Manpreet Singh

Paris School of Economics \& ENPC Presentation at the EEA-ESEM conference, Barcelona

August 25, 2023

4ロ>4自)

Overview

1 Introduction

2 Bayes Nash Equilibrium with 2 players

3 Extensions

4 Literature Review

5 Conclusion and policy implications

Introduction

■ Procurement auctions are ubiquitous.

- Procurement targets might be larger than any individual firm's capacity.
- Cumulative capacity of suppliers does not exactly equate target. Allocation and market clearing problem.
- This study: an auction with multiple winners and a rationing rule, employed in renewable energy auctions of India.
- Contributes to literature on procurement with multiple suppliers (Anton and Yao, 1989), capacity constrained suppliers (Chaturvedi, 2015).

Introduction: Relevant institutional details

- Auctions conducted by Solar Energy Corporation of India (SECI) and National Thermal Power Corporation (NTPC).
- Awards the right to build a solar/wind power plant of certain capacity, and sell its production for 25 years.
- The capacity award and tariff on produced electricity determined during auction.
- Allocation is decided in 2 stage auctions.
- Here: analyse second stage, which is an open uniform price auction with rationing rule, and publicly known capacities.
- Relevant information from first stage: reserve bid, set of players in $2^{\text {nd }}$ stage and their corresponding capacity.

Introduction: Allocation in $2^{\text {nd }}$ stage

- The auctioneer reveals procurement target.

Bidders publicly report their capacity before the auction.

- Auction can be modeled as descending clock auctions.

Introduction: Allocation in $2^{\text {nd }}$ stage

- The auctioneer reveals procurement target.

Bidders publicly report their capacity before the auction.

- Auction can be modeled as descending clock auctions.
- A clock shows reserve bid. All bidders enter an arena.

Introduction：Allocation in $2^{\text {nd }}$ stage

－The auctioneer reveals procurement target．
Bidders publicly report their capacity before the auction．
－Auction can be modeled as descending clock auctions．
－A clock shows reserve bid．All bidders enter an arena．
－As auction proceeds，the bid on the clock reduces．

Introduction: Allocation in $2^{\text {nd }}$ stage

- The auctioneer reveals procurement target.

Bidders publicly report their capacity before the auction.

- Auction can be modeled as descending clock auctions.
- A clock shows reserve bid. All bidders enter an arena.
- As auction proceeds, the bid on the clock reduces.
- Bidders exit the arena permanently at any displayed bid if they don't want the award at that or lower bid.

Introduction: Allocation in $2^{\text {nd }}$ stage

- The auctioneer reveals procurement target.

Bidders publicly report their capacity before the auction.

- Auction can be modeled as descending clock auctions.
- A clock shows reserve bid. All bidders enter an arena.
- As auction proceeds, the bid on the clock reduces.
- Bidders exit the arena permanently at any displayed bid if they don't want the award at that or lower bid.
- At every exit, auction continues if there is excess demand, else auction ends and

Introduction: Allocation in $2^{\text {nd }}$ stage

- The auctioneer reveals procurement target.

Bidders publicly report their capacity before the auction.

- Auction can be modeled as descending clock auctions.
- A clock shows reserve bid. All bidders enter an arena.
- As auction proceeds, the bid on the clock reduces.
- Bidders exit the arena permanently at any displayed bid if they don't want the award at that or lower bid.
- At every exit, auction continues if there is excess demand, else auction ends and
- Rationing rule: last exiting bidder supplies the residual of target and capacities of bidders still in the auction.
- The tariff for winning bidders is the bid at which auction ends.

Introduction: Example with target $=300$

Bidder	Capacity	Price	Award	Target
1	100	3.4	100	
2	60	3.4	60	
3	40	3.4	40	
4	150	3.4	100	$\mathbf{3 0 0}$
5	100	3.8	0	
6	400	3.9	0	
7	200	4.2	0	
Table: Final allocations				

Bidding strategies: preview of results

- Characterize BNE in pure strategies for 2 players with privately known cost, drawn independently from same distribution

■ Key theoretical result: Player with highest capacity is less aggressive, and can exit at reserve bid with positive probability.

- There is a unique non-pooling equilibrium for 2 players, in addition to pooling equilibria.

■ Policy implication: Rationing and capacity constraint \Longrightarrow inefficient selection.

- Paper contains extensions with 3 bidders, and asymmetric cost distributions.

Overview

1 Introduction

2 Bayes Nash Equilibrium with 2 players

3 Extensions

4 Literature Review

5 Conclusion and policy implications

Notations and assumptions

- Auctioneer sets procurement target M and reserve bid b^{R}.
- Simultaneously, N risk-neutral bidders publicly reveal their respective capacities q_{i}.
- Bidder B_{i} discovers her marginal cost $c_{i} . c_{i} \in\left[_, \bar{c}\right]$. Private information.
- $c_{i} \stackrel{\text { i.i.d }}{\sim} F(c)$, where F is atomless and public information. $f(c)=F^{\prime}(c) ; \sigma(c)=f(c) / F(c)$,
Key-assumption: $\sigma^{\prime}(c)<0$ (monotone hazard rate).

Analysis

- B_{i} bids b_{i} i.e.,

Analysis

- B_{i} bids b_{i} i.e., she exits when clock shows b_{i}, if no other bidder in the arena has exited at bids weakly greater than b_{i}.

Analysis

- B_{i} bids b_{i} i.e., she exits when clock shows b_{i}, if no other bidder in the arena has exited at bids weakly greater than b_{i}.
- $\beta_{i}\left(c_{i}\right)$: equilibrium bid function of B_{i}.

Analysis

- B_{i} bids b_{i} i.e., she exits when clock shows b_{i}, if no other bidder in the arena has exited at bids weakly greater than b_{i}.
- $\beta_{i}\left(c_{i}\right)$: equilibrium bid function of B_{i}.
- Characterize bayes nash equilibria for auctions with 2 bidders.

Possible cases with 2 players $\left(q_{1}>q_{2}\right)$

Assume $q_{1}>q_{2}$ w.l.o.g

Equilibrium: Case 1 (2 small bidders)

- $q_{i}<M, q_{1}+q_{2}>M$.
- Ex-post payoffs:

Winning: $\pi_{i}^{W}\left(b_{i} ; c_{i}, \mathrm{q}, \mathrm{b}_{-i}\right)=q_{i}\left(p-c_{i}\right)$;
Losing: $\pi_{i}^{L}\left(b_{i} ; c_{i}, \mathrm{q}, \mathrm{b}_{-i}\right)=\left(M-q_{-i}\right)\left(p-c_{i}\right)$;
$p=\operatorname{Max}\left\{b_{1}, b_{2}\right\}$ is the uniform price.

- Tie breaking rule: Residual award to B_{1}.

Equilibrium: Case 1 (2 small bidders)

- Expected payoff

$$
\begin{aligned}
\pi_{i}\left(b_{i} ; c_{i}, b_{-i}\right)= & \operatorname{Pr}\left(b_{-i}<b_{i}\right)\left(M-q_{-i}\right)\left(b_{i}-c_{i}\right) \\
& +\operatorname{Pr}\left(b_{-i}>b_{i}\right) q_{i} \mathbb{E}_{F}\left(\left(b_{-i}-c_{i}\right) \mid b_{-i}>b_{i}\right)
\end{aligned}
$$

- 2 pooling BNE- B_{i} exits when the clock starts $\left(b_{i}=b^{R}\right)$, and B_{-i} never exits ($b_{-i}=-\infty$).

