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MOTIVATION

- Goods, services and prizes are often allocated to economic agents
without requiring monetary transfers.

- Instead, institutions allocate resources/select agents based on
measurable characteristics (their type).

- Agents’ types are partly endogenous:
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MOTIVATION

- Goods, services and prizes are often allocated to economic agents
without requiring monetary transfers.

- Instead, institutions allocate resources/select agents based on
measurable characteristics (their type).

- Agents’ types are partly endogenous:
- gaming/falsification
- true improvements (investments)
This paper

How should allocation/selection mechanisms be designed, when
accounting for agents’ investment incentives?
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RANDOMIZATION

Intuitively, randomization might help by spreading investment incentives
(but complicated tradeoff).

P(select.) P(select.)
11 —
(a) Pass-fail (b) Some randomization.
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CONTRIBUTION

Main theorem
If the investment cost is quadratic and the principal is selecting in the
upper tail, a pass-fail rule is optimal for the principal.

- A firmer foundation for the use of such rules.
- A possible explanation for the prevalence of pass-fail rules.

- We also characterize the optimal pass-fail and provide some
comparative statics.
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EXTENSIONS

Three extensions:
(i) Capacity constrained principal.
(i) Utilitarian welfare maximization (weight on the agent).

(iii) Implementation through information design.
Results
- Pass-fail rules remain optimal in (i) and (ii).
(i) Capacity constraint lowers the optimal cutoff.
(ii) Accounting for agents’ costs increases the optimal cutoff.

- Relaxing the principal’'s commitment power as in (iii) does not reduce
her optimal payoff.
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SETUP
Agent
- Natural type: 8 € ® = [6,6] with 8 < 0 < 6.
- Distribution: cdf F: ® — [0, 1].
- Final type: t e T = R.

- Cost: ye(t,0) where y > 0.

Principal
- Can observe ¢

- Cannot observe 0 but knows F.

- Allocation/Selection: a € {0, 1}.
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PAYOFFS

Agent’s payoff
Allocation net of investment cost:

v(a,t) =a—yc(t,0).

Principal’s payoff
Final type conditional on allocation:

n(a,t) = at
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TIMING AND INCENTIVE-COMPATIBILITY

1. The principal commits to a selection rule o: T — [0, 1] which is
publicly revealed.

2. Agents observe 8 and choose an investment rule r: ® — T.

3. Agents selected with probability o (7(6))

Definition (Incentive-compatibility)
- An investment rule 7 is incentive-compatible under selection rule o Iif,
for all 8 € ©:

7(0) € argmax o (t) — yc(t, 0).
teT

- An investment rule 7 is implementable if there exists a selection rule
o under which 7 is incentive-compatible.
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ASSUMPTIONS: COST

Assumption (Quadratic cost) c(-,0)

The cost function¢: T x® — R, is
given by:

(t - 6)

c(t,0) = 7

Lisp.
Define 6, by:

70(0, 90) =1 & 90 = —\/2/7/
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ASSUMPTIONS: DISTRIBUTION

Assumption (Selection in the upper

tail)

The cdf F admits a density function

f which is:

(i) strictly positive on ©;
(ii) differentiable;

(iii) decreasing: f'(8) <0 for

0 > 6.

f(6)
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PRINCIPAL'S PROBLEM

Principal’'s ex-ante expected payoff is:

g
/0 7(0) o (7(0)) f(6)do

Principal’s program

%
ma>(<Ti’rpize /67(0)0-(7(0))f(0)d9

subjectto 7(0) € argmax o (1) — yc(t,0), V0 € ©
teT
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MAIN RESULT

Definition
A selection rule o is a t"-pass-fail rule if there exists a selection cutoff
t" e T such that, for almost every r € T:

0'(1‘) = ]ltzﬂ-

Theorem
For any y > 0, there exists a strictly positive selection cutoff £ such that

the ;-pass-fail rule is optimal.
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OVERVIEW OF THE PROOF




MONOTONE SELECTION RULES

Lemma
We can restrict attention w.l.0.g. to
selection rules such that:

(i) o(t) =0 forall t <0, and;

(ii) o is non-decreasing;

Let t" = inf{r e T | o (¢) > 0}.

o (1)
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AGENT’'S PSEUDO UTILITY

- Indirect utility and pseudo utility:
U(0) := max o(t) — yc(t,0)
teT

=u(0)

- Then u(0) is convex and the Envelope theorem implies

u'(0) =7(0) ae.

- Furthermore, we have:
u/(g)?
2

o(r(0)) =y |u®) +

-0u’(0)] ae.
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VARIATIONAL PROGRAM

Principal’s program

maximize V(u) = /0 u'(0) (u(@) + u,(;)Q —0u’'(0)| f(0)do

ueld 6o

where, u € U (feasible pseudo utility functions) iff:
(i) uis a convex function.

(i) u(0) = 6%/2 <u(6) < 1/y + (6*/2)Loz0 = u(6)

)

)

(i) 6 <u'(0) < 0++2/y = 1(0)
(iv) u(0) +u’(0)?/2 —6u'(6) < 1/y
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FEASIBLE PSEUDO UTILITIES: ILLUSTRATION

() x
1(0) :
u'(0)
a(6) u(
0
u(0) 1
~— 6o ]
. _ : il
6o 01 9 | 0
(a) An admissible pseudo-utility u. (b) Its induced investment rule u’.
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SOLUTIONS AS EXTREME POINTS

LetU(6") = {u eU|0" =sup{d € ©|u(9) = 2(0)}} forany 6" € [6,, 6].

Principal’s program
0 u’(0)2
2

6
maximize Vi (u) :/ u'(0) (u(@) +
07 € [60.0],u cUO") ot

- 0u’(6)) JIOX

Lemma
- For any 6" € [0y, 8], the set U(8") is convex and compact.

- For any 6" € [0y, 6], the functional Vg:: U(8") — R is
upper-semicontinuous, and, if f is decreasing, it is also convex.

- Therefore V,: (1) has a maximizer that is an extreme point of U(6").
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EXTREME POINTS: NECESSARY CONDITIONS

Proposition

If u is an extreme point of U(8"), it must be a sequence of affine and
quadratic pieces. Moreover, u cannot be quadratic below zero.

- Affine: u(0) = a6 + b for some a, b.

. 6°
- Quadratic: u(8) = 5 + ¢ for some ¢ € [0,v/2].

- Let C(87) be the set of such functions = our set of candidates.
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EXTREME POINTS: EXAMPLE

u(0)

6o ¢t

(@) An extreme point u.

7(0) 4

1(0)
u’(6)

9§0 o

(b) Its induced investment rule u’.
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OUR CANDIDATE: PASS-FAIL

8o of 1(6") g

(a) Pseudo-utility under pass-fail.

£(6) 1

10 ;
(u¥) (0)

% ¢

(b) Investment under pass-fail.

f(é*) 5
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PASS-FAIL OPTIMALITY
- Let DV, (u)(h) be the Gateaux derivative of Vi at u in direction A.

- By convexity of Vs, for any u € C(67):
Vi (1) = Vi (u) > DVips () (1" — ur).

- We prove that, for any u € C(6"):

%]
DV (u) (i — u) = /m (a(8) £(0) + BO) £(0) (u'(0) —u(®)) do > 0.
S~ N N _
>0 <0 >0
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