflecting distinct competencies.
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A.3 Alternative Non-parametric Examination of Trend

An intuitive alternative check of the changes in the degree of skill mixing across periods is to

non-parametrically plot the density of skill intensities in different skill dimensions. Figure A1

depicts the density of skill requirements of six skill pairs out of the four constructed skills in

2005 and 2018 respectively using O*NET data combined with ACS. As in previous studies

of job attributes, I aggregate the ACS to sex-education-industry cells that implicitly control

for changes in task inputs due to variations in skill and industry mixes in the U.S. economy.

Employment weights are obtained as the total hours of work aggregated to each cell. The

ACS then supplies the O*NET data with employment across worker types to present an

overarching picture of skill intensities in the economy.

From the figure, there is a clear shift towards mixed skill requirements in panel (1)

pertaining to analytical and computer skills where these skills are positively correlated. Two

salient changes happened in this period: first, the entire distribution of skill intensities moves

near the 45-degree line; second, there is a significant increase in density around the 45-degree

line. Both of these changes will lead to an increased degree of skill mixing, according to how

it is defined based on the position of skill vectors relative to the 45-degree line. Such a change

is also salient for other non-routine skill combinations: in the analytical and interpersonal

skills space (panel 2), as well as in the computer and interpersonal skills space (panel 4).

On the other hand, one can scarcely observe changes towards mixing in the routine skill

spaces, as shown in panel (3),(5) and (6). From these three plots, there is an increase in density

towards the non-routine direction, losing density in routine skill, and the resulting change in

relationship with the diagonal doesn’t indicate a strengthening of mixing.
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Figure A1: Non-parametric Depiction of Skill Intensities, 2005 vs. 2018
Online Appendix. Non-parametric Depiction of Skill Intensities, 2005 vs. 2018 

 
(1) analytical + computer  (2) analytical + interpersonal 

  

 

  
(3) computer + routine  (4) computer + interpersonal 

  

 

  
(5) routine + analytical  (6) routine + interpersonal 

  

 

  

 
Notes: These density plots show the intensity of occupation skill requirements across the U.S. economy in 2005 (column 1) 
and 2018 (column 2) in six two-dimensional skill spaces, as illustrated in the six panels. Darker colors indicate higher density 
and the 45-degree line is also plotted. O*NET and ACS data are combined for the construction of these plots. The two 
datasets are merged using consistent occupation codes constructed by \cite{price2013} and further developed by 
\cite{deming2017social}. Skill measures are constructed using the O*NET descriptors shown in Table 
\ref{appen_tab_onet}. All measures are normalized to [0,1]. 
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Notes: These density plots show the intensity of occupation skill requirements across the U.S. economy in 2005 (column 1) and 2018 (column 2) in six
two-dimensional skill spaces, as illustrated in the six panels. Darker colors indicate higher density and the 45-degree line is also plotted. O*NET and ACS
data are combined for the construction of these plots. The two datasets are merged using consistent occupation codes constructed by Autor and Price
(2013) and further developed by Deming (2017). Skill measures are constructed using the O*NET descriptors shown in Table A1. All measures are
normalized to [0,1].

9



A.4 Robustness of Trend Results to Different Weights and Groupings

In this section, I discuss the robustness of the trend results to different weighting, granularities,

and groupings. In particular, I show the density results using weighted skill mixing indexes

instead of unweighted in the main analysis; the trend of skill mixing using indexes for

different skill pairs, instead of high-dimensional indexes; the heterogeneity of skill mixing

increases across occupations using indexes for different skill pairs; and the differential changes

in skill mixing across industries.

Figure A2: Density for Skill Mixing Indexes (Weighted Cosine Distances), 2005 vs. 2018
 Figure 2. Density for Skill Mixing Indexes (Cosine Distances), 2005 vs. 2018 

   
(1) RNR Skills (2) Non-routine Skills (3) Other Non-routine 

Notes: These figures plot the kernel density of different skill mixing indexes in 2005 (light blue line) and 2018 (dark blue 
line). The x-axis displays the value of skill mixing indexes with a maximum of 1 by construction. “RNR” indicates routine 
and non-routine skills that are defined by Autor and Acemoglu (2011). “Other non-routine” include leadership and design 
skills. These plots are created using O*NET at 7-digit occupations without employment weighting. 
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Notes: These figures plot the PDF of different mixing indexes in 2005 (light blue line) and 2018 (dark blue
line). The x-axis displays the value of mixing indexes with a maximum of 1 by construction. These plots are
created using O*NET and ACS data merged with occupation codes constructed by Autor and Price (2013) and
developed by Deming (2017).

On concern of analysis of skill mixing shown in 2 is that as it shows the changes in the

density of skill mixing indexes without weighting, it might not accurately represent the

overall picture of mixing in the whole economy. In A2, I weight the skill mixing indexes

using employment weight at 6-digit SOC level occupation from OEWS. The results show a

similar message that there is sizable increase in skill mixing particularly for non-routine skills.

The only difference is that with employment weighting, the increase in the skill mixing of

RNR skill is more discernable. This implies relative higher weight of occupations intensive in

RNR skills that also increase in skill mixing in these skills.

Next, I discuss the changes in skill mixing using indexes of different skill pairs instead of

high-dimensional indexes. Figure A5 panel (1) shows the results. The figure shows similar

results as the main analysis: there is a stronger increase in skill mixing among non-routine
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skills. For the skill combinations involving routine skills, the change in skill mixing is

negligible.

In Table A4, I show the decomposition results of the changes in the skill mixing indexes

for different skill pairs across different datasets. A similar pattern as the main analysis in 1,

that is within-occupatoin variation surpassed across-occupation variation in accounting for

the increase for skill mixing. This is particularly true using constantly updated occupations

at 6-digit occupatoin level for non-routine skill pairs, and also quite apparent in the Lightcast

data. The only slight difference is that for full O*NET data at 6-digit level, across-occupatoin

variation do contribute to a comparable amount to the change in skill mixing for skill pairs

with routine skill.

Additionally, in Figure A3, I show employment percentages and hourly wages across

various job categories in the full and the sample for constantly updated occupation. This

information gives the occupational structure and return for these two samples. It can be seen

that while professionals make up a smaller percentage in the selected sample, they exhibit

a higher average wage, suggesting a focus on higher-earning professionals in the selected

sample. Conversely, the sales category shows a drastic reduction in the selected sample,

indicating its limited representation. The hourly wage rates across the categories seem fairly

consistent between the full and selected samples, with minor discrepancies.
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Table A4: Decomposition of Mixing Indexes’ Changes by Skill PairsOnline Appendix Table. Decomposition of Mixing Indexes’ Changes by Skill Pairs 

  
Skill Groups 

6-digit Occupations  4-digit Occupations 

total within across  total within across 

Full O*NET 

analytical + computer 10.52  6.40  4.12   10.49  6.60  3.89  

analytical + interpersonal 5.36  2.90  2.46   8.17  4.08  4.09  

computer + routine 4.38  2.41  1.97   5.16  2.94  2.22  

computer + interpersonal 7.23  3.60  3.63   11.81  7.51  4.30  

routine + analytical 4.00  2.29  1.71   4.23  3.16  1.07  

routine + interpersonal 1.93  0.12  1.81   2.35  1.08  1.26  

Constant Updates 

analytical + computer 5.59  6.03  -0.44    6.42  5.89  0.53  

analytical + interpersonal 3.53  4.58  -1.05   4.00  3.00  1.00  

computer + routine 2.88  3.69  -0.81   0.52  1.93  -1.42  

computer + interpersonal 0.78  1.86  -1.09   6.86  5.93  0.93  

routine + analytical 2.04  2.13  -0.09   1.48  3.60  -2.12  

routine + interpersonal 0.81  0.82  -0.01    -0.33  1.47  -1.80  

Lightcast 

analytical + computer         12.64  11.74  0.90  

analytical + interpersonal     2.51  2.20  0.31  

computer + interpersonal         -4.18  -3.79  -0.39  

Notes: This table shows the shift-share decomposition of changes in the average level of different mixing indexes 
between 2000-2020 in centile units. Specifically, for a change in the centile of a mixing index ℎ over two periods " and # , its change ∆%ℎ" = %" − %# which can be decomposed to ∆%ℎ = ∑ (∆($")$ℎ)$ + ∑ (($∆)$ℎ" ) = ∆%ℎ% +$∆%ℎ&, where ($"  is employment weight in occupation , in year # , and )$ℎ"  is the level of mixing index ℎ in occupation ,  in year # , ($ = 12 (($# + ($")  and )$ℎ = 12 ()$ℎ# + )$ℎ") . ∆%ℎ%  and ∆%ℎ&  then represent across-occupation and within-occupation change 