Equilibrium: Case 1 (2 small bidders)

- Expected payoff

$$
\begin{aligned}
\pi_{i}\left(b_{i} ; c_{i}, b_{-i}\right)= & \operatorname{Pr}\left(b_{-i}<b_{i}\right)\left(M-q_{-i}\right)\left(b_{i}-c_{i}\right) \\
& +\operatorname{Pr}\left(b_{-i}>b_{i}\right) q_{i} \mathbb{E}_{F}\left(\left(b_{-i}-c_{i}\right) \mid b_{-i}>b_{i}\right)
\end{aligned}
$$

- 2 pooling BNE- B_{i} exits when the clock starts $\left(b_{i}=b^{R}\right)$, and B_{-i} never exits ($b_{-i}=-\infty$).
Requires a crazy type.

Equilibrium: Case 1 (2 small bidders)

- Expected payoff

$$
\begin{aligned}
\pi_{i}\left(b_{i} ; c_{i}, b_{-i}\right)= & \operatorname{Pr}\left(b_{-i}<b_{i}\right)\left(M-q_{-i}\right)\left(b_{i}-c_{i}\right) \\
& +\operatorname{Pr}\left(b_{-i}>b_{i}\right) q_{i} \mathbb{E}_{F}\left(\left(b_{-i}-c_{i}\right) \mid b_{-i}>b_{i}\right)
\end{aligned}
$$

- 2 pooling BNE- B_{i} exits when the clock starts $\left(b_{i}=b^{R}\right)$, and B_{-i} never exits ($b_{-i}=-\infty$).
Requires a crazy type. Inefficient allocation.

Equilibrium: Case 1 (2 small bidders)

- Expected payoff

$$
\begin{aligned}
\pi_{i}\left(b_{i} ; c_{i}, b_{-i}\right)= & \operatorname{Pr}\left(b_{-i}<b_{i}\right)\left(M-q_{-i}\right)\left(b_{i}-c_{i}\right) \\
& +\operatorname{Pr}\left(b_{-i}>b_{i}\right) q_{i} \mathbb{E}_{F}\left(\left(b_{-i}-c_{i}\right) \mid b_{-i}>b_{i}\right)
\end{aligned}
$$

- 2 pooling BNE- B_{i} exits when the clock starts $\left(b_{i}=b^{R}\right)$, and B_{-i} never exits ($b_{-i}=-\infty$).
Requires a crazy type. Inefficient allocation.
- Any other equilibrium?

Equilibrium example，$q_{1}>q_{2}$

Equilibrium example, $q_{1}>q_{2}$

Bunching by larger player at b^{R}.

Equilibrium formal statement: Case 1

Lemma 1

For each $B_{i}, \beta_{i}(c)$ constitute a non-pooling Bayes Nash Equilibrium of the 2 player clock auction with rationing if and only if it satisfies following properties:
$1 \beta_{i}(c)$ is non-decreasing in c.
$2 \beta_{i}(c)$ is continuous and atomless for $b<b^{R}$ for both i.
(3) $\lim _{c \rightarrow \underline{c}^{+}} \beta_{i}(c)=\underline{c}$

4 For each player $B_{i}, \beta_{i}(c)$ solves:

$$
\begin{equation*}
\sigma\left(\beta_{-i}^{-1}\left(\beta_{i}(c)\right)\right) \beta_{-i}^{-1^{\prime}}\left(\beta_{i}(c)\right)\left(\beta_{i}(c)-c\right)\left(q_{1}+q_{2}-M\right)=\left(M-q_{-i}\right) \tag{1}
\end{equation*}
$$

5 $\beta_{2}(\bar{c})=b^{R}$, and $\exists c^{*}$ such that $\beta_{1}(c)=b^{R}, \forall c \in\left[c^{*}, \bar{c}\right]$.

Equilibrium: Intuition behind B_{1} bunching

- Define $\phi_{i}(b)$ as inverse of bid function, $\beta_{i}(c)$, wherever invertible.

Equilibrium: Intuition behind B_{1} bunching

- Define $\phi_{i}(b)$ as inverse of bid function, $\beta_{i}(c)$, wherever invertible.
- Cost of reducing bid by $d b$: $\left(M-q_{-i}\right) d b$.
- B_{1} has higher residual quantity vis-a-vis B_{2}, which makes competition costly for her on the margin.

Equilibrium: Intuition behind B_{1} bunching

- Define $\phi_{i}(b)$ as inverse of bid function, $\beta_{i}(c)$, wherever invertible.
- Cost of reducing bid by $d b$: $\left(M-q_{-i}\right) d b$.
- B_{1} has higher residual quantity vis-a-vis B_{2}, which makes competition costly for her on the margin.
- Benefit of reducing bid by $d b$:

$$
\frac{f\left(\phi_{-i}(b)\right)}{F\left(\phi_{-i}(b)\right)} \phi_{-i}^{\prime}(b) d b\left(b-\phi_{i}(b)\right)\left(q_{1}+q_{2}-M\right)
$$

- Higher bid gives her higher markup $\left(=b-\phi_{1}(b)\right)$, which leads to a Marginal Benfit high enough to compensate for this cost.

Inefficient allocation

Equilibrum: Existence and Uniqueness

Theorem 1
Equilibrium described by Lemma 1 exists and is unique

Proof

Equilibrium: Case 2 (1 large, 1 small bidder)

- $q_{1}=M, q_{2}<M$.
- $\pi_{1}^{W}=q_{1}\left(p-c_{1}\right), \pi_{1}^{L}=\left(M-q_{2}\right)\left(p-c_{i}\right)$ where $p=\operatorname{Max}\left\{b_{1}, b_{2}\right\}$.
- $\pi_{2}^{W}=q_{2}\left(p-c_{1}\right), \pi_{2}^{L}=0$
- B_{2} bids her cost $\left(=c_{2}\right)$. B_{1} maximises

$$
\pi_{1}\left(b_{1} ; c_{1}, \beta_{2}(c)\right)=\left(M-q_{2}\right)\left(b_{1}-c_{1}\right) F\left(b_{1}\right)+q_{1} \int_{b_{1}}^{b^{R}}\left(x-c_{1}\right) d F(x)
$$

- FOC for internal optima for $B_{1}: \sigma\left(\beta_{1}\left(c_{1}\right)\right)\left(\beta_{1}\left(c_{1}\right)-c_{1}\right)=\frac{M-q_{2}}{q_{2}}$.

Case 2: examples

Figure: $\beta_{1}(c) . b^{R}=4.1, F$ is constrained Log-Normal. $\mu=1, \sigma=1 ; c_{i} \in[0,4]$

Overview

1 Introduction

2 Bayes Nash Equilibrium with 2 players

3 Extensions

4 Literature Review

5 Conclusion and policy implications

Asymmetric cost distributions:

If capacities same, B_{i} bunches if she thinks her cost is higher.

Asymmetric cost distributions:

If capacities same, B_{i} bunches if she thinks her cost is higher.
1 Distributions can be ordered according to Reversed hazard rate, $\sigma_{i}(c)=\frac{f_{i}(c)}{F_{i}(c)}$.

