NON-MARKET ALLOCATION MECHANISMS

OPTIMAL DESIGN WITH INVESTMENT INCENTIVES

VICTOR AUGIAS^{*} EDUARDO PEREZ-RICHET^{**}

Sciences Po, Department of Economics (soon University of Bonn, Institute for Microeconomics)*

Sciences Po, Department of Economics**

European Research Council Established by the European Commission

- Goods, services and prizes are often allocated to economic agents without requiring monetary transfers.
- Instead, institutions allocate resources/select agents based on measurable characteristics (their type).
- Agents' types are partly endogenous:

- Goods, services and prizes are often allocated to economic agents without requiring monetary transfers.
- Instead, institutions allocate resources/select agents based on measurable characteristics (their type).
- Agents' types are partly endogenous:
 - gaming/falsification

- Goods, services and prizes are often allocated to economic agents without requiring monetary transfers.
- Instead, institutions allocate resources/select agents based on measurable characteristics (their type).
- Agents' types are partly endogenous:
 - gaming/falsification
 - true improvements (investments)

- Goods, services and prizes are often allocated to economic agents without requiring monetary transfers.
- Instead, institutions allocate resources/select agents based on measurable characteristics (their type).
- Agents' types are partly endogenous:
 - gaming/falsification
 - true improvements (investments)

This paper

How should allocation/selection mechanisms be designed, when accounting for agents' investment incentives?

RANDOMIZATION

Intuitively, randomization might help by spreading investment incentives (but complicated tradeoff).

CONTRIBUTION

Main theorem

If the investment cost is quadratic and the principal is selecting in the upper tail, a pass-fail rule is optimal for the principal.

- A firmer foundation for the use of such rules.
- A possible explanation for the prevalence of pass-fail rules.
- We also characterize the optimal pass-fail and provide some comparative statics.

EXTENSIONS

Three extensions:

- (i) Capacity constrained principal.
- (ii) Utilitarian welfare maximization (weight on the agent).
- (iii) Implementation through information design.

Results

- Pass-fail rules remain optimal in (i) and (ii).
 - (i) Capacity constraint lowers the optimal cutoff.
 - (ii) Accounting for agents' costs increases the optimal cutoff.
- Relaxing the principal's commitment power as in (iii) does not reduce her optimal payoff.

Model

Setup

Agent

- Natural type: $\theta \in \Theta = [\underline{\theta}, \overline{\theta}]$ with $\underline{\theta} < 0 < \overline{\theta}$.
- Distribution: $\operatorname{cdf} F \colon \Theta \to [0, 1].$
- Final type: $t \in T = \mathbb{R}$.
- Cost: $\gamma c(t, \theta)$ where $\gamma > 0$.

Principal

- Can observe *t*
- Cannot observe θ but knows F.
- Allocation/Selection: $a \in \{0, 1\}$.

PAYOFFS

Agent's payoff Allocation net of investment cost:

 $v(a,t) = a - \gamma c(t,\theta).$

Principal's payoff Final type conditional on allocation:

 $\pi(a,t) = at$

TIMING AND INCENTIVE-COMPATIBILITY

- 1. The principal commits to a selection rule $\sigma: T \to [0, 1]$ which is publicly revealed.
- 2. Agents observe θ and choose an investment rule $\tau: \Theta \to T$.
- 3. Agents selected with probability $\sigma(\tau(\theta))$

Definition (Incentive-compatibility)

• An investment rule τ is incentive-compatible under selection rule σ if, for all $\theta \in \Theta$:

$$\tau(\theta) \in \underset{t \in T}{\operatorname{arg\,max}} \sigma(t) - \gamma c(t, \theta).$$

• An investment rule τ is implementable if there exists a selection rule σ under which τ is incentive-compatible.

ASSUMPTIONS: COST

Assumption (Quadratic cost) The cost function $c: T \times \Theta \rightarrow \mathbb{R}_+$ is given by:

$$c(t,\theta) = \frac{(t-\theta)^2}{2} \mathbb{1}_{t \ge \theta}.$$

Define θ_0 by:

 $\gamma c(0, \theta_0) = 1 \iff \theta_0 = -\sqrt{2/\gamma}$

ASSUMPTIONS: DISTRIBUTION

Assumption (Selection in the upper tail) The cdf F admits a density function f which is:

- (i) strictly positive on Θ ;
- (ii) differentiable;
- (iii) decreasing: $f'(\theta) \le 0$ for $\theta \ge \theta_0$.

PRINCIPAL'S PROBLEM

Principal's ex-ante expected payoff is:

$$\int_{\underline{ heta}}^{\overline{ heta}} au(heta) \, \sigmaig(au(heta)ig) \, f(heta) \, \mathrm{d} heta$$

MAIN RESULT

MAIN RESULT

Definition

A selection rule σ is a t^{\dagger} -pass-fail rule if there exists a selection cutoff $t^{\dagger} \in T$ such that, for almost every $t \in T$:

 $\sigma(t) = \mathbb{1}_{t \ge t^{\dagger}}.$

Theorem

For any $\gamma > 0$, there exists a strictly positive selection cutoff t_{γ}^* such that the t_{γ}^* -pass-fail rule is optimal.

OVERVIEW OF THE PROOF

MONOTONE SELECTION RULES

Lemma

We can restrict attention w.l.o.g. to selection rules such that:

(i) $\sigma(t) = 0$ for all t < 0, and;

(ii) σ is non-decreasing;

Let $t^{\dagger} = \inf\{t \in T \mid \sigma(t) > 0\}.$

AGENT'S PSEUDO UTILITY

• Indirect utility and pseudo utility:

• Then $u(\theta)$ is convex and the Envelope theorem implies

 $u'(\theta) = \tau(\theta)$ a.e.