 

Notes: This table shows the shift-share decomposition of changes in the average level of different mixing indexes between 2005-2018 in percentile units.
Specifically, for a change in the percentile of a mixing index h over two periods t and τ, its change ∆Thτ = Tτ − Tt which can be decomposed to
∆Th = ∑j

(
∆Ejταjh

)
+ ∑j

(
Ej∆αjhτ

)
= ∆Ta

h + ∆Tw
h where Ejτ is employment weight in occupation j in year τ, and αjhτ is the level of mixing index

h in occupation j in year τ, Ej =
1
2 (Ejt + Ejτ) and αjh = 1

2 (αjht + αjhτ). ∆Ta
h and ∆Tw

h then represent across-occupation and within-occupation change.
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Figure A3: Mixing Index Change by Industry and Occupation Groups, 2005-2018 Appendix Figure. Employment and Wage Distribution of Constantly Updated Occupations 

 

 
Now, I turn to discuss the robustness of the occupation heterogeneity in skill mixing

changes. Figure A3 provides a detailed view of the changes in the skill mixing of different

skill pairs across various occupations. Overall, the increase in the degree of mixing of non-

routine skill pairs is higher than the increase in the mixing of skill pairs that include routine

skills. Service and blue-collar occupations experience the highest increases in skill mixing of

different skills, surpassing white-collar and high-wage occupations. When it comes to routine

skills, blue-collar jobs lead other occupations in terms of increase in mixing.

Figure A3 also provides a detailed view of the changes in the skill mixing of RNR and

non-routine skills across various industries. The main patterns indicate that the private service

sector, followed by retail trade and construction, leads others in the growth of skill mixing,

while public, education, social, and professional services experience the least increases in skill

mixing. There is also noticeable heterogeneity across industries in terms of the skills that are

mixed. For instance, in finance, real estate, and professional services, there is much higher

mixing in non-routine skills relative to RNR skills; conversely, in industries like mining,

transportation, public utilities, and construction, RNR skills are mixed in a higher degree.
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Figure A4: Mixing Index Change by Industry and Occupation Groups, 2005-2018Online Appendix Figure. Mixing Index Change by Industry and Occupation Groups, 2005-2018 

 

 
Notes: These two figures plot the changes in mixing indexes across different occupation groups. The unit of the index 
changes is in centiles of their distribution in the year 2000, similar to Figure 4. Workers are categorized into four broad 
occupation groups – High Skill, White Color, Blue Color, and Service. The figure is constructed by combining O*NET data 
with gender and employment weight from ACS, and the categorization of occupations follows Acemoglu & Autor (2011).  
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A.5 Robustness of Trend Results to Measures of Skills

In this section, I discuss the robustness of the trend results to using alternative measures of

skills. Specifically, I present alternative trend results using different ways of processing skill

descriptors from O*NET, such not using PCA, and standardizing rather than rescaling. I also

show the robustness using broader skill measures than those applied in the main analysis.

Alternative Construction of Skills: Since O*NET contains a large number of descriptors,

many of which capture the same dimensions of skill requirements, it becomes standard prac-

tice to first abstract useful information from the descriptors to construct lower-dimensional

measures of skills. The first approach, as in Autor, Levy, and Murnane (2003), Acemoglu

and Autor (2011) and Deming (2017), takes the average of a subset of variables and assumes

that such average represents a particular broader skill intensity and not others. The other

approach, as in Lise and Postel-Vinay (2020), applies PCA to the entire set of variables, which

assumes that each of the variables contains information about underlying components that

are orthogonally distributed. Both approaches impose different assumptions, with the first

one giving more easily interpretable skill groups while the second being more data-driven. A

third approach, as in Yamaguchi (2012), first picks descriptors that are ex-ante most easily

interpretable with respect to each skill dimension, and then conducts PCA on those descrip-

tors to abstract the most relevant variation. The main body of the paper adopts the third

approach; here I show robustness checks using alternative skill measures.

Online Appendix Figure A5 presents the trend results using skill measures constructed

by taking an average of the descriptors without imposing PCA (panel 2) and using skill

measures normalized by standard deviation rather than linearly scaled to [0, 1] (panel 3).

Normalizing by standard deviation necessarily creates negative values for the skills; since the

mixing index is defined based on positive real values, having these negative values invalidates

the mixing index in measuring skill mixing. One solution is to add a positive number to the

skill measures. As any number chosen is essentially arbitrary, here I added the negative of

the smallest value such that the re-scaled measure lies exactly above 0. For both of these

robustness exercises, the main message is similar to the main text: there is a significant

increase in mixing for non-routine skills, and less so for RNR skills.

Skill Measures: Another concern is that by using skill measures from Acemoglu and Autor

(2011), each of which is constructed from a few descriptors, the resulting skill measures could
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be relatively “narrow” and don’t provide a comprehensive depiction of the skill spaces. To

alleviate this concern, I construct skill measures using a broader set of descriptors, similar to

that of Lise and Postel-Vinay (2020). I first select descriptors from abilities, knowledge, skills,

and work activities files that are more relevant for job skill demand, leaving me with around

163 descriptors. I then combine each year’s O*NET data with ACS and conduct PCA on the

merged data from the year 2005-2018.

The result from this approach supports the choice of analytical, routine, and interpersonal

skills in the main text The first three factors out of PCA explain around 60% of the variation

across all the descriptors for years. The first factor has a strong positive association with reason

and math skills, such as "Deductive Reasoning", "Inductive Reasoning" and "Mathematics",

while the second factor relates more to motor coordination and mechanical work, such as

"Multi-limb Coordination", "Mechanical" and "Equipment Maintenance". The third factor is

clearly more associated with interacting with other people, such as "Selling or Influencing

Others" and "Resolving Conflicts and Negotiating with Others". I interpret the second factor

as "mechanical" rather than routine for the broader skill measures.

After conducting PCA, one could directly extract the factors imposing the assumptions

that these factors are orthogonal to each other. While this is obviously quite convenient, it

nevertheless creates the challenge of interpretability, since each of the factors has been con-

structed such that it is positively or negatively correlated with all of the 163 descriptors, and

the assumption of orthogonality appears strong if the underlying skills are complementary

in production across occupations. To take a fine balance between comprehensibility and

interpretability, I adopt an approach similar to the measurement validation literature (Costello

and Osborne 2005; Thompson and Daniel 1996), where I first conduct PCA/factor analysis

to reveal the underlying dimensionality and structure of the measure (as has been done in

the previous step). Guided by the factor loadings, I then hand-pick the skill descriptors into

three broad groups “analytical”, “mechanical” and “interpersonal” without imposing the

orthogonality assumption.

Online Appendix Table A5 illustrates the selected descriptors for each of the composite

skill measures. These descriptors are broadly in line with Acemoglu and Autor (2011)

but have several distinctions. First, the descriptors coming from factor analysis lean more

toward reasoning, comprehension, and expression. Second, the mechanical skill used in

the main text is the average of two ASVAB test scores that are constructed by the weighted
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average of 26 O*NET descriptors. The ASVAB “Mechanical Comprehension” tests contestants’

“understanding of the principles of mechanical devices, structural support, and properties

of materials” and the ASVAB Electronics Information tests contestants’ “understanding of

electrical current, circuits, devices, and systems”, both stressing one’s knowledge basis. On

the other hand, the descriptors chosen by conducting PCA relate more to physical control,

coordination, and machine operation aspects rather than mental perception. Third, the

descriptor choices for interpersonal skill from factor analysis also emphasize interactions

with others as in Acemoglu and Autor (2011) but are more comprehensive.