- B_{2} is less competitive and bunches if $\sigma_{2}(c)>\sigma_{1}(c) \frac{M-q_{2}}{M-q_{1}}$.
- Intuitively, if B_{2} is more likely to have high costs, she bunches

2. Distributions have different suprema of supports, but same reverse hazard rates.

- B_{2} bunches only if $\bar{c}_{2}>\bar{c}_{1}+\Delta\left(M, q_{1}, q_{2}\right)$.
- Intuitively, if B_{2} is likely to have higher costs, she bunches

Formal result

Thus, efficiency can be restored if costs are drawn asymmetrically.

Extending to more players

■ Add a very small bidder: Bidder B_{3} with $q_{3}<q_{2}$ while $q_{1}+q_{2}>M$; B_{1} bunches.

- Semi-seperating equilibrium exists and has unique structure if $b^{R}=\bar{c}$. Pooling equilibria always exist. * Formal results

Overview

1 Introduction

2 Bayes Nash Equilibrium with 2 players

3 Extensions

4 Literature Review

5 Conclusion and policy implications

Literature

- Auctions:
- Chaturvedi (2015) studied procurement with capacity constrained bidders, but only through simulations.
- Krishna (2009) provides a good synthesis of ascending price auctions.
- Split award auctions à la Anton and Yao (1989), Anton, Brusco and Lopomo (2010)
- Game of exit:
- Levin (2004) provides a synthesis of results on symmetric war of attrition with single winner.
- Nalebuff and Riley (1985) analyses asymmetric war of attrition, posits continuum of equilibria.
- Renewable energy auctions in India (Probst andothers, 2020; Ryan, 2021)

Overview

1 Introduction

2 Bayes Nash Equilibrium with 2 players

3 Extensions

4 Literature Review

5 Conclusion and policy implications

Conclusion

- Analyse a novel auction mechanism being used in renewable energy auctions in India.
- With 2 players, there is a partially separating equilibrium, characterised by bunching at reserve by high quantity player
- With 3 players, partially separating equilibrium always exists if $b^{R}=\bar{c}$; pooling equilibrium always exists.
- While developed for procurement, the results can extend to a game of exit without sunk costs.
- If the costs are drawn from different distributions, inefficiency can be reduced if low quantity player is more likely to have higher cost.

Thanks!

Thank you!
Feedback or paper requests at manpreet.singh@psemail.eu

Overview

6 Appendix

Comparative statics with respect to q_{i}

$q_{1} \uparrow \Longrightarrow B_{1}$ gains \uparrow if win $\Longrightarrow B_{1}$ more competitive

Also $\Longrightarrow B_{2}$'s residual $\downarrow \Longrightarrow B_{2}$ more competitive $\Longrightarrow B_{1}$ response unclear

(a) $\begin{aligned} \phi: q_{1} & =60, q_{2} \\ \tilde{\phi}: q_{1} & =80 \\ & q_{2}\end{aligned}=50$

(b) $\underset{\sim}{\phi}: q_{1}=60, q_{2}=50$

$$
M=100, c_{i} \stackrel{i . i . d}{\sim} U[0,1] ; b^{R}=1.1 .
$$

Comparative statics in symmetric equilibrium

- Suppose $q_{1}=q_{2}=q<M, 2 q>M$, and $c_{i} \stackrel{i \cdot i . d}{\sim} U(0,1)$.
- Equilibrium bid function is:

$$
\beta(c)= \begin{cases}c^{\frac{2 q-M}{M-q}}\left(b^{R}+\frac{2 q-M}{2 M-3 q}\left(1-c^{\frac{2 M-3 q}{M-q}}\right)\right) & ; M \neq 1.5 q \\ c \cdot b^{R}-c \cdot \ln (c) & ; M=1.5 q\end{cases}
$$

Corollary 1

Consider a symmetric clock auction with supplier rationing. Any increase in q (or decrease in M) makes players less competitive for all c as long as $M>1.5 q$, more competitive as long as $M<1.5 q$, and has no effect as long as $M=1.5 q$.

2P0F Extensions with different F

- Suppose $c_{i} \stackrel{i . i . d}{\sim} F_{i}(c)$, s.t $\sigma_{1}(c)<\sigma_{2}(c) \forall c$ or vice-versa.
- B_{1} bunches if $\frac{\sigma_{1}(c)}{\sigma_{2}(c)}>\frac{M-q_{1}}{M-q_{2}} \forall c$.

2P0F Extensions with different F

- Suppose $c_{i} \stackrel{i . i . d}{\sim} F_{i}(c)$, s.t $\sigma_{1}(c)<\sigma_{2}(c) \forall c$ or vice-versa.
- B_{1} bunches if $\frac{\sigma_{1}(c)}{\sigma_{2}(c)}>\frac{M-q_{1}}{M-q_{2}} \forall c$.

■ Suppose $c_{i} \in\left[\underline{c}, \bar{c}_{i}\right]$ where $\bar{c}_{1}<\bar{c}_{2}$ but F_{i} s are such that $\sigma_{1}(c)=\sigma_{2}(c) \forall c<\bar{c}_{1}$.

- $\exists \Delta\left(M, q_{1}, q_{2}\right)$ such that B_{2} bunches if $\bar{c}_{2}>\bar{c}_{1}+\Delta\left(M, q_{1}, q_{2}\right)$.

Lemma 1: Sketch of proof of property (i)

- Expected payoff of B_{i} follows SCP-IR, when B_{-i} plays non-decreasing strategy. Consider $b_{1}^{\prime}>b_{1}, c_{1}^{\prime}>c_{1}$.
- $A\left(b_{1}^{\prime}, b_{1}, c_{1}, b_{2}\right) \equiv \pi_{1}\left(b_{1}^{\prime}, c_{1} ; b_{2}\right)-\pi_{1}\left(b_{1}, c_{1} ; b_{2}\right)>0$

$$
\begin{aligned}
& \pi_{1}\left(b_{1}^{\prime}, c_{1}^{\prime} ; b_{2}\right)-\pi_{1}\left(b_{1}, c_{1}^{\prime} ; b_{2}\right) \\
= & \left(M-q_{2}\right)\left[\left(b_{1}^{\prime}-c_{1}^{\prime}\right) \operatorname{Pr}\left(b_{2}<b_{1}^{\prime}\right)-\left(b_{1}-c_{1}^{\prime}\right) \operatorname{Pr}\left(b_{2}<b_{1}\right)\right] \\
& +q_{1}\left[E\left(b_{2}-c_{1}^{\prime} \mid b_{2}>b_{1}^{\prime}\right) \operatorname{Pr}\left(b_{2}>b_{1}^{\prime}\right)-E\left(b_{2}-c_{1}^{\prime} \mid b_{2}>b_{1}\right) \operatorname{Pr}\left(b_{2}>b_{1}\right)\right] \\
= & \left(M-q_{2}\right)\left[\left(b_{1}^{\prime}-c_{1}+c_{1}-c_{1}^{\prime}\right) \operatorname{Pr}\left(b_{2}<b_{1}^{\prime}\right)-\left(b_{1}-c_{1}+c_{1}-c_{1}^{\prime}\right) \operatorname{Pr}\left(b_{2}<b_{1}\right)\right] \\
& +q_{1}\left[E\left(b_{2}-c_{1}+c_{1}-c_{1}^{\prime} \mid b_{2}>b_{1}^{\prime}\right) \operatorname{Pr}\left(b_{2}>b_{1}^{\prime}\right)\right. \\
& \left.-E\left(b_{2}-c_{1}+c_{1}-c_{1}^{\prime} \mid b_{2}>b_{1}\right) \operatorname{Pr}\left(b_{2}>b_{1}\right)\right] \\
= & \underbrace{A\left(b_{1}^{\prime}, b_{1}, c_{1}, b_{2}\right)}_{>0}+\underbrace{\left(M-q_{2}-q_{1}\right.}_{<0} \underbrace{\left(c_{1}-c_{1}^{\prime}\right)}_{<0} \underbrace{\left[\operatorname{Pr}\left(b_{2}<b_{1}^{\prime}\right)-\operatorname{Pr}\left(b_{2}<b_{1}\right)\right]}_{>0}
\end{aligned}
$$

