Uncharted Waters: Selling a New Product Robustly

Kun Zhang (Arizona State)
August 31, 2023
EEA 2023 Barcelona

Rapid technological development has brought more and more new products to us
In selling a new product, often the seller not only sets a price but also provides some information

Motivation

In selling a new product, often the seller not only sets a price but also provides some information

1. Is there a rationale for "charging less than they could" for sellers who set both the price and the information provision policy?

By Michael V. Marn, Eric V. Roegner, and Craig C. Zawada

Companies habitually charge less than they could for new offerings. It's a terrible habit.

In selling a new product, often the seller not only sets a price but also provides some information
2. Why do we see a lot of variations in information provision policies among new products?

Try Pixelmator Pro for free for 7 days.

Satisfaction guarantee
Try reMarkable and a Connect subscription risk free. If you decide to return it, we offer free returns and a full refund.

This trial lets you use the full Pixelmator Pro app with no restrictions for 7 days. Your Mac will love this app.

```
Download now
Download now
```

(a) Innovative image editing app "Pixelmator"

```
Full refund within 100 days
```

\checkmark 1-year free Connect trial
(b) e-ink tablet "reMarkable"

This Paper

What would a seller of a new product do if she can design both the price and information? Literature

- Key features of the model:
- after seeing the price and information, a buyer can costly search for an alternative product
- the seller has limited information regarding the buyer's knowledge of her alternatives
- seeking robustness, the seller evaluates any selling strategy by its worst case profit
- Main tradeoff: search deterrence versus surplus extraction
- Takeaways:
- optimal to provide full information when search cost is high, otherwise partial information
- price is nonmonotone in the search cost, info provision is more precise as search cost increases
- Implications:
- rationale for the large variations in information provision policies among new products
- technologies that lower search cost may increase price and make information provision noisier
- a lower price may be used, pairing with info provision, to ensure effective search deterrence

Outline

- Model (formally)
- Main result (very informally)
- Implications (if time permits)
- Comparative statics

The Model

- (Risk neutral) Buyer's match value with the product is $x \in\{0,1\}$, with prior $\mu=\mathbb{P}(x=1)$
- Seller knows μ, and her production cost is normalized to zero
- Seller sets a price p and provides information using a signal
- upon observing a signal realization, Buyer updates her beliefs and forms posterior exp. value w
- hence, by providing information, Seller affects Buyer's posterior value distribution H
- in fact, we can allow Seller to directly choose posterior value distribution H so long as $\mathbb{E}_{H}[w]=\mu$
- Seller's strategy can be summarized by (p, H)
- Seeing price and information, Buyer's net payoff from buying is $w-p$
- Buyer can draw an outside option v from a distribution G on $[0,1]$ at cost $s \geq 0 ; s<\xi:=\mathbb{E}_{G}[v]$
- Buyer knows G, but Seller does not: she only knows that G is on $[0,1]$ and its mean is ξ
- Free recall: Buyer can return to buy at Seller costlessly
- the price does not change when Buyer comes back (anonymity)

Robust Optimization

To deal with the uncertainty, Seller takes a robust/maxmin approach

- maximizes the minimal profit across all outside option distributions on $[0,1]$ with mean ξ
- she chooses price p and information provision policy H to maximize her payoff as if there is an adversarial nature who observes (p, H), then chooses G on $[0,1]$ with mean ξ to minimize Seller's payoff

Timeline:

- Seller chooses a price p and an information provision policy H
- Nature chooses outside option distribution G
- Buyer observes p, draws a posterior expected value w from H, and she also observes G
- buys immediately if the net payoff from Seller's product, $w-p$, is large enough
- otherwise pays search cost s, draws an outside option with value v from G
- if searches, will go back to Seller when $w-p>v$

Main Results

Using Information Provision to Deter Search

- Recall: providing information \Longleftrightarrow designing Buyer's posterior value distribution
- Seller can deter search by "pooling mass" at the posterior value at which Buyer is exactly indifferent between searching or not
- Whenever this posterior value realizes, the Buyer buys without search
- Deterring search make Buyer more likely to buy without search and increases Seller's demand
- For Buyer to forgo search, sufficiently high surplus must be provided \Longrightarrow Require a lower price in some cases

Robustly Optimal Selling Strategy

Proposition

- For small s, it is optimal to provide partial information and not deter search.
- For large s, it is optimal to provide full information (which "fully" deters search).
- For intermediate s, when ξ is relatively small compared to μ, it is optimal to provide partial information and deter search.

Robustly Optimal Selling Strategy: Intuition

Small s: partial information + no deterrence is optimal

- deterrence policy unprofitable: has to be accomplished by using a very low price
- Seller does not deter search \Longrightarrow extract more surplus by charging a much higher price
- provide partial information in a way that "hedges against" Nature

Large s : full information (deterrence) is optimal, optimal price $p_{r}=s / \xi$

- as s gets large, no need to concede too much surplus in deterring the buyer's search
- deterring search would also increase her demand
- providing full information identifies those who highly value the innovative feature of the product and make sure they buy without search

Intermediate s: a "convex combination" between the previous two can be optimal (partial information + deterrence) when ξ is relatively small compared to μ

Implications

Three kinds of new products:

- evolutionary products: existing products made slightly better
example: smart thermostat
- revolutionary products: a completely new concept
example: 3D-printer
- alternatives to existing products: revolutionary on some aspects at the cost of losing some existing features
example: portable speaker
Search cost measures how difficult it is for a buyer to find the best alternative

Implications

Evolutionary products: low s
\Longrightarrow providing partial information is optimal
(recall the image editor "Pixelmator")

Alternatives to existing products: high s
\Longrightarrow divide potential consumers into "lovers" and "haters", and serve the former only
(recall e-ink tablet "reMarkable")

Revolutionary products: μ sufficiently high compared to ξ
\Longrightarrow create some "die-hard fans", and the rest of the potential consumers get noisy signals (think about some Apple products and Tesla)

Comparative Statics

Comparative Statics

Proposition

(i) The price is non-monotone in the search cost s.
(ii) The info provision policy generically becomes more informative as the search cost increases.