Online Appendix Figure A5 panel (4) illustrates the trend results using these broader skill

measures. The message on the growth of skill mixing remains the same as the main text, that

is there is strong growth of skill mixing for non-routine skills. Nontheless, for RNR skills, the

degree of skill mixing has decreased using the broader measures.
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Figure A5: Trend of Skill Mixing with Alternative Skill Measures
Online Appendix Figure. Trend of Skill Mixing with Alternative Skill Measures 

 
(1) Skill Pairs   

   

(2) Without PCA  (3) Standardized Skill Measures (4) Broader Skill Measures 

   

Notes: These three panels plot the employment-weighted mixing indexes of different skills in the U.S. economy from 
2005-2018 using O*NET and ACS data. Panel (1) shows the changes in skill mixing indexes of 6 skill pairs of the 4 
skills. In panel (2) mixing indexes are calculated using skill measures without using PCA, and in panel (3), skill measures 
are normalized to have mean 0 and standard deviation 1. Panel (4) shows the changes in mixing indexes using broader 
skill measures as described in Online Appendix A.  
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Notes: These three panels plot the employment-weighted mixing indexes of different skills in the U.S. economy from 2005-2018 using O*NET and ACS
data. Panel (1) shows the changes in skill mixing indexes of 6 distinct skill pairs of the 4 skills. In panel (2), skill mixing indexes are calculated using skill
measures without using PCA, and in panel (3), skill measures are normalized to have mean 0 and standard deviation 1. Panel (4) shows the changes in
mixing indexes using broader skill measures as described in online Appendix A.5.
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Table A5: Components of Broader Skill MeasuresOnline Appendix Table. Components of Broader Skill Measures 

Analytical  Mechanical  Interpersonal 
• Deductive Reasoning  • Multilimb Coordination  • Assisting and Caring for Others 

• Inductive Reasoning  • Speed of Limb Movement  • Selling or Influencing Others 

• Mathematical Reasoning  • Mechanical  • Resolving Conflicts and Negotiating 

• Number Facility  • Performing General Physical Activities  • Coaching and Developing Others 

• Mathematics  • Handling and Moving Objects  • Staffing Organizational Units 

• Economics and Accounting • Controlling Machines and Processes  • Service Orientation 

• Reading Comprehension  • Operate Vehicles, Mechanized Devices or Equipmnt • Administration and Management 

• Writing  • Repairing and Maintaining Mechanical Equipment  • Customer and Personal Service 

• Speaking  • Repairing and Maintaining Electronic Equipment    

• Oral Comprehension  • Installation    

• Written Comprehension  • Equipment Maintenance    

• Oral Expression  • Repairing    

• Written Expression  • Production and Processing    

 
 
Notes: This table lists the O*NET descriptor components for each of the constructed (broader) composite skill groups as discussed in online Appendix 
\ref{appen_emp_trend1}. 

Notes: This table lists the O*NET descriptor components for each of the constructed (broader) composite skill groups as discussed in online Appendix A.5.
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A.6 Robustness of Trend Results to Measures of Skill Mixing

I introduce two additional measures and show the robustness of the trend results using these

alternative mixing measures.

A first commonly used measure for concentration or specialization based on the share

of a total quantity is the Herfindahl–Hirschman Index (HHI).60 Equation (8) shows how to

use inverse HHI to measure skill mixing for an occupation represented by (αja, αjs). Observe

that this index is maximized when αja = αjs, exactly corresponding to the case when the skill

vector lies on the unit vector and becomes most mixed. If one skill’s intensity is greater than

the other, the occupation becomes less mixed and this index becomes smaller. Similar to an

angle-based mixing index, this measure is insensitive to the length of a skill vector, since each

skill is normalized by the total quantity of skills in that occupation.

[( αja

αja + αjs

)2
+
( αjs

αja + αjs

)2]−1
(8)

−
|αja − αjs|
αja + αjs

(9)

Under a similar vein, the degree of skill mixing could also be measured by normalizing

the absolute distance between skill intensities for a skill vector: as this distance decreases, the

overall skill portfolio becomes more balanced; normalization then eliminates the effect of the

length of the skill vector. Equation (9) gives a particular specification of such a measure. As

can be seen from this construction, as the absolute distance between skill intensities decreases

and the degree of mixing increases, this measure also increases, though from the direction of

(−∞, 0).

In Online Appendix Figure A6, I show the robustness of the trend results using these

alternative measures in panels (1) and (2). Both measures deliver the same message as

the cosine mixing index in the main text, that is, there is a sizable increase in skill mixing,

particularly for non-routine skills. The only difference is that for the HHI skill index, there is

also comparable increase in skill mixing for RNR skills.

60For applications in the labor literature, Ransom and Phipps (2017) and Jin (2017) use the inverse of HHI
as the “variety index” to examine how diverse the jobs held for students who graduated from a certain major.
Similar logic can be applied to the measurement of skill mixing: in the context of 2-dimensional skill space, the
more “varied” skills an occupation uses essentially means that skills are more mixed.
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Figure A6: Trend of Skill Mixing with Alternative Indexes
Online Appendix Figure. Trend of Skill Mixing with Alternative Indexes and Data 

 
(1) Inverse Herfindahl   

   
(2) Absolute Distance   

   
 

Notes: These three panels plot the employment-weighted mixing indexes of different skills in the U.S. economy from 
2000-2020 using O*NET and ACS data. In panels (1) and (2), mixing indexes are calculated using the Inverse Herfindahl 
index and Absolute Distance as discussed in Online Appendix A. Panel (3) shows the changes of mixing indexes for 
around 250 occupations that are constantly updated every 6 years in the O*NET data from 2000-2020.  
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Notes: These three panels plot the employment-weighted mixing indexes of different skills in the U.S. economy from 2005-2018 using O*NET and ACS
data. In panels (1) and (2), mixing indexes are calculated using the Inverse Herfindahl index and Absolute Distance as discussed in online Appendix A.6.
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A.7 Additional Results on Wage and Employment Returns

In this section, I provide more detailed results on wage returns, and results relating em-

ployment to occupation skill mixing. I also provide robustness results to the analysis of the

returns to skill mixing in the main paper.

Detailed Results on Wage and Employment Returns: I first check the returns to individual

skills and how they interact with the returns to skill mixing. Table A6 columns (1) shows that

in a cross-sectional regression analytical and computer skills both have significant positive

returns. Workers employed in occupations requiring a higher degree of these two skills earn

more. Nonetheless, worker in occupations that requiring a higher level of interpersonal skills

have a wage reduction.

Column (2) of Table A6 shows that by restricting to within-occupation variation and

including skill mixing measures and an important pattern appears: the coefficients for

most individual skills become slightly more negative (except for routine skill),61 while the

skill mixing indexes of analytical paired with interpersonal skills, as well as of routine and

interpersonal skills show significant positive returns. Such a pattern persists in column (3)

and (4) including worker skills and fixed effects, only that the skill mixing of analytical and

computer skills are more precisely estimated to have a positive return. This indicates that the

mixing of skills earns separate and additional rewards beyond those predicted by individual

skills.

Turning to employment, there is also a positive employment premium for workers with

a more mixed skill set. Column (6) of Table A6 shows that workers with a more mixed

level of computer and interpersonal routine skills, or computer and interpersonal skills, or

routine and interpersonal skills, are more likely to move from unemployment to employment.

Workers with a more mixed level of analytical and computer, or analytical and interpersonal

skills, are also more likely to exit unemployment, but the results are not precisely estimated.

