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Motivation

▶ Experience goods: benefits revealed after consumption.

▶ Think of prescription drugs, education services, or streaming.
▶ Uncertainty leads to suboptimal consumption.
▶ Repeated interactions: option value of initial take-up.

▶ Cataract surgery improves quality of life and overall health.
▶ Massive undertreatment around the world.
▶ We estimate a structural model of demand for cataract surgeries.
▶ Leverage patient-level data from a large private provider in Mexico City.
▶ Forward-looking, two-eyed consumers; information revealed after first surgery.
▶ Evaluate counterfactual policies to increase take-up.
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Motivation

▶ Cataracts = eye lens gets clouded; factors: age, co-morbidities, risky behavior.
▶ In the US, 45% incidence in ages 75-79; 60% for ages 80+.
▶ Estimated 30-40% of Mexicans have cataracts; 350k new cases each year.
▶ But only around 50% are treated.
▶ Low take-up due to access, cost, and uncertainty. (Lewallen and Courtright, 2000; Syed

et al., 2013)
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Findings

▶ We find elastic demand, but higher price elasticity for first surgery.
▶ We find large heterogeneity in uncertainty parameters and welfare.

▶ Counterfactual 1: information provision to eliminate uncertainty.
▶ Patients have a high option value.
▶ Revealed benefits have to be high to increase welfare.

▶ Counterfactual 2: revenue-neutral price change: p1 ↓, p2 ↑ .

▶ With 10% price changes: take-up increases by 7%.
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Contributions

▶ Dynamics in experience goods markets (Bergemann and Välimäki, 2006; Gowrisankaran and
Rysman, 2012; Jing, 2011; Yu, Debo and Kapuscinski, 2016).
▶ We study a limited and small number of repeated interactions.

▶ Demand uncertainty and expert advise. (Berger, Sorensen and Rasmussen, 2010; Reinstein
and Snyder, 2005; Hilger, Rafert and Villas-Boas, 2011; Foubert and Gijsbrechts, 2016; Sunada, 2020).
▶ We model uncertainty, implied option value; perform counterfactuals.

▶ Dynamic healthcare treatment choices: adoption of health products in
developing countries; search and learning costs for pharmaceutical products.
(Dupas, 2014; Oster and Thornton, 2012; Dupas and Miguel, 2017; Ching, 2010; Crawford and Shum, 2005;
Dickstein, 2021; Maurer and Harris, 2016).
▶ We find: once patients are aware of the benefits, they respond more inelastically.

▶ Medical lit: why take-up rates of cataract surgeries are low. (Zhang et al., 2013; Mailu
et al., 2020; Adhvaryu et al., 2020).
▶ Focus on inherent dynamics and how to increase surgical rates.
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Empirical setting

▶ Most patients develop cataracts in both eyes; operated sequentially.
▶ Cataracts require surgery to replace the lens with an artificial one.
▶ Method of replacement: phacoemulsification or small incision surgery.
▶ Lens and surgery type set exogenously by physiological and medical factors.

▶ In Mexico, cases on the rise: aging pop and diabetes.
▶ Public healthcare system offers heterogenous quality, long wait times, but free.
▶ Wait until cataract score of 6 out of 6. And then wait some.

▶ Most private services are paid for out-of-pocket.
▶ Private: ∼1,500 USD per eye, ∼160% median monthly HH income in Mex City.
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Empirical setting: Our partner firm

▶ The Firm is a private, ocular healthcare provider.
▶ Provides regular check-ups, lab analyses, eye surgery, and an optical store.
▶ Specializes in diagnosing and operating cataracts.
▶ Based in Mexico City: 20 clinics, HQ in downtown.
▶ All* of surgeries are carried out in HQ.
▶ Target pop of low-income patients: RyanAir or Southwest.

▶ We observe all first-time patients of 2018 and through 2019.
▶ Offered prices, cataract scores, age, gender, sales agent, proxy for income,

proxy for risk aversion.
▶ Avg price is ∼700 USD.

quotes by surgery
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Patients sum stats
Has a cataract surgery 0.65

(0.48)
Age 69.24

(12.24)
Female 0.61

(0.49)
Private insurance 0.07

(0.26)
Social security 0.22

(0.41)
Uninsured 0.72

(0.45)
Right eye cataract potential 2.68

(1.61)
Left eye cataract potential 2.64

(1.61)

Observations 3,894
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Consumer’s journey

1. Consumer arrives, ophthalmologist diagnoses cataracts with 0 to 6 scale.
2. Physician prescribes the type of surgery and lens. No posted prices.
3. Sales agent discusses prices; some discretion over price.