Proof of property (ii)

Show the deviations as depicted below:

(a)

(b)

Proof of other properties

■ For (iii), same argument as Bertrand
■ (i) and (ii) imply $\beta_{i}(c)$ is invertible. Define inverse $\phi_{i}(b)$ as:

$$
\phi_{i}(b):= \begin{cases}\beta_{i}^{-1}(b) & \text { for } b<b^{R} \\ \operatorname{lnf}\left\{c: \beta_{i}(c)=b^{R}\right\} & \text { for } b=b^{R}\end{cases}
$$

- (iv) is FOC for optimisation at interior point
- At any point of intersection $(b, c), \frac{\phi_{2}^{\prime}(b)}{\phi_{1}^{\prime}(b)}=\frac{M-q_{2}}{M-q_{1}}>1$.

■ Thus, at max 1 intersection as shown in the figure.

Figure: Possible intersection between $\phi_{1}(b)$ and $\phi_{2}(b)$

Property (v)

- As $c \rightarrow \underline{c}^{+}, \beta_{1}(c) \rightarrow \underline{c}^{+}, \beta_{2}(c) \rightarrow \underline{c}^{+}$. Thus, $\lim _{b \rightarrow \underline{c}^{+}} \phi_{i}(b)=\underline{c}$
- Consider some $\delta \rightarrow 0^{+}$. Suppose $\phi_{i}(\underline{c}+\delta / n)=\underline{c}+\epsilon_{i}(\delta / n), n \in N, n \geq 1$.
- $\phi_{i}(\underline{c}+\delta)-\phi_{i}(\underline{c}+\delta / n) \approx \frac{n-1}{n} \delta \phi_{i}^{\prime}(\underline{c}+\delta)$ for each i

$$
\begin{aligned}
& \frac{\phi_{2}^{\prime}(\underline{c}+\delta)}{\phi_{1}^{\prime}(\underline{c}+\delta)} \approx \frac{\phi_{2}(\underline{c}+\delta)-\phi_{2}(\underline{c}+\delta / n)}{\phi_{1}(\underline{c}+\delta)-\phi_{1}(\underline{c}+\delta / n)}=\frac{\epsilon_{2}(\delta)-\epsilon_{2}(\delta / n)}{\epsilon_{1}(\delta)-\epsilon_{1}(\delta / n)} \\
& \frac{\phi_{2}^{\prime}(\underline{c}+\delta)}{\phi_{1}^{\prime}(\underline{c}+\delta)}=\frac{M-q_{2}}{M-q_{1}} \frac{\epsilon_{1}(\delta)}{\epsilon_{2}(\delta)} \frac{\delta-\epsilon_{2}(\delta)}{\delta-\epsilon_{1}(\delta)}=\frac{\epsilon_{2}(\delta)-\epsilon_{2}(\delta / n)}{\epsilon_{1}(\delta)-\epsilon_{1}(\delta / n)} \\
& \underbrace{\frac{M-q_{2}}{M-q_{1}}}_{>1} \approx \underbrace{\frac{\epsilon_{2}(\delta)\left(\delta-\epsilon_{1}(\delta)\right)}{\epsilon_{1}(\delta)\left(\delta-\epsilon_{2}(\delta)\right)}}_{>1, \text { if } \epsilon_{2}(\delta)>\epsilon_{1}(\delta)} \underbrace{\frac{\epsilon_{2}(\delta)-\epsilon_{2}(\delta / n)}{\epsilon_{1}(\delta)-\epsilon_{1}(\delta / n)}}_{\begin{array}{c}
>1, \text { if } \epsilon_{2}(\delta)>\epsilon_{1}(\delta) \\
\text { because } \epsilon_{i}(\delta / n) \rightarrow 0 \text { as } n \rightarrow \infty
\end{array}}
\end{aligned}
$$

Proof of Theorem 1

Define:

$$
\phi_{i}(b):= \begin{cases}\beta_{i}^{-1}(b) & \text { for } b<b^{R} \\ \operatorname{lnf}\left\{c: \beta_{i}(c)=b^{R}\right\} & \text { for } b=b^{R}\end{cases}
$$

Sketch of proof (assuming $\subseteq=0$):
1 Consider a sequence $\left\{\frac{\delta}{2^{n}}\right\}_{n=1}^{\infty}$, where $\delta \in(0, \bar{c})$.

Proof of Theorem 1

Define:

$$
\phi_{i}(b):= \begin{cases}\beta_{i}^{-1}(b) & \text { for } b<b^{R} \\ \operatorname{lnf}\left\{c: \beta_{i}(c)=b^{R}\right\} & \text { for } b=b^{R}\end{cases}
$$

Sketch of proof (assuming $\subseteq=0$):
1 Consider a sequence $\left\{\frac{\delta}{2^{n}}\right\}_{n=1}^{\infty}$, where $\delta \in(0, \bar{c})$.
2 For each n, show the uniqueness and existence of solution ($\phi_{1 n}(b), \phi_{2 n}(b)$), where $\operatorname{dom}\left(\phi_{i n}(b)\right)=\left[\frac{\delta}{2^{n}}, b^{R}\right] \forall i$, to this BVP:

$$
\begin{align*}
\phi_{2 n}^{\prime}(b) & =\frac{M-q_{2}}{q_{1}+q_{2}-M} \frac{1}{\sigma\left(\phi_{2 n}(b)\right)\left(b-\phi_{1 n}(b)\right)} \\
\phi_{1 n}^{\prime}(b) & =\frac{M-q_{1}}{q_{1}+q_{2}-M} \frac{1}{\sigma\left(\phi_{1 n}(b)\right)\left(b-\phi_{2 n}(b)\right)} \tag{2}
\end{align*}
$$

$$
\phi_{2 n}\left(b^{R}\right)=\bar{c}, \phi_{2 n}\left(\frac{\delta}{2^{n}}\right)=\phi_{1 n}\left(\frac{\delta}{2^{n}}\right)=\frac{\delta}{2^{n}} .
$$

Sketch of proof theorem 1

3 Define a function $w_{\text {in }}$ over the domain $\left[0, b^{R}\right]$ as $w_{i n}(b)=\phi_{i n}(b)$ for $b \in\left[\frac{\delta}{2^{n}}, b^{R}\right]$ and $w_{\text {in }}(b)=\phi_{\text {in }}\left(\frac{\delta}{2^{n}}\right)$ otherwise.