On the other hand, workers with a more mixed level of routine and interpersonal skills are

less likely to find employment.

61The insignificant or even negative return to analytical skill over time also finds support from the literature.
Lise and Postel-Vinay (2020) shows a strong negative 14.4 percent return on cognitive skill using NLSY data
with 3-digit occupation fixed effects. Deming (2017) found that the return to cognitive skills has declined across
the NLSY79 and NLSY97 cohorts, similar to Castex and Kogan Dechter (2014).
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Robustness Checks: Table A7 shows the robustness checks to the results in Table 3. Specifi-

cally, Columns (1) and (2) utilize the Absolute Distance and Inverse Herfindahl measures to

formulate mixing indexes (refer to online Appendix A.6 for details), while Columns (3) and

(4) employ standardized and broader measures of skills (refer to online Appendix A.5 for

details).

The findings presented in Table A7 clearly indicate a consistent trend: workers experience

a positive return when they are employed in occupations that are more mixed of analytical

with computer skills, analytical with interpersonal skills, and routine with interpersonal skills.

Specifically, a notable increase in wage is observed with workers are in occupations more

mixed of analytical and computer skills, especially when applying standardized and broad

skill measures; similarly, occupations becoming more mixed of analytical and interpersonal

skills, when assessed using the Absolute Distance and Inverse Herfindahl measures, also

show a significant positive return. The mixing of routine and interpersonal skills exhibits a

positive return as well across the different measures.

On the other hand, the mixing of computer and routine skills, computer and interpersonal

skills, and routine and analytical skills all exhibit significant negative wage returns at the

occupational level. These negative coefficients may indicate that the combination of these

particular skills is less beneficial or leads to inefficiency
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Table A6: Return to Skill Mixing Full Table with Individual SkillsOnline Appendix Table. Return to Skill Mixing Full Table with Individual Skills 

Dependent: ln(hourly wage) (1) (2) (3) (4) 
Occupation Skills     

 Analytical -0.019** -0.019** -0.012 -0.033*** 
  [0.009] [0.009] [0.008] [0.011] 

 Computer -0.002 -0.008 -0.003 -0.017 
  [0.010] [0.011] [0.009] [0.013] 

 Interpersonal -0.019** -0.022** -0.021*** -0.027** 
  [0.009] [0.009] [0.008] [0.011] 

 Routine 0.027*** 0.035*** 0.025*** 0.047*** 
  [0.010] [0.011] [0.009] [0.015] 

 Mix (analytical + computer) 0.007 0.011** 0.013*** 0.012 
  [0.005] [0.005] [0.005] [0.008] 

 Mix (analytical + interpersonal) 0.016*** 0.016*** 0.015*** 0.028*** 
  [0.005] [0.005] [0.004] [0.007] 

 Mix (computer + routine) -0.022** -0.029*** -0.021*** -0.026** 
  [0.009] [0.009] [0.008] [0.012] 

 Mix (computer + interpersonal) -0.008 -0.012** -0.014*** -0.012 
  [0.006] [0.006] [0.005] [0.009] 

 Mix (routine + analytical) -0.050*** -0.056*** -0.050*** -0.058*** 
  [0.008] [0.009] [0.008] [0.012] 

 Mix (routine + interpersonal) 0.023*** 0.029*** 0.019** 0.023* 
  [0.008] [0.009] [0.008] [0.012] 

Worker Skills 
    

 Afqt (analytical) 
 

0.065*** 
 

-0.038 
  

 
[0.012] 

 
[0.023] 

 Computer 
 

0.045*** 
 

0.017 
  

 
[0.006] 

 
[0.023] 

 Social (interpersonal) 
 

0.015*** 
 

-0.003 
  

 
[0.005] 

 
[0.029] 

 ASVAB (routine) 
 

-0.008 
 

-0.012 
  

 
[0.016] 

 
[0.022] 

 Mix (afqt + computer) 
 

0.044* 
 

0.017 
  

 
[0.023] 

 
[0.013] 

 Mix (afqt + social) 
 

0.028* 
 

-0.075*** 
  

 
[0.015] 

 
[0.020] 

 Mix (computer + asvab mech) 
 

0.013 
 

-0.070*** 
  

 
[0.025] 

 
[0.026] 

 Mix (computer + social) 
 

0.008 
 

0.061*** 
  

 
[0.013] 

 
[0.019] 

 Mix (asvab mech + afqt) 
 

0.001 
 

0.096** 
  

 
[0.009] 

 
[0.039] 

 Mix (asvab mech + social) 
 

-0.040*** 
 

-0.045 
  

 
[0.011] 

 
[0.042] 

      
 Ethnicity*Gender, Age/Year, Region, Edu FE X X X X 
 Occupation FE X X X X 
 Worker FE   X X 
 Observations 87,655 78,719 87,655 50,580 
  R-squared 0.426 0.439 0.758 0.761 

 
Notes: This table reports the full table of log wage regression based on pooled NLSY79&97 for employed workers. The 
occupational skill and mixing measures come directly from O*NET and are merged to NLSY79&97 based on census 
occupation codes. All measures of skill and mixing are normalized to have mean 0 and standard deviation 1. Ethnicity-by-
gender, age, year, census region, urbanicity, and a 5-category education fixed effects are included for all regressions. *** 
p<0.01, ** p<0.05, * p<0.10  

                

Notes: See Table 3 notes.
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Table A7: Robustness Checks of Return to Skill MixingOnline Appendix Table. Robustness Checks of Return to Skill Mixing 

Dependent: ln(hourly wage) (1) (2) (3) (4) 

Occupation Skills     

 Analytical -0.014* -0.008 -0.009 -0.013 

  [0.008] [0.033] [0.008] [0.008] 

 Computer -0.002 0.069** 0.002 -0.038*** 

  [0.009] [0.027] [0.009] [0.010] 

 Interpersonal -0.019** -0.118*** -0.018** -0.014* 

  [0.008] [0.030] [0.008] [0.008] 

 Routine 0.026*** 0.091*** 0.005 0.010 

  [0.009] [0.017] [0.008] [0.008] 

 Mix (analytical + computer) 0.007 -0.040 0.008* 0.020*** 

  [0.005] [0.036] [0.005] [0.007] 

 Mix (analytical + interpersonal) 0.010** 0.156*** 0.006 0.025*** 

  [0.004] [0.042] [0.004] [0.005] 

 Mix (computer + routine) -0.028*** -0.045*** -0.021** -0.087*** 

  [0.007] [0.015] [0.008] [0.013] 

 Mix (computer + interpersonal) -0.011** -0.019 -0.013*** -0.021*** 

  [0.005] [0.033] [0.005] [0.008] 

 Mix (routine + analytical) -0.033*** -0.080*** -0.041*** -0.041** 

  [0.007] [0.015] [0.008] [0.018] 

 Mix (routine + interpersonal) 0.010 0.033** 0.033*** 0.026** 

  [0.007] [0.016] [0.006] [0.012] 
      
 Ethnicity ✕ Gender, Age, Region, Edu FE X X X X 
 Occupation FE X X X X 
 Worker FE X X X X 
 Observations 87,655 87,655 87,655 87,655 
  R-squared 0.757 0.757 0.757 0.758 

Notes: This table reports the robustness checks to the results in Table 5. Columns (1) and (2) use Absolute Distance and 
Inverse Herfindahl measures to construct mixing indexes (see Online Appendix C for details) and Columns (3) and (4) use 
standardized and broad measures of skills (see Online Appendix B for details). Log hourly wages are the outcome variables 
and person-year is the unit of observation. The data used for the regression are pooled NLSY79&97 for employed workers. 
The occupational skill and mixing measures come directly from O*NET and are merged to NLSY79&97 based on census 
occupation codes. All measures of skill and mixing are normalized to have mean 0 and standard deviation 1. Ethnicity-by-
gender, age, year, census region, urbanicity, and a 5-category (no high-school, high-school graduate, some college, college 
graduate, post-college) education fixed effects are included for all regressions, with additional fixed effects as indicated in 
the table. Standard errors are clustered at the individual level. *** p<0.01, ** p<0.05, * p<0.10  