▶ Agents earn commissions. Max price conditional on sale.
4. If consumer agrees, surgery is scheduled and performed.
5. The patient might return, at the physician’s discretion, for follow ups.

6. For second eye, consumer goes again with sales agent, and gets another price
quote.

Note: We take prescriptions as exogenous. (Finkelstein et al., 2021; Johnson and Rehavi, 2016;

Gruber and Owings, 1996).
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Consumer’s learning

▶ From literature: Cataract patients do update their beliefs. (Cheung and Sandramouli,

2005; Henderson and Schneider, 2012)

Before first surgery After first surgery

Alice Bob Alice Bob
First eye score: 4 6 0 0
Second eye score: 0 4 0 4
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Consumer’s learning
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Model
1. Consumer i observes xi1, εi1, and εi01.
2. Decides to operate or not.
3. Gets ui1 = αi + β′xi1 + εi1 or outside option εi01.
4. Consumer i observes αi, xi2, εi2, and εi02.
5. Decides to operate or not.
6. Gets ui2 = αi + β′xi2 + εi2 or outside option εi02.

▶ αi ∼ Gi to allow for heterogeneity.
▶ Variance measures the size of uncertainty that consumer i faces.
▶ Allow for partial learning: knowable and an unknowable components

αi ≡ αk
i + αu

i .

▶ Do not learn nor observe αu
i ⇒ αi = αk

i in relevant time-frame.
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Claude Monet’s αi

Giverny period c.1897 With cataracts c.1916
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Model: Backward induction

▶ Let yi2 = 1 indicate if i operates at t = 2, which happens iff

ui2 > ui02 ⇐⇒ αi + β′xi2 + εi2 − εi02 > 0.

Then, the demand for the second surgery is

si2 ≡ P [yi2 = 1|yi1 = 1] = P [ui2 − ui02 > 0] .

▶ Expected marginal utility of the second surgery is

E [ui2 − ui02] = E [ui2 − ui02|ui2 − ui02 > 0]P [ui2 − ui02 > 0]

where the expectations are with respect to αi + εi2 − εi02.
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Model: Backward induction

▶ Before αi, εi2, εi02 are known, the expected marginal utility from first surgery is

Eαi [ ui1 − ui01 + E [ui2 − ui02]︸ ︷︷ ︸
option value

].

▶ Then, yi1 = 1 iff
Eαi [ui1 − ui01 + E [ui2 − ui02]] > 0.

▶ Then, the demand for the first surgery is

si1 ≡ P [yi1 = 1] = P [Eαi [ui1 − ui01 + E [ui2 − ui02]] > 0] .
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Model: Estimation and identification

Assumption
εi1 − εi01 and εi2 − εi02 are iid N (0, 1), and αi are iid N (0, σα,i).

▶ Simplify to analytic expressions, Φ, inverse Mills ratio.

▶ Parameterize σα,i ≡ exp(θ′wi).
▶ Estimate (β, θ) via maximum likelihood estimation.

ℓ =
N∑
i=1

yi1 log si1 + (1 − yi1) log(1 − si1) + yi1yi2 log si2 + yi1(1 − yi2) log(1 − si2).
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Model: Estimation and identification
▶ Price endog: control function (Petrin and Train, 2010) Control function .

▶ IV: daily percentage of operations sold just before price quote.
▶ Risk aversion: visits per price quote as proxy.
▶ Decreasing marginal returns: cataract scores.
▶ Income effects: type of insurance (proxy for SES).
▶ Further controls: sales agent fixed effects, log age, gender, type/characteristics

of surgery.
▶ Identify level of σα,i given that shocks at t = 1, 2 have the same variance.

(Gowrisankaran and Rysman, 2012; Arcidiacono and Ellickson, 2011)

▶ Identify θ from the correlations between σα,i and wi.
▶ Selection bias: machine learning to predict unobserved pi2. lasso

▶ Bootstrapped standard errors.
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Results Dep var: Operatesit (1) (2) (3) (4)
log price −3.85 −0.93 −3.92 −3.92

(0.068) (0.077) (0.070) (0.071)
log Age 0.08 −0.11 0.07 0.05

(0.074) (0.084) (0.078) (0.104)
Female −0.04 −0.09 −0.05 0.12

(0.025) (0.041) (0.025) (0.135)
Dep var: σα,i
log Age −1.98

(0.243)
Female −2.57

(0.358)
Elasticities
All ops -3.64 -7.99 -6.31 -3.56
First ops -3.72 -11.39 -8.62 -4.07
Second ops -3.57 -4.53 -3.96 -3.04