Sketch of proof theorem 1

3 Define a function $w_{i n}$ over the domain $\left[0, b^{R}\right]$ as $w_{\text {in }}(b)=\phi_{\text {in }}(b)$ for $b \in\left[\frac{\delta}{2^{n}}, b^{R}\right]$ and $w_{\text {in }}(b)=\phi_{\text {in }}\left(\frac{\delta}{2^{n}}\right)$ otherwise.
4 Monotone convergence theorem implies $w_{i n}$ converges, and show that $\phi_{\text {in }}\left(\frac{\delta}{2^{n}}\right) \rightarrow 0$ as $n \rightarrow \infty$, which shows property (iii).

Proof of Theorem 1

- Suppose 2 equilibria ϕ and $\hat{\phi}$ such that $\hat{\phi}_{1}\left(b^{R}\right)=\hat{c^{*}}>c^{*}=\phi_{1}\left(b^{R}\right)$.
- $\hat{\phi}_{1}(b)$ and $\phi_{1}(b)$ can't intersect. If they intersect at some (b^{t}, c^{t}), then there are 2 solutions to the boundary value problem defined by FOCs and $\phi_{2}\left(b^{R}\right)=\bar{c}, \phi_{1}\left(b^{t}\right)=c^{t}$.

Proof of Theorem 1

- Suppose 2 equilibria ϕ and $\hat{\phi}$ such that $\hat{\phi}_{1}\left(b^{R}\right)=\hat{c^{*}}>c^{*}=\phi_{1}\left(b^{R}\right)$.
- $\hat{\phi}_{1}(b)$ and $\phi_{1}(b)$ can't intersect. If they intersect at some (b^{t}, c^{t}), then there are 2 solutions to the boundary value problem defined by FOCs and $\phi_{2}\left(b^{R}\right)=\bar{c}, \phi_{1}\left(b^{t}\right)=c^{t}$.
- Thus, $\hat{\phi}_{1}(b)>\phi_{1}(b) \forall b \leq b^{R}$.

Proof of Theorem 1

- Suppose 2 equilibria ϕ and $\hat{\phi}$ such that $\hat{\phi}_{1}\left(b^{R}\right)=\hat{c^{*}}>c^{*}=\phi_{1}\left(b^{R}\right)$.
- $\hat{\phi}_{1}(b)$ and $\phi_{1}(b)$ can't intersect. If they intersect at some (b^{t}, c^{t}), then there are 2 solutions to the boundary value problem defined by FOCs and $\phi_{2}\left(b^{R}\right)=\bar{c}, \phi_{1}\left(b^{t}\right)=c^{t}$.
- Thus, $\hat{\phi}_{1}(b)>\phi_{1}(b) \forall b \leq b^{R}$.
- From F.O.Cs, $\sigma\left(\hat{\phi_{2}}(b)\right) \hat{\phi}_{2}{ }^{\prime}(b)>\sigma\left(\phi_{2}(b)\right) \phi_{2}{ }^{\prime}(b)$.
- If $\hat{\phi_{2}}(b) \geq \phi_{2}(b) \forall b, \hat{\phi}_{2}^{\prime}(b)>\phi_{2}^{\prime}(b) \forall b$. This must hold true at b^{R}. However, for $\phi_{2}\left(b^{R}\right)=\hat{\phi_{2}}\left(b^{R}\right)$, we need $\hat{\phi}_{2}^{\prime}\left(b^{R}\right)<\phi_{2}^{\prime}\left(b^{R}\right)$. Contradiction.
- If $\exists b_{2}^{t}$ where $\hat{\phi}_{2}$ and ϕ_{2} intersect, $\hat{\phi}_{2}^{\prime}\left(b_{2}^{t}\right)<\phi_{2}^{\prime}\left(b_{2}^{t}\right)$. Then $\sigma\left(\hat{\phi}_{2}\left(b_{2}^{t}\right)\right) \hat{\phi}_{2}{ }^{\prime}\left(b_{2}^{t}\right)<\sigma\left(\phi_{2}\left(b_{2}^{t}\right)\right) \phi_{2}{ }^{\prime}\left(b_{2}^{t}\right)$ which $\Longrightarrow \hat{\phi}_{1}\left(b_{2}^{t}\right)<\phi_{1}\left(b_{2}^{t}\right)$. Contradiction.
- Thus, if $\hat{\phi}_{1}(b)>\phi_{1}(b), \hat{\phi}_{2}(b)<\phi_{2}(b) \forall b$. Implies point of intersection has monotonic relation with $\phi_{1}\left(b^{R}\right)$. Thus, \exists only one c^{*} such that $\phi_{1}(\underline{c})=\phi_{2}(\underline{c})$.

Lemma for asymmetric support 2 players

Lemma 2

For each $B_{i}, \beta_{i}(c)$ constitutes a non-trivial BNE of the 2 player asymmetric clock auction with rationing if only if it satisfies following properties:
$1 \beta_{i}(c)$ is non-decreasing in c.
$2 \beta_{i}(c)$ is continuous and atomless for $b<b^{R}$ for both i.
$3 \lim _{c \rightarrow \underline{c}^{+}} \beta_{i}(c)=\underline{c}, \forall i$.
4 For each player $B_{i}, \beta_{i}(c)$ solves:

$$
\begin{equation*}
\sigma_{-i}\left(\beta_{-i}^{-1}\left(\beta_{i}(c)\right)\right) \beta_{-i}^{-1^{\prime}}\left(\beta_{i}(c)\right)\left(\beta_{i}(c)-c\right)\left(q_{1}+q_{2}-M\right)=\left(M-q_{-i}\right) \tag{3}
\end{equation*}
$$

$5 \exists \Delta$ such that if $\bar{c}_{2}-\bar{c}_{1}<\Delta, \exists c_{1}^{*}$ such that $\beta_{1}(c)=b^{R}, \forall c \in\left[c_{1}^{*}, \bar{c}_{1}\right]$ and $\beta_{2}\left(\bar{c}_{2}\right)=b^{R}$, else, $\exists c_{2}^{*}$ such that $\beta_{2}(c)=b^{R}, \forall c \in\left[c_{2}^{*}, \bar{c}_{2}\right]$ and $\beta_{1}\left(\bar{c}_{1}\right)=b^{R}$

Proof of lemma 2

Properties (i) to (iv) are same as before. Thus, $\phi_{2}^{\prime}(b)>\phi_{1}^{\prime}(b)$ at point of intersection. For property (v),

- $\phi_{2}(b)>\phi_{1}(b)$, in the same way as before.
- If $\bar{c}_{1}>\bar{c}_{2}, B_{1}$ bunches.
- Suppose $\bar{c}_{1} \leq \bar{c}_{2}$ and consider two pairs of supremum of support of $\left(c_{1}, c_{2}\right),\left(\bar{c}_{1}, \bar{c}_{1}\right)$ and $\left(\bar{c}_{1}, \hat{\bar{c}}_{2}\right)$ such that $\hat{\bar{c}}_{2}>\bar{c}_{1}$.
- Denote the corresponding equilibrium inverse bid functions generated from these suprema as $\phi_{i}(b)$ and $\hat{\phi}_{i}(b)$ respectively.
- From Lemma 1, we know that $\phi_{1}\left(b^{R}\right)=c^{*}<\bar{c}_{1}$ and $\phi_{2}\left(b^{R}\right)=\bar{c}_{1}$ and that $\lim _{b \rightarrow \underline{c}^{+}} \phi_{i}(c)=\underline{c}$ for both i.
- Either $\hat{\phi}_{2}\left(b^{R}\right)>\phi_{2}\left(b^{R}\right)=\bar{c}_{1}$ or $\hat{\phi}_{2}\left(b^{R}\right)=\hat{c}_{2}^{*}<\phi_{2}\left(b^{R}\right)=\bar{c}_{1}$.