Notes: This table reports the robustness checks to the results in Table 3. Columns (1) and (2) use Absolute
Distance and Inverse Herfindahl measures to construct mixing indexes (see online Appendix A.6 for details)
and Columns (3) and (4) use standardized and broad measures of skills (see online Appendix A.5 for details).
Log hourly wages are the outcome variables and person-year is the unit of observation. The occupational
skill and skill mixing measures come directly from O*NET and are merged to NLSY79&97 based on census
occupation codes. All measures of skill and skill mixing are normalized to have mean 0 and standard deviation
1. Ethnicity-by-gender, age, year, census region, urbanicity, and a 5-category (no high-school, high-school
graduate, some college, college graduate, post-college) education fixed effects are included for all regressions,
with additional fixed effects as indicated in the table. Standard errors are clustered at the individual level. ***
p<0.01, ** p<0.05, * p<0.10.
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Table A8: Top College Majors in Skill MixingOnline Appendix Table. Top College Majors in Skill Mixing 

Mixing Index – Level   Mixing Index – Change 
analytical + computer 

Physical Sciences 
  

Agriculture and Natural Resources 
Social Sciences Mathematics 
Area Studies Letters 

analytical + interpersonal 
Education 

  

Mathematics 

Military Sciences 
Architecture and Environmental 

Design 
Theology Agriculture and Natural Resources 

computer + routine 
Military Sciences 

  
Agriculture and Natural Resources 

Health Professions Law 
Mechanics Engineering 

computer + interpersonal 
Physical Sciences 

  

Agriculture and Natural Resources 
Education Letters 

Psychology 
Architecture and Environmental 

Design 
routine + analytical 

Mechanics 
  

Agriculture and Natural Resources 
Military Sciences Area Studies 
Transportation Engineering 

routine + interpersonal 
Mechanics 

  

Law 
Military Sciences Theology 
Transportation Mathematics 

Notes: This table lists the top 3 college majors for each mixing index both in terms of levels and in terms of changes from 
2000 to 2019. To calculate the degree of skill mixing for college majors, I first map the occupation level degree of skill mixing 
contained in the O*NET data to NLSY, and then calculate for each college major’s students, the employment weighted 
average of skill intensities and mixing indexes of their occupations. I use both NLSY79&97 to get the employment weight 
on occupations.  

 

 

Notes: This table lists the top 3 college majors for each mixing index both in terms of levels and in terms of
changes from 2005 to 2019. To calculate the degree of skill mixing for college majors, I first map the occupation
level degree of skill mixing contained in the O*NET data to NLSY, and then calculate for each college major’s
students, the employment weighted average of skill intensities and mixing indexes of their occupations. I use
both NLSY79&97 to get the employment weight on occupations.
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Table A9: Return to Skill Mixing Full Table with Individual SkillsOnline Appendix Table. Crosswalk Among NLSY Major Field of Study Codes 
NLSY97 Code 
(before 2010) Major Field of Study NLSY79 

Code
NLSY97 Code 

(CM10) Major Field of Study NLSY79 
Code

NLSY79 
Code Major Field of Study

0 None, no major yet (didn't/don't) have to declare yet; . 1 Agriculture, agriculture operations, & related sciences 1 0 None, General Studies
1 Agriculture/Natural resources 1 3 Natural resources and conservation 1 1 Agriculture and Natural Resources
2 Anthropology 22 4 Architecture and related services 2 2 Architecture and Environmental Design
3 Archaeology 22 5 Area, ethnic, cultural, gender, and group studies 3 3 Area Studies
4 Architecture/Environmental design 2 9 Communications, journalism, and related programs 6 4 Biological Sciences
5 Area studies 3 10 Communications technologies/technicians & support services 6 5 Business and Management
6 Biological sciences 4 11 Computer & information sciences & support services 7 6 Communications
7 Business management 5 12 Personal and culinary services 49 7 Computer and Information Sciences
8 Communications 6 13 Education 8 8 Education
9 Computer/Information science 7 14 Engineering 9 9 Engineering
10 Criminology 22 15 Engineering technologies & engineering-related fields 9 10 Fine and Applied Arts
11 Economics 22 16 Foreign languages, literatures, and linguistics 11 11 Foreign Languages
12 Education 8 19 Family and consumer sciences/human sciences 13 12 Health Professions
13 Engineering 9 22 Legal professions and studies 14 13 Home Economics
14 English 15 23 English language and literature/letters 15 14 Law
15 Ethnic studies 3 24 Liberal arts and sciences, general studies & humanities 49 15 Letters
16 Fine and applied arts 10 25 Library science 16 16 Library Science
17 Foreign languages 11 26 Biological and biomedical sciences 4 17 Mathematics
18 History 22 27 Mathematics and statistics 17 18 Military Sciences
19 Home economics 13 28 Military science, leadership, and operational art 18 19 Physical Sciences
20 Interdisciplinary studies 49 29 Military technologies and applied sciences 18 20 Psychology
21 Mathematics 17 30 Multi/interdisciplinary studies 49 21 Public Affairs and Services
22 Nursing 12 31 Parks, recreation, leisure, and fitness studies 21 22 Social Sciences
23 Other health professions 12 32 Basic skills development/remedial education 8 23 Theology
24 Philosophy 15 33 Citizenship activities 21 24 Mechanics
25 Physical sciences 19 34 Health-related knowledge and skills 12 25 Transportation
26 Political science and government 21 35 Interpersonal and social skills 6 49 Interdisciplinary Studies
27 Pre-dental 4 36 Leisure and recreational activities 49 99 Other
28 Pre-law 14 37 Personal awareness and self-improvement 8
29 Pre-med 4 38 Philosophy and religious studies 15
30 Pre-vet 4 39 Theology and religious vocations 23
31 Psychology 20 40 Physical sciences 19
32 Sociology 22 41 Science technologies/technicians 24
33 Theology/religious studies 23 42 Psychology 20

36 Nutrition/Dietetics 4 43 Homeland security, law enforcement, firefighting, and related 
protective services 18

37 Hotel/Hospitality management 5 44 Public administration and social service professions 21
38 Other - Recoded to Liberal Arts and Sciences 49 45 Social sciences 22

39 Other - Recoded to Automobile/Automotive Mechanics  
Technology/Technician 24 46 Construction trades 24

40 Other - Recoded to Human Services, General 21 47 Mechanic and repair technologies/technicians 24
41 Other - Recoded to Social Work 21 48 Precision production 24

42 Other - Recoded to Electrical/Electronics Maintenance 
and  Repair Technology 24 49 Transportation and materials moving 25

43 Other - Recoded to Geography 22 50 Visual and performing arts 10
44 Other - Recoded to International Relations & Affairs 21 51 Health professions and related programs 12
45 Other - Recoded to transportation & materials moving 25 52 Business, management, marketing, & related support services 5
46 Other - Recoded to security and protective services 21 53 High school/secondary programs and certificates 8
47 Other - Recoded to legal support services 14 54 History 22
48 Other - Recoded to other sciences/applied sciences 49 60 Residency programs 12
99 UNCODABLE 99 999 Uncodable 9927



B THOERY AND QUANTITATIVE

B.1 Propositions and Proofs

Lemma 1. An occupation y = {y1, ..., yk, . . . , yK} ∈ S ⊂ RK within a closed skill space S of

dimension K is more mixed in skills based on Definition 1 if for any pair of skills (j, k), the ratio of
yj
yk

becomes closer to 1.

Proof of Lemma 1: For the occupation y and we want to establish how the degree of skill

mixing changes if the skill dimensions for j and k are to vary. The lemma can be simply

proved by considering the skill mixing index for for this occupation. Let yk = ryj and denote

yj by y, the mixing index for y is:

y + ry + A√
K
√

y2 + r2y2 + B
,

where A and B are two constants that don’t depend on yk and yj. The above equation is

maximized at r = 1. Therefore, for any yj, the occupation is more skill-mixed if the ratio r is

close to 1. This completes the proof. Q.E.D.

