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Motivation

• DSGE models are widely used:

∗ U.S. Fed, Bank of Canada, Sveriges Riksbank etc.

• Conclusions based on the models can be misleading because of
‘identification’:

∗ DSGE models are micro-founded, rich with parameters.

∗ Multiple parameter vectors may yield same data generating process.

∗ Standard Bayesian methods can be sensitive to prior choices.
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Motivation

A monetary policy model (Cochrane 2011, JPE). Solved in its AR(1) form

πt = ρπt−1 +
1

φ− ρεt , φ > 1, |ρ| < 1, εt ∼ N(0, σ2
ε)

parameter vector (φ, σε, ρ), Taylor rule parameter φ, monetary policy

disturbance coefficient ρ, its standard error σε. Inflation rate πt is observed.

• Simulation: generate πt , estimate (φ, σε, ρ) with different priors
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Identification Failure

Figure: Likelihood function while fix ρ = 0.8 and sample size = 1 million

• Flat maxima along the σε = φ− 0.8 line.

• Prior sensitivity becomes obvious.
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Prior Sensitivity

• 1-unit monetary policy disturbance shock on inflation.

• Impulse response with two different priors (but has the same distribution

over (ρ, σε
φ−ρ )).
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Prior Sensitivity

Figure: Cochrane model prior/posterior distribution with uniform priors

• The posterior of σε and φ are extremely informative even if only σε
φ−0.8 is

identified.

• Reason? Joint likelihood density more concentrated on areas with

higher values of φ and σε.
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Research Question

• Given a DSGE model and observed data.

∗ Identification/Sensitivity : Is there an identification issue?

Is there a way to provide the entire set of parameters of interest, robust of

priors?

∗ Policy implications: Is it possible the identified set of parameters will agree

on a single policy? What if it is not?

• Overview of the algorithm:

S.1 Run standard Bayesian estimation, get posterior draws of θ from a given

prior p(θ).

S.2* Optimize over the observationally equivalent set of parameters of each draw,

find the lower and upper bounds of parameters of interest.

S.3 Average the lower/upper bounds for means and quantiles.

7 / 24



Motivation Contributions Setup Results Conclusion

Preview of Results - Identification
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Preview of Results - Inference
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Preview of Results - Inference
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Literature and Contributions

• Identification in DSGE models: Canova and Sala (2009), Iskrev (2010),

Komunjer and Ng (2011), Qu and Tkachenko (2012), Qu and Tkachenko (2017),

Kociecki and Kolasa (2018), Kociecki and Kolasa (2021)

• Robust Bayesian analysis: Berger et al. (1994), Berger, Insua, and

Ruggeri (2000), Gustafson (2009), Giacomini and Kitagawa (2021), Ke,

Montiel Olea, and Nesbit (2022), Giacomini, Kitagawa, and Read (2022)

• Contribution of this paper:
• A robust Bayesian algorithm for DSGE models that is easy to implement and

has a theory foundation.
• “Global” identification rather than identification at a given parameter value

(KK21).
• DSGE model, which has some additional complications ( GK21).
• Exact identification rather than weak identification (Muller 2011, Andrews

and Mikusheva 2015, Ho 2022, etc.)
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Model Assumptions

Assumption (Linearity)

I work with linearized DSGE model with Gaussian shocks (first order

perturbation).

Assumption (Determinacy)

Solution to the LREM is unique, i.e. no indeterminacy.

Assumption (Polynomial)

Structural parameters enter LREM in algebraic operations (addition,

subtraction, multiplication, division and exponentiation by a rational number).

• e.g. NKPC in Gali (2015): πt = βEt {πt+1}+ λ
(
σ + ϕ+α

1−α

)
ỹt

Remark: Baseline DSGE models like An& Schorfheide (2007) and Smets

and Wouters (2007) satisfies these conditions. Some HANK models also do.
12 / 24



Motivation Contributions Setup Results Conclusion

Extension and limitations

• The method works as long as the model can be rewritten as a

state-space form.

• Violation of non-linearity/Gaussianity

• Andreason, Fernández-Villaverde and Rubio-Ramírez (2017)
• ⇒ A superset of identified parameters.

• Can deal with much more sophisticated DSGE models than Smets and
Wouters (2007)

• Number of partially-identified parameters needs to be small, or the partially

identified sets can be expressed as cross product of low dimensional sets.
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Definitions

Definition (OE)

Parameter θ̄ is observationally equivalent to θ if they have the same likelihood

p(y | θ) for all data realization y .

• A property independent of data

Definition (Identification)

θ is identified if it has no observationally equivalent parameters.

• Define the equivalence mapping K : Θ→ 2Θ, that is, p(y | θ) = p(y | θ̄)

for all data y , if and only if K (θ) = K (θ̄).