Contradictions

Figure: Intersecting solution curves

2 small 1 very small firm

－Framework same as before，except a player B_{3} with quantity $q_{3}<q_{2}<q_{1}, q_{i}<M$ ， $q_{1}+q_{2}>M, q_{i}+q_{3}<M$.
－Relevant concept is PBE，exit of B_{3} starts a subgame．
－ $\mathcal{P}(b)$ is the set of partially rationed bidders at any bid b
－ $\mathcal{L}(b)$ is the set of fully rationed bidders．
－Here， $\mathcal{P}\left(b^{R}\right)=\left\{B_{1}, B_{2}\right\}=\mathcal{A} 2, \mathcal{L}\left(b^{R}\right)=\left\{B_{3}\right\}$ ．
－Equilibrium bid function of B_{i} denoted by $\beta_{i, \mathcal{A}, B_{3}}(c)$ in the subgame with all players，and $\beta_{i, \mathcal{A} 2, \emptyset}(c)$ in the subgame started by B_{3}＇s exit

$$
\begin{aligned}
\pi_{i}\left(b_{i} ; c_{i}, \mathbf{b}\right)= & \left(M-q_{-i}-q_{3}\right)\left(b_{i}-c_{i}\right) \operatorname{Pr}\left(b_{i}=\max _{j}\left\{b_{j}\right\}\right) \\
& +q_{i} \mathbb{E}\left(b_{-i}-c_{i} \mid b_{-i}>b_{3}, b_{-i}>b_{i}\right) \operatorname{Pr}\left(b_{-i}=\max _{j}\left\{b_{j}\right\}\right) \\
& +\mathbb{E}\left(\pi_{i, \mathcal{A 2 , 0}}^{*}\left(b_{3}\right) \mid b_{i}<b_{3}, b_{-i}<b_{3}\right) \operatorname{Pr}\left(b_{3}=\max _{j}\left\{b_{j}\right\}\right)
\end{aligned}
$$

where $\pi_{i, \mathcal{A} 2, \emptyset}^{*}\left(b_{3}\right)$ is the payoff for B_{i} in the subgame started by B_{3}＇s exit．

Equilibrium

Lemma 3

$\beta_{3, \mathcal{A} 2, B_{3}}(c)=c . \beta_{i, \mathcal{A} 2, B_{3}}(c)$ for $i \in\{1,2\}$, gives a PBE if and only if:
$1 \beta_{i, \mathcal{A} 2, B_{3}}(c)$ is non-decreasing in c.
$2 \beta_{i, \mathcal{A} 2, B_{3}}(c)$ is continuous and atomless for $b<b^{R}$ for both i.
$3 \beta_{i, \mathcal{A} 2, B_{3}}(\underline{c})=\underline{c}, \forall i$.
$4 \forall i, \beta_{i, \mathcal{A} 2, B_{3}}\left(c_{i}\right)$, solve following differential equations:

$$
\begin{align*}
& \left(\pi_{i, \mathcal{A} 2, \emptyset}^{*}\left(b ; c_{i}\right)-\left(M-q_{-i}-q_{3}\right)\left(\beta_{i, \mathcal{A} 2, B_{3}}\left(c_{i}\right)-c_{i}\right)\right) \sigma\left(\beta_{i, \mathcal{A} 2, B_{3}}\left(c_{i}\right)\right) 1_{b \leq \bar{c}} \\
& +\left(\beta_{i, \mathcal{A} 2, B_{\mathbf{3}}}\left(c_{i}\right)-c_{i}\right)\left(\sum_{j} q_{j}-M\right) \sigma\left(\beta_{-i, \mathcal{A} 2, B_{3}}^{-1}\left(\beta_{i, \mathcal{A} 2, B_{\mathbf{3}}}\left(c_{i}\right)\right)\right) \beta_{-i, \mathcal{A} 2, B_{\mathbf{3}}}^{-1^{\prime}}\left(\beta_{i, \mathcal{A} 2, B_{3}}\left(c_{i}\right)\right)=M-q_{-i}-q_{3} \tag{4}
\end{align*}
$$

where $\pi_{i, \mathcal{A} 2, \emptyset}^{*}\left(b ; c_{i}\right)$ is B_{i} 's continuation value if B_{3} exits at b.
5 BNE in the subgame started by B_{3} 's exit at b is as per Lemma 2
$6 \exists c_{1}^{*} \leq \bar{c}$ such that $\beta_{1, \mathcal{A} 2, B_{3}}(c)=b^{R}, \forall c \in\left[c_{1}^{*}, \bar{c}\right] . \beta_{2, \mathcal{A} 2, B_{3}}(\bar{c})=b^{R}$ if $b^{R}>\bar{c}$ and

Proof

Proof of (i) proceeds as before, except for some adjustment for continuation value. I can write continuation value of B_{1} when B_{3} exits at some bid c_{3} as:

$$
\begin{align*}
\pi_{1, A 2, \emptyset}^{*}\left(c_{3}, c_{1}\right) & =\operatorname{Max}_{b_{1}^{\prime \prime} \leq c_{3}}\left[\left(M-q_{2}\right)\left(b_{1}^{\prime \prime}-c_{1}\right) \frac{F\left(\phi_{2}^{s g}\left(b_{1}^{\prime \prime}\right)\right)}{a\left(c_{3}\right)}+q_{1} \int_{b_{1}^{\prime \prime}}^{c_{3}}\left(x-c_{1}\right) \frac{d F\left(\phi_{2}^{s g}(x)\right)}{a\left(c_{3}\right)}\right] \\
\pi_{1, \mathcal{A} 2, \emptyset}^{*}\left(c_{3}, c_{1}\right)= & \operatorname{Max}_{b_{1}^{\prime \prime} \leq c_{3}}\left[\left(M-q_{2}\right)\left(b_{1}^{\prime \prime}-c_{1}+c_{1}^{\prime}-c_{1}^{\prime}\right) \frac{F\left(\phi_{2}^{s g}\left(b_{1}^{\prime \prime}\right)\right)}{a\left(c_{3}\right)}+q_{1} \int_{b_{1}^{\prime \prime}}^{c_{3}}\left(x-c_{1}+c_{1}^{\prime}-c_{1}^{\prime}\right) \frac{d F^{s g}\left(\phi_{2}(x)\right)}{a\left(c_{3}\right)}\right] \\
\Longrightarrow \pi_{1, \mathcal{A} 2, \emptyset}^{*}\left(c_{3}, c_{1}\right) \leq & \operatorname{Max}_{b_{1}^{\prime} \leq c_{3}}\left[\left(M-q_{2}\right)\left(x-c_{1}^{\prime}\right) \frac{F\left(\phi_{2}^{s g}\left(b_{1}^{\prime \prime}\right)\right)}{a\left(c_{3}\right)}+q_{1} \int_{b_{1}^{\prime \prime}}^{c_{3}}\left(x-c_{1}^{\prime}\right) \frac{d F\left(\phi_{2}^{s g}(x)\right)}{a\left(c_{3}\right)}\right] \\
& +\operatorname{Max}_{b_{1}^{\prime \prime} \leq c_{3}}\left[\left(M-q_{2}\right)\left(c_{1}^{\prime}-c_{1}\right) \frac{F\left(\phi_{2}^{s g}\left(b_{1}^{\prime \prime}\right)\right)}{a\left(c_{3}\right)}+q_{1} \int_{b_{1}^{\prime \prime}}^{c_{3}}\left(c_{1}^{\prime}-c_{1}\right) \frac{d F\left(\phi_{2}^{s g}(x)\right)}{a\left(c_{3}\right)}\right] \\
\Longrightarrow \pi_{1}\left(c_{3}, c_{1}^{\prime}\right)-\pi_{1}\left(c_{3}, c_{1}\right) \geq & -\operatorname{Max}_{b_{1}^{\prime} \leq c_{3}}\left[\left(M-q_{2}\right)\left(c_{1}^{\prime}-c_{1}\right) \frac{F\left(\phi_{2}^{s g}\left(b_{1}^{\prime \prime}\right)\right)}{a\left(c_{3}\right)}+q_{1} \int_{b_{1}^{\prime \prime}}^{c_{3}}\left(c_{1}^{\prime}-c_{1}\right) \frac{\left.d F\left(\phi_{2}^{s g}(x)\right)\right]}{a\left(c_{3}\right)}\right] \geq q_{1}\left(c_{1}^{\prime}-c_{1}\right) \tag{5}
\end{align*}
$$

Rest of the proof would proceed as in 2 small firms case.

Proof

Proof of (i) proceeds as before, except for some adjustment for continuation value. I can write continuation value of B_{1} when B_{3} exits at some bid c_{3} as:

$$
\begin{gather*}
\pi_{1, \mathcal{A}, \emptyset}^{*}\left(c_{3}, c_{1}\right)=\operatorname{Max}_{b_{1}^{\prime} \leq c_{3}}\left[\left(M-q_{2}\right)\left(b_{1}^{\prime \prime}-c_{1}\right) \frac{F\left(\phi_{2}^{s g}\left(b_{1}^{\prime \prime}\right)\right)}{a\left(c_{3}\right)}+q_{1} \int_{b_{1}^{\prime \prime}}^{c_{3}}\left(x-c_{1}\right) \frac{d F\left(\phi_{2}^{s g}(x)\right)}{a\left(c_{3}\right)}\right] \\
\pi_{1, \mathcal{A} 2, \emptyset}^{*}\left(c_{3}, c_{1}\right)= \\
\operatorname{Max}_{b_{1}^{\prime} \leq c_{3}}\left[\left(M-q_{2}\right)\left(b_{1}^{\prime \prime}-c_{1}+c_{1}^{\prime}-c_{1}^{\prime}\right) \frac{F\left(\phi_{2}^{s g}\left(b_{1}^{\prime \prime}\right)\right)}{a\left(c_{3}\right)}+q_{1} \int_{b_{1}^{\prime \prime}}^{c_{3}}\left(x-c_{1}+c_{1}^{\prime}-c_{1}^{\prime}\right) \frac{d F^{s g}\left(\phi_{2}(x)\right)}{a\left(c_{3}\right)}\right] \\
\Longrightarrow \pi_{1, \mathcal{A} 2, \emptyset}^{*}\left(c_{3}, c_{1}\right) \leq \operatorname{Max}_{b_{1}^{\prime} \leq c_{3}}\left[\left(M-q_{2}\right)\left(x-c_{1}^{\prime}\right) \frac{F\left(\phi_{2}^{s g}\left(b_{1}^{\prime \prime}\right)\right)}{a\left(c_{3}\right)}+q_{1} \int_{b_{1}^{\prime \prime}}^{c_{3}}\left(x-c_{1}^{\prime}\right) \frac{d F\left(\phi_{2}^{s g}(x)\right)}{a\left(c_{3}\right)}\right] \\
 \tag{5}\\
+\operatorname{Max}_{b_{1}^{\prime \prime} \leq c_{3}}\left[\left(M-q_{2}\right)\left(c_{1}^{\prime}-c_{1}\right) \frac{F\left(\phi_{2}^{s g}\left(b_{1}^{\prime \prime}\right)\right)}{a\left(c_{3}\right)}+q_{1} \int_{b_{1}^{\prime \prime}}^{c_{3}}\left(c_{1}^{\prime}-c_{1}\right) \frac{d F\left(\phi_{2}^{s g}(x)\right)}{a\left(c_{3}\right)}\right] \\
\Longrightarrow \pi_{1}\left(c_{3}, c_{1}^{\prime}\right)-\pi_{1}\left(c_{3}, c_{1}\right) \geq-\operatorname{Max}_{b_{1}^{\prime \prime} \leq c_{3}}\left[\left(M-q_{2}\right)\left(c_{1}^{\prime}-c_{1}\right) \frac{F\left(\phi_{2}^{s g}\left(b_{1}^{\prime \prime}\right)\right)}{a\left(c_{3}\right)}+q_{1} \int_{b_{1}^{\prime \prime}}^{c_{3}}\left(c_{1}^{\prime}-c_{1}\right) \frac{\left.d F\left(\phi_{2}^{s g}(x)\right)\right]}{a\left(c_{3}\right)}\right] \geq q_{1}\left(c_{1}^{\prime}-c_{1}\right)
\end{gather*}
$$

Rest of the proof would proceed as in 2 small firms case.
Proof of (ii),(iii),(iv) same as before.

Proving property (v)

At any point of intersection $\left(b_{t}, c_{t}\right)$ of $\phi_{1, \mathcal{A} 2, B_{3}}(b)$ and $\phi_{2, \mathcal{A} 2, B_{3}}(b)$,

$$
\begin{align*}
\frac{\phi_{2, \mathcal{A} 2, B_{3}}^{\prime}\left(b_{t}\right)}{\phi_{1, \mathcal{A} 2, B_{3}}^{\prime}\left(b_{t}\right)}=\frac{M-q_{2}-q_{3}-\left(\pi_{1, \mathcal{A} 2, \emptyset}^{*}\left(b_{t}, c_{t}\right)-\left(M-q_{2}-q_{3}\right)\left(b_{t}-c_{t}\right)\right) \sigma\left(b_{t}\right)}{M-q_{1}-q_{3}-\left(\pi_{2, \mathcal{A}, \emptyset}^{*}\left(b_{t}, c_{t}\right)-\left(M-q_{1}-q_{3}\right)\left(b_{t}-c_{t}\right)\right) \sigma\left(b_{t}\right)} \\
\Longrightarrow \frac{\phi_{2, \mathcal{A}, B_{3}}^{\prime}\left(b_{t}\right)}{\phi_{1, \mathcal{A} 2, B_{3}}^{\prime}\left(b_{t}\right)}=\frac{\left(M-q_{2}-q_{3}\right)-q_{3}\left(b_{t}-c_{t}\right) \sigma\left(b_{t}\right)}{\left(M-q_{1}-q_{3}\right)-\left(\sum_{j=1}^{3} q_{j}-M\right)\left(b_{t}-c_{t}\right) \sigma\left(b_{t}\right)}>1 \tag{6}
\end{align*}
$$