Proposition 1 (Changes in Skill Mixing). Consider an occupation yt = {y1
t , ..., yk

t , . . . , yK
t } ∈ S ⊂

RK within a closed skill space S of dimension K. Assume that firms operate the occupation with a

production technology as described by equation (3) and under an occupational rental cost defined by

equation (7). Under these conditions, occupation yt will show an increased degree of skill mixing given

the following conditions:

(i) The skills within the vector yt demonstrate an rise in complementarity in production (a decrease
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in σ), provided that σ does not undergo a change in sign.

(ii) The skills within the vector yt exhibit an higher increasing marginal cost (an increase in φ),

under the condition that φ > σ.

Additionally, occupation yt will exhibit a increased degree of skill mixing in the (yk
t , yh

t ) dimension

if the ratio between (xk
t , xh

t ) approaches unity.

Proof of Proposition 1: Lemma 1 posits that an occupation yt exhibits greater skill mixing if

the ratio across all skill dimensions approximates 1. Therefore, establishing the influence of

the ratio on the degree of skill mixing suffices. The initial step concentrates on any two skills

within the vector (yk
t , yh

t ).

The firm value function indicates that the firm re-optimizes the choice of yt in each

period. Consequently, within a given submarket at a particular time instance (xt, yt), the firms’

choices of yt remain uninfluenced by the continuation value, rendering it a static problem.

Time subscript is subsumed in the subsequent proof.

By deriving the first-order condition of firms’ optimization problems in the submarket

(x, y) and taking ratios, one obtains the following condition: yh
yk

= ( xh
xk
)

σ
ρ−σ . Therefore, the ratio

of firms’ optimal skill requirement choices for any two skills (yh, yk) is influenced by three

variables: the elasticity parameter of substitution in production σ, the degree of increasing

marginal occupational rental cost ρ, and the ratio of worker skills in the submarket (xh, xk).

From the equation, it is evident that as σ decreases, indicating an increase in skill

complementarity in production, yh
yk

will converge to 1 for any two skills (yh, yk), under the

assumption that σ does not change sign. Similarly, as ρ increases, yh
yk

will approximate 1 for

any two skills (yh, yk), given that ρ− σ does not change sign.

The influence of worker skill bias on the degree of skill mixing of y presents a more

complex scenario, as a change in the ratio xh
xk

does not directly imply a change in the ratio of

other skill pairs. Consequently, to gauge its impact on the degree of skill mixing, the focus

must remain on the (yh, yk) dimension. For this specific dimension, if xh
xk

converges to 1, then
yh
yk

also approaches 1. Q.E.D.

Proposition 2 (Changes in Wage and Job Finding). Consider an occupation yt ∈ S ⊂ RK within

a closed skill space S of dimension K. Assume that firms operate the occupation with a production

technology as described by equation 3 and under an occupational rental cost defined by equation 7.

Also, these firms offer a output share ω to workers and have value functions described by equation

5. Further, let worker value described by equation 4. Under these conditions, workers in occupation
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y will earn a higher wage and have a higher job finding probability under condition (i) and (ii) of

Proposition 1

Proof of Proposition 2:

Wages: To establish the change in wages, one need to show that the output of the worker-firm

match increases as the elasticity parameter σ decreases and approaches 0 from 1, or if σ

decreases in the negative range, consistent with skills becoming more complementary in

production. At a particular output share rate ω, such value changes of σ will lead to higher

wages.

Now, let’s obtain the first derivative of ρ for the production function 3. WLOG, let’s

consider the case of two skills, and express y1x1 and y2x2 as m and n. The output of a worker-

firm match can be expressed as q = (mρ + nρ)1/ρ. We can take log of the production function

ln(q) = 1
ρ ln(mρ + nρ) and then take logarithmic differentiation that gives the following:

1
q

∂q
∂ρ

= − 1
ρ2 ln(mρ + nρ) +

1
ρ

1
mρ + nρ (m

ρ ln(m) + nρ ln(n))

Solving for ∂q
∂ρ gives:

∂q
∂ρ

= q[− 1
ρ2 ln(mρ + nρ) +

1
ρ

1
mρ + nρ (m

ρ ln(m) + nρ ln(n))]

∂q
∂ρ

= q[−1
ρ

ln(q) +
1
ρ

q−ρ(mρ ln(m) + nρ ln(n))]

In the case of the calibration of the model, since m, n, and y are all in the range of [0, 1], one

can show that the above derivative is negative when 0 < ρ < 1 or when ρ < 0.

With respect to (ii) of Proposition 1, it is easy to see that since for the analysis of this

paper, both (x, y) are in the range [0, 1], therefore the occupation rental cost is decreasing in φ,

so wage should increase as occupation rental cost increases.

Employment: For job finding probability, it suffices to to show that p(θt(x, y, ω)) is increasing

in σ and φ. This becomes simpler, since the above proof establishes that worker-firm output

is increasing in both σ and φ, so does firm’s value J(x, y, ω). By the free entry condition

in equation (6), at a fixed vacancy posting cost, an increase in J(x, y, ω) implies a decrease

in q(θt(x, y, ω)) and therefore implies an increase in p(θt(x, y, ω)) under constant return to

scale matching technology. Q.E.D.
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B.2 Equilibrium Definition and Block Recursivity

In this section I define the a block-recursive equilibrium (BRE) for the economy following

Menzio and Shi (2011). I further show that the equilibrium of the economy is unique and is

block recursive.

Definition 2 (Block-recursive Equilibrium). Let ψ ∈ Ψ be the aggregate state of the economy,

which is a distribution of agents across employment status e = U, W, skill profiles x, occupational

skill requirements y, and output shares ω.

A block-recursive equilibrium for this economy consists of value functions for both unemployed

and employed workers U(x) : S → R, W(x, y, ω) : S × S × [0, 1] → R, and their respective

policy functions y′U(x) : S → S × [0, 1], y′W(x, y, ω) : S × S × [0, 1] → S × S × [0, 1]; firms’

policy function J(x, y, ω) : S × S × [0, 1] → R and corresponding policy function y′J(x, y, ω) :

S × S × [0, 1] → S × S × [0, 1]; labor market tightness θ(x, y, ω) : S × S × [0, 1] → R+; and

aggregate state ψ ∈ Ψ such that:

1. The worker’s value functions U(x) and W(x, y satisfy (4) for all states ψ ∈ Ψ and y′U(x),

y′W(x, y, ω) are the associated policy functions respectively

2. Firms’ value function J(x, y, ω) satisfy (5) for all states ψ ∈ Ψ and y′J(x, y, ω) is the associated

policy function

3. The labor market tightness θ(x, y, ω) in each submarket (x, y, ω) for all states ψ ∈ Ψ is

consistent with free-entry condition in equation (6)

From the above definition of block-recursive equilibrium that agents’ value functions and

policy functions, as well as the market tightness are independent of the aggregate state, only

requiring that they are consistent with the aggregate state distribution of agents. Such an

equilibrium is easier to characterize analytically and solve numerically. Note a key difference

between the above definite of BRE and the one defined in Menzio and Shi (2011). In the

economy studied in this paper, because I use the model to study the steady state equilibrium,

the value functions, policy functions, and market tightness are entirely independent of the

aggregate state. Whereas Menzio and Shi (2011) studies out-of-steady-state dynamics, so

the value functions, policy functions, and market tightness are still depend on the aggregate

productivity shocks, but are independent of the distribution of agents across employment

status and match-specific shocks.
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Now, I show that a block-recursive equilibrium exists and is unique.

Proposition 3 (Existence and Uniqueness of BRE). Under the model specification of linear utility

and invertible and constant returns to scale matching function, also assume that the support for worker

and occupation skill profiles S has bounded, then: i) all equilibria are block recurve as defined in

definition 2; ii) there exists a unique block-recursive equilibrium.