Implications:

- Techno. advancements may help lowering the search cost \Longrightarrow but for new products, the price may increase and information provision can be noisier
- Charging a lower price, paired with info provision, can help Seller to effectively deter search

Summary

Summary

I characterize the robustly optimal way of selling a new product when the seller

- sets a price and chooses how much information to provide about the product
- faces uncertainty over the buyer's alternatives and seeks robustness to it

The seller trades off between search deterrence and surplus extraction

- full information optimal when search cost is high, otherwise different kinds of partial information provision policies can be optimal
- the price is non-monotone in the search cost
- information provision is likely to become more precise as search cost increases

Concrete implications for the sale of (different kinds of) new products

- decreased search cost \Longrightarrow price may increase, information provision can be come noisier
- the results shed light on the variety of price-info combinations we observe across new products

Thank you!

kunzhang@asu.edu

Backup Slides

Related Literature

Selling a new product with information provision: Boleslavsky et al. (2017), Feinmesser et al. (2021)
On a higher level, this paper lies at the intersection of two strands of literature:

- Robust pricing: e.g., Carrasco et al. (2018), Du (2018), Hinnosaur and Kawai (2020)
- Pricing with info provision and consumer search: Anderson and Renault (2006), Wang (2017), Lyu (2021)

Search deterrence tactics:

- Price-based tools: Armstrong and Zhou (2016)
- Search obfuscation: e.g., Bar-Issac et al. (2010), Ellison and Wolitzky (2012)

Also related to information design under non-probabilistic uncertainty:

- Dworczak and Pavan (2022), Hu and Weng (2021), Kosterina (2022), Sapiro-Gheiler (2021)

The optimal information provision policy features similarities to robust contracting (e.g., Carroll and Meng, 2016) and information design contests (e.g., Boleslavsky and Cotton, 2015, 2018; Au and Whitmeyer, 2023)

Information as Experiment

Seller provides information by an experiment (S, X)

- a signal σ realizes according to $\chi(x)$ when the match value is $x \in\{0,1\}$
- Buyer updates using Bayes rule, and gets a posterior $\mathbb{P}(x=1 \mid \sigma)$
- the law of iterated expectation requires $\mathbb{E}[\mathbb{P}(x=1 \mid \sigma)]=\mathbb{P}(x=1)=\mu$
- "merging" all signals that leads to the same posterior $w: \mathbb{E}_{H}[w]=\mu$
- conversely, for any given H with $\mathbb{E}_{H}[w]=\mu$, let $S=\operatorname{supp}(H)$ and

$$
p_{1}(\sigma)=h(\sigma) \sigma / \mu, \quad \text { and } \quad p_{0}(\sigma)=h(\sigma)(1-\sigma) /(1-\mu),
$$

for all $\sigma \in S$, where p_{x} and h are the "generalized pdf" of $\chi(x)$ and H, respectively

Seller's Objective

- There exists $a \in[\xi-s, 1-s / \xi]$ that depends on both G and s such that Buyer buys without search whenever $w-p \geq a$; call a the stopping threshold
- If instead $w-p<a$, Buyer investigates the 0.0. , and returns to buy from Seller if $w-p>v$
- Hence, Buyer buys from Seller when $w-p \geq \min \{a, v\}$, or $w \geq p+\min \{a, v\}$
- Prob. of eventual purchase when price is p and outside option is v is $1-H(p+\min \{a, v\})$
- Seller's revenue for a fixed distribution over outside options G is

$$
p \mathbb{E}_{G}[1-H(p+\min \{a, v\})]
$$

- Seller solves

$$
\max _{(p, H)} \min _{G} p \mathbb{E}_{G}[1-H(p+\min \{a, v\})]
$$

Two Key Properties

1. Linearity of H hedges well against Nature

- the demand that Seller faces when H is linear is constant in G :

$$
\mathbb{E}_{G}[1-H(p+\min \{a, v\})]=1-H\left(p+\mathbb{E}_{G}[\min \{a, v\}]\right)=1-H(p+\xi-s)
$$

- guarantees that there is no choice of G that Nature can take significant advantage of

2. Mass point in H to deter search? Only possible when $p \leq s / \xi$

- if Seller knows G and hence a, mass point at $w=p+a \leq 1$ can deter search $b / c w-p=a$
- but here, for a mass point w, Nature may choose G s.t. $a=w-p+\varepsilon$ to offset
- a mass point at w is resistant to this only when $w \geq p+\underbrace{1-s / \xi}_{\text {largest } a}$
- such a mass point is only possible if $p+1-s / \xi \leq 1$, or $p \leq s / \xi$
\Rightarrow Highlights the trade-off between demand and surplus extraction

Using Information Provision to Deter Search

(a) Deterring search by "pooling mass"

(b) Full information