Definition (Reduced-form)

A C1 function ψ : Rn → Rq is called a reduced-form parameter if it is

identified. Consider K (θ) a generalized ‘reduced-form’ parameter.
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Parameter Space

Θ

2Θ

Rq

η

θ

K (θ)

η(θ)

structural parameters

parameters of interest

(e.g. impulse response)

observationally equivalent parameters

(generalized ‘reduced-form’)

Y
data

given prior πθ, update through likelihood p(y | θ)

and yield posterior πθ|Y

K

identified

equivalence mapping

Figure: Connections between parameters
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Example: Cochrane Model

Consider the full model

xt = ρxt−1 + εt , |ρ| < 1, εt ∼ N(0, σε)

it = r + Etπt+1

it = r + φπt + xt , φ > 1

Structural parameters are θ = (ρ, φ, σε). The solution is equivalent to a AR(1)

setting

πt = ρπt−1 +
1

φ− ρεt , εt ∼ N(0, σ2
ε)

with reduced form parameters ψ = (ρ, σε
φ−ρ ), (φ, σε) not jointly identifiable.

K (ρ0, φ0, σ0ε) = {ρ0, φ0, σ0ε | ρ = ρ0,
σε
φ−ρ = σ0ε

φ0−ρ0
}
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Algorithm

Revisiting the algorithm

S.1 Run standard Bayesian estimation, get posterior draws of θ from a given

prior p(θ).

S.2* Optimize over the observationally equivalent set of parameters of each
draw, find the lower and upper bounds of parameters of interest.

• Finding the observationally equivalent set of a given parameter involves

solving a polynomial system.

S.3 Average the lower/upper bounds for means and quantiles.
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OE characterization (KN11, KK21)

solution solution

similarity

transformation

LRM (θ1) LRM (θ2)

state space (θ1) state space (θ2)

Goal:

equivalence
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Theoretical Results

Theorem (Posterior Mean)

For a given πθ, let measurability and regularity assumptions hold, that is,

given a prior πθ absolutely continuous with respect to a σ-finite measure, we

have a push-forward measure πK of πθ under K that is also absolutely

continuous. Define

η∗(θ) = sup
θ′∈K (θ)

η(θ′), η∗(θ) = inf
θ′∈K (θ)

η(θ′)

Then, the set of posterior means is characterized by

sup
πθ|Y∈Πθ|Y

Eθ|Y [η(θ)] = Eθ|Y [η∗(θ)] , inf
πθ|Y∈Πθ|Y

Eθ|Y [η(θ)] = Eθ|Y
[
η∗(θ)

]
where Πθ|Y collects the posteriors of Πθ(πK ) for a given πK .
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Theoretical results

Theorem (Consistency)

Let, in addition continuity assumption hold, assume further that induced prior

πK leads to a consistent posterior, and Θ ⊂ Rp,H ⊂ Rq for some p, q <∞

are compact spaces. Then the Hausdorff distance between the set of

posterior means and the convex hull of true identified set goes to zero almost

surely as T increases, i.e.,

lim
T→∞

dH

(
Eθ|Y T

( [
η∗(θ), η̄∗(θ)

] )
,
[
η∗(θ0), η̄∗(θ0)

])
→ 0, p (Y∞ | θ0) -a.s.

20 / 24



Motivation Contributions Setup Results Conclusion

Example 1: Cochrane (2011)

Table: Estimated Identified Set for Cochrane Model

True value Identified set Range of post mean Robust Bayesian credible region

σe 1 (0.2,∞) (0.21,∞) (0.14,∞)

φπ 1.8 (1,∞) (1.00,∞) (1.00,∞)

ρ 0.8 0.8 0.80 (0.74, 0.87)

• Estimation of the range of posterior means closely approximates the

identified set.

• Still working on the Smets & Wouters (2007) example.

• What is known about SW07 for now: not point-identified, and can be

handled computationally.
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Example 2: An& Schorfheide(2007)

Table: Estimated Identified Set for AS Model

True value Identified Set Range of Posterior Mean Robust Bayesian CR

τ 2 2.00 1.97 (1.36, 2.76)

κ 0.15 0.15 0.15 (0.10, 0.21)

ψπ 1.5 (1.00, 4.87) (1.00, 4.11) (1.00, 5.36)

ψy 1 (0.00, 1.15) (0.00, 0.94) (0.00, 1.44)

ρz 0.65 0.65 0.63 (0.56, 0.71)

ρg 0.75 0.75 0.74 (0.66, 0.82)

ρR 0.6 (0.58, 0.60) (0.54, 0.56) (0.45, 1.00)

100σz 0.45 0.45 0.47 (0.31, 0.67)

100σg 0.8 0.80 0.77 (0.70, 0.84)

100σR 0.2 (0.19, 0.20) (0.20, 0.21) (0.18, 0.23)
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Conclusion

In this paper, I address the following problems:

• The estimation results of the set-identified DSGE models are sensitive to

the choice of priors (Identification)

∗ Use a robust Bayesian algorithm, I can pick any ‘reasonable’ prior and obtain

robust results.

∗ I also prove it asymptotically finds the frequentist identified set.

• Researchers are silent about non-identified DSGE models (Inference)

∗ The collection of posterior means of parameters of interest is given.

∗ One may still have nontrivial conclusions even when the model suffers

identification problems.

∗ Robust Bayesian decision making from SDT can be useful.
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