Proof of Proposition 3:

The proof first establishes the uniqueness of value functions (U, W, J), as well as policy

functions and market tightness (y′U , y′W , y′J , θ); then, the proof establishes their independence

from aggregate state.

Uniqueness: I first show that the value functions for workers and firms as defined in equa-

tion (4) and (5) are contractions. Let Θ = S × S × [0, 1], which is bounded based on the

assumption that S is bounded. Let B(Θ) the space of bounded functions V : Θ→ R and the

operator associated with worker or firm value functions denoted by T : B(Θ)→ B(Θ). It is

straightforward to verify that T satisfy monotonicity and discounting properties:

1. (monotonicity) For V, V′ ∈ B(Θ), V ≤ V′ implies T(V) ≤ T(V′)

2. (discounting) For V ∈ B(Θ) and ε > 0, T(V + ε) =

The above conditions establish that the operator T associated with either firm or worker

values functions is a contraction bunder Blackwell’s sufficient conditions. Therefore, the

optimal values workers and firms obtain through dynamic optimization problems are unique.

Next, I show that the policy functions and market tightness are also unique. Since the

optimal values firms and worker obtain for their dynamic optimization problems (4) and (5)

are unique, the associated policy functions (y′U , y′W , y′J) are also unique due to concavity of the

production function defined in equation (3) and workers have linear utility over consumption.

To show the uniqueness of market tightness, first note that since it is assumed that the

matching function is invertible, one may directly obtain market tightness through the market

clearing condition (6) with θ > 0. The uniqueness of θ then follows from the uniqueness of

firms’ value function.

Independence of Aggregate State: In the model economy, workers with different skill pro-

files x search in their own market, and firms with different skill requirements y post jobs
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in these separated markets, therefore, one can establish that the value functions of firms,

workers and the market tightness are all independent of the aggregate state ψ. I establish this

argument more rigorous through a backward induction argument as in Braxton and Taska

(2021). For this purpose, I introduce back time subscript in the notation.

At the terminal period t = T, for an employed worker, the continuation value is zero

for T + 1 onward, so the worker’s dynamic programming problem does not depend on the

aggregate distribution across states, and is equal to the worker’s share of output WT(x, y, ω) =

ω f (x, y).

Similarly, the firm’s value function also remains independent of the aggregate distribution

JT(x, y, ω) = (1−ω) f (x, y). As a result, through the free entry condition in equation (6), the

market tightness θT(x, y, ω) is also independent of the aggregate distribution.

Firms at T− 1 make occupation design choices y to solve the firm dynamic programming

problem in equation (5); workers at T − 1 make labor market search choices over occupations

y to solve the worker dynamic programming problem in equation (4); As long as y is within

a bounded interval bounded interval, the extreme value theorem assures at least one solution

to this problem. This process is repeated stepping back from t = T− 1, ..., 1, which completes

the proof. Q.E.D.
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B.3 Identification of Parameters

First, I focus on identifying the elasticity parameters in production and occupation operation

cost, denoted by σ and ρ. As highlighted by Caselli and Coleman (2006), the challenge arises

when allowing for the endogenous choice of the efficiency of inputs under constraints, as

the elasticity parameters cannot be separately identified. To overcome this challenge, I begin

by estimating σ using the relative wage within occupation instead of relying on absolute wage

levels.

Specifically, based on the model, the wage that workers receive per period is given by

the share ω of the output of the worker-firm match, reduced by the occupation design

cost, formulated as w(x, y) = ω f (x, y)− C(y). Consequently, within each occupation, the

difference in wage relative to a base worker type ∆w(x, y) can be articulated as follows:

∆w(x, y) = ω

[
K

∑
k=1

(xkyk)σ

] 1
σ

− A, (10)

where A is occupation-specific and does not depend on the cost parameter τ or ρ. This

formulation enables the identification of σ independent of the cost parameters. To carry

out the estimation equation (10), I first adjust the wage for occupation fixed effects in order

to account for A and ω, and for other factors like ethnicity by gender, age, metropolitan

status, individual year, years of education, census region, and urbanity fixed effects. These

adjustments help control for other variables that might influence the worker-firm output and

enhance the precision of the estimation. Next, I compute the within-occupation difference of

the adjusted wage relative to the lowest skill type worker.62 Last, I employ the maximum

likelihood estimation (MLE) method to calculate σ.

I now turn to the identification of the cost parameters ρ and τ. To begin with, note

that the first-order condition of firms’ optimization problems in the submarket (x, y) can

be simplified in ratios to: yh
yk

=
(

xh
xk

) σ
ρ−σ , a relationship that exclusively depends on the

parameters σ and ρ. With σ already estimated through MLE, the Simulated Method of

Moments (SMM) then targets the skill ratio yj/yk, which aligns with the moment of the

degree of hybridization of occupations. Further, for employed workers, the distribution of

employment across various occupations is governed by wages w(x, y). Given the parameters

62Refer to Section VI for an in-depth discussion on how worker skill types are calibrated.
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described above, this functional relationship allows the estimation of τ.

I’ll now discuss how the vacancy posting cost c and the relative skill level of the high-skill

worker αk are identified. Given the calibrated unemployment benefit b, the parameters

of the matching function, and the parameters of the production and cost function, the

identification process unfolds as follows. First, the free entry condition (6) and the value

function of unemployed workers (4) reveal that the probability of exiting unemployment is

solely determined by the vacancy posting cost. By targeting the level of unemployment, c is

thus identified. Second, the identification of αk is achieved by examining the relative wage

of high- to low-skill workers, expressed as w(ffxl,y)
w(xl,y) , where xl is the calibrated skill level of

the low-skill worker. Given the previously calibrated parameters, this relative wage depends

only on the relative skill level of the high-skill worker, leading to the identification of αk. This

completes the identification of all the parameters in the model.
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B.4 Calibration of Skill Supply

I carry out the calibration of two key aspects of skill supply variation: the Markov probability

of worker skill adjustment over a single model period and the variation in worker skill supply

spanning two data periods that the model aims to align with two steady states. I’ll first delve

into the details of the skill variation between data periods and then explore the skill evolution

within a model period as guided by the Markov process, following the approach of Lise and

Postel-Vinay (2020).

Across-period Skill Supply Variation: Considering the potential influence of skill sup-

ply variation on skill mixing, I calibrate the model to reflect workers’ choices in occupation,

college major (if attended), and employment status, in line with the approach of Lise and

Postel-Vinay (2020). This calibration introduces variation in worker skill supply across two

periods. Worker skills are adjusted based on the requirements of an occupation or a college

major; they increase if the requirements exceed the original skills and decrease if the require-

ments are lower or if the worker is unemployed. The speed of this adjustment is asymmetric

and skill-specific.

Specifically, following the estimates from Lise and Postel-Vinay (2020), as presented

in online Appendix Table 10, a worker’s skills accumulate at a rate of γj times the gap

between the worker’s skill j and the occupation’s requirement for that skill each year. The

value of γj depends on whether it relates to learning or depreciation (upward or downward

accumulation). Additionally, workers can lose skills when not employed, with unemployment

treated as requiring a zero level for all skills. However, I specify such that a worker’s skill

level cannot fall below their initial endowments. For changes in skills while in school, I

specify that workers spend an average of three years learning the skills of their majors.

I incorporate two modifications into this framework. First, since Lise and Postel-Vinay

(2020)’s estimates are based on weekly data, I adjust them by multiplying by the number of

working weeks, set at 47. Second, I align Lise and Postel-Vinay (2020)’s estimates of cognitive,

interpersonal, and manual skills with my analysis’s categories of analytical, interpersonal,

and routine skills.63 Since Lise and Postel-Vinay (2020)’s estimates do not include computer

skills, I use their cognitive skill estimates as a proxy.