• Furthermore, we have:

$$\sigma(\tau(\theta)) = \gamma\left(u(\theta) + \frac{u'(\theta)^2}{2} - \theta u'(\theta)\right)$$
 a.e

VARIATIONAL PROGRAM

Principal's program

$$\underset{u \in \mathcal{U}}{\text{maximize } V(u)} \coloneqq \int_{\theta_0}^{\bar{\theta}} u'(\theta) \left(u(\theta) + \frac{u'(\theta)^2}{2} - \theta u'(\theta) \right) f(\theta) \, \mathrm{d}\theta$$

where, $u \in \mathcal{U}$ (feasible pseudo utility functions) iff.:

- (i) *u* is a convex function.
- (ii) $\underline{u}(\theta) \coloneqq \theta^2/2 \le u(\theta) \le 1/\gamma + (\theta^2/2) \mathbb{1}_{\theta \ge 0} \eqqcolon \overline{u}(\theta)$
- (iii) $\theta \le u'(\theta) \le \theta + \sqrt{2/\gamma} \eqqcolon \overline{t}(\theta)$
- (iv) $u(\theta) + u'(\theta)^2/2 \theta u'(\theta) \le 1/\gamma$

FEASIBLE PSEUDO UTILITIES: ILLUSTRATION

(a) An admissible pseudo-utility *u*.

(b) Its induced investment rule *u*'.

 $\overline{t}(\theta)$

 $u'(\theta)$

 $\bar{\theta}$

 $\overline{t}(\overline{\theta})$

 θ^{\dagger}

SOLUTIONS AS EXTREME POINTS

Let
$$\mathcal{U}(\theta^{\dagger}) \coloneqq \left\{ u \in \mathcal{U} \, \middle| \, \theta^{\dagger} = \sup \left\{ \theta \in \Theta \, \middle| \, u(\theta) = \underline{u}(\theta) \right\} \right\}$$
 for any $\theta^{\dagger} \in [\theta_0, \overline{\theta}]$.

Principal's program

$$\underset{\boldsymbol{\theta}^{\dagger} \in [\theta_{0},\bar{\theta}], u \in \mathcal{U}(\boldsymbol{\theta}^{\dagger})}{\text{maximize}} \quad V_{\boldsymbol{\theta}^{\dagger}}(u) = \int_{\boldsymbol{\theta}^{\dagger}}^{\boldsymbol{\theta}} u'(\boldsymbol{\theta}) \left(u(\boldsymbol{\theta}) + \frac{u'(\boldsymbol{\theta})^{2}}{2} - \boldsymbol{\theta}u'(\boldsymbol{\theta}) \right) f(\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{\theta}$$

Lemma

- For any $\theta^{\dagger} \in [\theta_0, \overline{\theta}]$, the set $\mathcal{U}(\theta^{\dagger})$ is convex and compact.
- For any $\theta^{\dagger} \in [\theta_0, \overline{\theta}]$, the functional $V_{\theta^{\dagger}} : \mathcal{U}(\theta^{\dagger}) \to \mathbb{R}$ is upper-semicontinuous, and, if f is decreasing, it is also convex.
- Therefore $V_{\theta^{\dagger}}(u)$ has a maximizer that is an extreme point of $\mathcal{U}(\theta^{\dagger})$.

EXTREME POINTS: NECESSARY CONDITIONS

Proposition

If *u* is an extreme point of $\mathcal{U}(\theta^{\dagger})$, it must be a sequence of affine and quadratic pieces. Moreover, *u* cannot be quadratic below zero.

• Affine: $u(\theta) = a\theta + b$ for some a, b.

• Quadratic:
$$u(\theta) = \frac{\theta^2}{2} + c$$
 for some $c \in [0, \gamma/2]$.

• Let $C(\theta^{\dagger})$ be the set of such functions = our set of candidates.

EXTREME POINTS: EXAMPLE

OUR CANDIDATE: PASS-FAIL

(a) Pseudo-utility under pass-fail.

PASS-FAIL OPTIMALITY

- Let $DV_{\theta^{\dagger}}(u)(h)$ be the Gâteaux derivative of $V_{\theta^{\dagger}}$ at u in direction h.
- By convexity of $V_{\theta^{\dagger}}$, for any $u \in \mathcal{C}(\theta^{\dagger})$:

$$V_{\theta^{\dagger}}(\boldsymbol{u}^{\dagger}) - V_{\theta^{\dagger}}(\boldsymbol{u}) \geq \mathrm{D}V_{\theta^{\dagger}}(\boldsymbol{u})(\boldsymbol{u}^{\dagger} - \boldsymbol{u}).$$

• We prove that, for any $u \in \mathcal{C}(\theta^{\dagger})$:

$$DV_{\theta^{\dagger}}(u)(\boldsymbol{u}^{\dagger}-u) = \int_{\theta^{\dagger}}^{\bar{\theta}} \left(\underbrace{\alpha(\theta)}_{\geq 0} f(\theta) + \underbrace{\beta(\theta)}_{\leq 0} f'(\theta)\right) \underbrace{\left(\underline{u^{\dagger}(\theta)} - u(\theta)\right)}_{\geq 0} d\theta \geq 0.$$

П