Other controls yes yes yes yes
Controls (σα,i) no no no yes
Control function yes no yes yes
mpe 0.43 0.41 0.39 0.34
R2p -0.06 0.00 0.04 0.16
First-stage IV’s F 50.48 50.48 50.48
Patients 3,894 3,894 3,894 3,894
Quotes 7,848 7,848 7,848 7,848

Notes: Bootstrapped standard errors with 500 repetitions.
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Results
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Counterfactuals: Champions
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Counterfactuals: Revenue-neutral price cross-subsidy
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Concluding remarks

▶ Elastic demand for surgeries; first op more elastic.
▶ Sizable uncertainty about surgery outcomes: 2x as big as unobservables.
▶ Persuasive advertising not very effective to increase take-up.
▶ Budget-neutral price changes are more efficient.
▶ A 10% price change increases surgeries in 7%, and consumer welfare in $20.

Thank you!
jtudon@itam.mx
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Price quotes by number of surgery and patient outcomes

Number of surgery

1st eye 2nd eye Total

Patients with zero surgeries 1,480 - 1,480
Patients with one surgery 1,981 93 2,074
Patients with two surgeries 679 678 1,357

Total 4,140 771 4,911

back
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Prince endogeneity and control function I

To deal with endogenous prices, we use a control function (Petrin and Train, 2010).
We assume:

Assumption
Shocks can be decomposed as ε = γρ + ε̃, where prices p ⊥ ε̃, and ρ is correlated
with prices, with V [ρ] = 1.
Then,

V [ε] = 1 = γ2 + V [ε̃] ⇒ V [ε̃] = 1 − γ2.

Define
σε̃ ≡

√
1 − γ2.

back
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Prince endogeneity and control function II

Therefore, by decomposing ε in the preceding derivations, we have

E [ui2|αi, ui2 > 0] = αi + β′xi2 + γρi2 + Eε̃i2|αi
[ε̃i2|αi + β′xi2 + γρi2 + ε̃i2 > 0]

= αi + β′xi2 + γρi2 + σε̃λ

(
αi + β′xi2 + γρi2

σε̃

)
.

Then,

P [yi1 = 1] = P
[∫

αi + β′xi1 + γρi1 + ε̃i1 + E [ui2|αi, ui2 > 0]dGi(αi) > 0
]

,

= Φ

[
1
σε̃

∫
αi + β′xi1 + γρi1 + E [ui2|αi, ui2 > 0]dGi(αi)

]
.
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Prince endogeneity and control function III

Also,

P [yi2 = 1|yi1 = 1] = P
[
αi + β′xi2 + γρi2 + ε̃i2 > 0|yi1 = 1

]
= Φ

µα,i + β′xi2 + γρi2√
σ2

ε̃
+ σ2

α,i

 ,

= Φ

µα,i + β′xi2 + γρi2

σε̃

√
1+

σ2
α,i

σ2
ε̃

 ,
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Prince endogeneity and control function IV

We see every parameter of the model is rescaled by 1/σε̃, which needs to be ac-
counted for to report the parameters in the original scale. Indeed, from an estimate of
(̂ γ

σ
ε̃

), we can back out

γ̂ =
(̂ γ

σ
ε̃

)√
1+ (̂ γ

σ
ε̃

)
2

⇒ σ̂ε̃ =

√√√√√ 1

1+ (̂ γ
σ

ε̃

)
2 .
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Sample selection and LASSO I
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Sample selection and LASSO II

We predict log prices using:
▶ Patient’s characteristics: age, gender, access to private insurance, social

security, cataract scores, and ocular conditions, namely, ampliopia,
anisometropia, astigmatism, myopia, presbyopia, hypermetropia, and
emmetropia.

▶ Surgery’s characteristics: type of intraocular lens and type of surgery.
▶ Personnel: identity of sales agents, optometrists, and ophthalmologists who

interacted with the patient.
LASSO selected 156 out of 291 predictors; penalty parameter selected by cross-
validation, 10 folds. Mean prediction error of .07, which is small, given the average
log price is about 9.4. We further shock predicted prices to match the empirical distri-
bution of non-missing prices, in order to estimate meaningful standard errors.
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Counterfactuals: Revenue-neutral price cross-subsidy
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