63Their exclusion restriction imposes that (i) the ASVAB mathematics knowledge score only reflects cognitive
skills; (2) the ASVAB automotive and shop information score only reflects manual skills; (3) the Rosenberg
self-esteem score only reflects interpersonal skills.
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In calculating the skill adjustment, I first standardize both worker skills and occupation

skill requirements. Then, for example, if a worker is employed in an occupation that requires

a standard deviation higher in analytical skill compared to the worker’s analytical skill, the

worker will accumulate 0.36 standard deviations of analytical skill in a year due to learning on

the job. Conversely, if a worker’s interpersonal skill is higher than required, it will decrease

by only 3× 104 standard deviations, almost remaining unchanged, as interpersonal skills are

estimated to be very hard to lose.

Markov Skill Supply Adjustment: I now discuss the Markov process of skill adjustment.

Specifically, considering each skill j in the worker’s skill profile x as an element of the finite set

S, the evolution of this skill follows a Markov process π(x′j|xj, yj), conditional on the worker’s

current skill level and employed occupation. If a worker is matched with an occupation

that requires a skill level exceeding his or her own (xj < yj), the worker’s skill j will adjust

upward in the next period: x′j > xj, and the inverse applies for a worker whose skill is lower

than the requirements of their current occupation.

The calibration of the Markov adjustment probability is conducted in a similar manner

to that of the across-period skill supply variation. Since a model period corresponds to a

quarter, the annual adjustment rates for different skills are divided by 4, resulting in γ
4 . This

value represents the rate at which worker skills approach to occupation skill requirements,

and it is regarded as the probability that a worker’s skill j will adjust to the corresponding

value.

The key challenge in this calibration process arises when quantifying the model: both

worker skill and occupation skill requirements are discretized as grid values. To accommodate

this discretization, the probability that a worker moves up or down a grid for skill j based on

the occupation is scaled as below.

The Markov probability of upward adjustment is determined by:

xup
j − xj

yj − xj
1(xup

j < yj)×
γ

up
j

4

Similarly, the Markov probability of downward adjustment is given by:

xdown
j − xj

yj − xj
1(yj < xdown

j )×
γdown

j

4
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Here, xj represents the current grid value of worker skill j, while xup
j or xdown

j denotes the

value of worker skill j up or down a grid, respectively. The indicator variables 1(yj < xdown
j )

or 1(xup
j < yj) evaluates whether the skill j grid value of the worker’s current employed

occupation is greater or smaller than the value of the worker’s skill j grid. This means that a

worker will only adjust up or down a grid if the occupation’s skill is larger or smaller than

the corresponding up or down grid value for the worker’s skill. This process specifies the

interplay between skill adjustment and occupation requirements, and allows for a precise

calibration within the model’s framework.

Table 10: Annual Skill Learning and Depreciation RateOnline Appendix Table. Annual Skill Learning and Depreciation Rate 

O*NET Measure NLSY Measure 𝛾𝑠𝑐ℎ𝑜𝑜𝑙𝑙𝑒𝑎𝑟𝑛  𝛾𝑗
𝑢𝑝 𝛾𝑗𝑑𝑜𝑤𝑛 

analytical AFQT score 0.33 0.36 0.10 

interpersonal Deming (2017) social skill 0.33 0.05 0.00003 

routine ASVAB  0.33 1 0.36 

computer OCC/Major’s 2005 Value 0.33 0.36 0.10 

Notes: This table illustrates for each O*NET skill measure, its corresponding skill measure using NLSY79&97 data, and the 
learning and depreciation rate for these different skills. The AFQT is the same as the one used by Altonji, Bharadwaj, and 
Lange (2012) followed by Deming (2017), which controls for age-at-test, test format, and other idiosyncrasies. 
Deming(2017)’s social skill measure consists of sociability in childhood and sociability in adulthood in NLSY79, and two 
questions from the Big 5 inventory gauging the extraversion in NLSY97. The average of workers’ ASVAB mechanical 
orientation and electronics test scores are used for mechanical skill. Since ASVAB scores are not available for the NLSY97 
survey, they are imputed based on predictive regression using the NLSY79 survey. Workers’ occupations’ or college majors’ 
O*NET computer skill scores in the year 2000 are used as their endowed computer skill. The skill accumulation/depreciation 
rate is directly from Lise and Postel-Vinay (2020)’s estimates based on monthly data converted to annual values. 
Learning/depreciating while attending college is specified to be 30% per year.  

 

Notes: This table illustrates for each O*NET skill measure, its corresponding skill measure using NLSY79&97
data, and the learning and depreciation rate for these different skills. The AFQT is the same as the one used by
Altonji, Bharadwaj, and Lange (2012) followed by Deming (2017), which controls for age-at-test, test format,
and other idiosyncrasies. Deming (2017)’s social skill measure consists of sociability in childhood and sociability
in adulthood in NLSY79, and two questions from the Big 5 inventory gauging the extraversion in NLSY97.
The average of workers’ ASVAB mechanical orientation and electronics test scores are used for mechanical skill.
Since ASVAB scores are not available for the NLSY97 survey, they are imputed based on predictive regression
using the NLSY79 survey. Workers’ occupations’ or college majors’ O*NET computer skill scores in the year
2000 are used as their endowed computer skill. The skill accumulation/depreciation rate is directly from Lise and
Postel-Vinay (2020)’s estimates based on monthly data converted to annual values. Skill learning/depreciating
while attending college is specified to be 33% per year.
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B.5 Algorithm and Solution Method

The quantitative method used for estimation is SMM. Given the parameters in the model that

are internally estimated Θ = {σ, ρ, φ, c, αk}, each iteration of SMM first solves the steady state

firm and worker policy function, after which a panel of worker is simulated to obtain the

equilibrium distribution of labor market outcomes.

Specifically, to find the steady state policy of agents, I use value function iteration:

1. Fix the number of periods T

2. Starting from the terminal period T, solve the firm problem as in equation (4)

3. Use the free entry condition in equation (6) to obtain the market tightness θT(x, y, ω)

4. With the market tightness, solve the worker dynamic programming problem in equation

(4)

5. Repeated stepping back from t = T − 1, ..., 1

6. Check if the difference in worker value Ut+1−Ut, Wt+1−Wt and the firm value Jt+1− Jt

is less than a predetermined tolerance level. If yes stop, if not increase T and go back to

first step

Next, I simulate 10,000 workers for T(T > 200) periods, burning the first 40 periods to obtain

distribution of labor market outcomes across different occupations and worker types. Finally,

the SMM procedure minimizes the Euclidean distance between the model-implied moments

and the same moments obtained from data.
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B.6 Additional Counterfactual Results

Figure 7: Model CounterfactualAppendix Figure. Model Counterfactual 

  

  
Notes: This figure shows the model generated changes in skill mixing in high-skill occupations (panel 1) and changes in 
employment share of high-skill occupation (panel 2). Different model channels are shut down each at a time by eliminating 
the relative calibrated values to highlight the contribution of each channel. The full model has all the model features. 
Worker skill supply distribution variation across the periods are calibrated according to Table \ref{appen_tab_evol}. The 
values of efficiency differential, skill level of low-type worker, vacancy posting cost, skill complementarity in production and 
occupational across two periods are shown in Table \ref{tab_params}. 
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Notes: These figures plot the model generated changes in skill mixing in high-skill occupations (panel 1) and
changes in employment share of high-skill occupation (panel 2). Different model channels are shut down
individually by eliminating the relative calibrated values to highlight the contribution of each channel. The
full model has all the model features. The values of skill complementarity in production, cost of skills in
occupation operation, efficiency differential, and vacancy posting cost across the two periods are shown in Table
5. Worker skill supply distribution variation across the periods are calibrated according to Table 10. Panel (3)
shows the model generated changes in skill mixing in low-skill occupation and the relative wage of high-skill
occupations by shutting down the skill efficiency differential for analytical/computer, interpersonal, and routine
skills individually; also by shutting down τ and φ individually.
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