Proving property (v)

At any point of intersection $\left(b_{t}, c_{t}\right)$ of $\phi_{1, \mathcal{A} 2, B_{3}}(b)$ and $\phi_{2, \mathcal{A} 2, B_{3}}(b)$,

$$
\begin{align*}
& \frac{\phi_{2, \mathcal{A} 2, B_{3}}^{\prime}\left(b_{t}\right)}{\phi_{1, \mathcal{A}, B_{3}}^{\prime}\left(b_{t}\right)}=\frac{M-q_{2}-q_{3}-\left(\pi_{1, \mathcal{A}, \emptyset}^{*}\left(b_{t}, c_{t}\right)-\left(M-q_{2}-q_{3}\right)\left(b_{t}-c_{t}\right)\right) \sigma\left(b_{t}\right)}{M-q_{1}-q_{3}-\left(\pi_{2, \mathcal{A} 2, \emptyset}^{*}\left(b_{t}, c_{t}\right)-\left(M-q_{1}-q_{3}\right)\left(b_{t}-c_{t}\right)\right) \sigma\left(b_{t}\right)} \\
& \Longrightarrow \frac{\phi_{2, \mathcal{A}, B_{3}}^{\prime}\left(b_{t}\right)}{\phi_{1, \mathcal{A} 2, B_{3}}^{\prime}\left(b_{t}\right)}=\frac{\left(M-q_{2}-q_{3}\right)-q_{3}\left(b_{t}-c_{t}\right) \sigma\left(b_{t}\right)}{\left(M-q_{1}-q_{3}\right)-\left(\sum_{j=1}^{3} q_{j}-M\right)\left(b_{t}-c_{t}\right) \sigma\left(b_{t}\right)}>1 \tag{6}
\end{align*}
$$

Thus, at most one intersection, as in 2P0F.

Proving property (v)

At any point of intersection $\left(b_{t}, c_{t}\right)$ of $\phi_{1, \mathcal{A} 2, B_{3}}(b)$ and $\phi_{2, \mathcal{A} 2, B_{3}}(b)$,

$$
\begin{align*}
& \frac{\phi_{2, \mathcal{A} 2, B_{3}}^{\prime}\left(b_{t}\right)}{\phi_{1, \mathcal{A} 2, B_{3}}^{\prime}\left(b_{t}\right)}=\frac{M-q_{2}-q_{3}-\left(\pi_{1, \mathcal{A} 2, \emptyset}^{*}\left(b_{t}, c_{t}\right)-\left(M-q_{2}-q_{3}\right)\left(b_{t}-c_{t}\right)\right) \sigma\left(b_{t}\right)}{M-q_{1}-q_{3}-\left(\pi_{2, \mathcal{A}, \emptyset}^{*}\left(b_{t}, c_{t}\right)-\left(M-q_{1}-q_{3}\right)\left(b_{t}-c_{t}\right)\right) \sigma\left(b_{t}\right)} \\
& \Longrightarrow \frac{\phi_{2, \mathcal{A}, B_{3}}^{\prime}\left(b_{t}\right)}{\phi_{1, \mathcal{A} 2, B_{3}}^{\prime}\left(b_{t}\right)}=\frac{\left(M-q_{2}-q_{3}\right)-q_{3}\left(b_{t}-c_{t}\right) \sigma\left(b_{t}\right)}{\left(M-q_{1}-q_{3}\right)-\left(\sum_{j=1}^{3} q_{j}-M\right)\left(b_{t}-c_{t}\right) \sigma\left(b_{t}\right)}>1 \tag{6}
\end{align*}
$$

Thus, at most one intersection, as in 2P0F.In the immediate neighbourhood of \underline{c}, if B_{1} bunches in the subgame,

$$
\begin{align*}
& \frac{\delta-\epsilon_{1}(\delta)}{\delta-\epsilon_{2}(\delta)} \frac{\left(q_{3} \delta+\epsilon_{2}(\delta)\left(\epsilon_{2}(\delta)-\epsilon_{2}(\delta / n)\right)\left(q_{1}+q_{2}+q_{3}-M\right)\right)}{\left(q_{1}+q_{2}+q_{3}-M\right)\left(\delta+\epsilon_{1}(\delta)\left(\epsilon_{1}(\delta)-\epsilon_{1}(\delta / n)\right)\right)}=\frac{M-q_{2}-q_{3}}{M-q_{1}-q_{3}} \\
& \frac{\epsilon_{2}(\delta)\left(\epsilon_{2}(\delta)-\epsilon_{2}(\delta / n)\right)}{\epsilon_{1}(\delta)\left(\epsilon_{1}(\delta)-\epsilon_{1}(\delta / n)\right)} \approx \frac{q_{3}}{q_{1}+q_{2}+q_{3}-M}<1 \tag{7}
\end{align*}
$$

proof contd.

Equation in (7) together imply

$$
\frac{\delta-\epsilon_{1}(\delta)}{\delta-\epsilon_{2}(\delta)} \frac{\epsilon_{2}(\delta)\left(\epsilon_{2}(\delta)-\epsilon_{2}(\delta / n)\right)}{\epsilon_{1}(\delta)\left(\epsilon_{1}(\delta)-\epsilon_{1}(\delta / n)\right)}=\frac{M-q_{2}-q_{3}}{M-q_{1}-q_{3}}
$$

which implies $\epsilon_{2}(\delta)>\epsilon_{1}(\delta)$.

proof contd.

Equation in (7) together imply

$$
\frac{\delta-\epsilon_{1}(\delta)}{\delta-\epsilon_{2}(\delta)} \frac{\epsilon_{2}(\delta)\left(\epsilon_{2}(\delta)-\epsilon_{2}(\delta / n)\right)}{\epsilon_{1}(\delta)\left(\epsilon_{1}(\delta)-\epsilon_{1}(\delta / n)\right)}=\frac{M-q_{2}-q_{3}}{M-q_{1}-q_{3}}
$$

which implies $\epsilon_{2}(\delta)>\epsilon_{1}(\delta)$. Thus, no bunching by B_{1}.

proof contd.

Equation in (7) together imply

$$
\frac{\delta-\epsilon_{1}(\delta)}{\delta-\epsilon_{2}(\delta)} \frac{\epsilon_{2}(\delta)\left(\epsilon_{2}(\delta)-\epsilon_{2}(\delta / n)\right)}{\epsilon_{1}(\delta)\left(\epsilon_{1}(\delta)-\epsilon_{1}(\delta / n)\right)}=\frac{M-q_{2}-q_{3}}{M-q_{1}-q_{3}}
$$

which implies $\epsilon_{2}(\delta)>\epsilon_{1}(\delta)$. Thus, no bunching by B_{1}.
No contradiction when bunching by B_{2}.

proof contd.

Equation in (7) together imply

$$
\frac{\delta-\epsilon_{1}(\delta)}{\delta-\epsilon_{2}(\delta)} \frac{\epsilon_{2}(\delta)\left(\epsilon_{2}(\delta)-\epsilon_{2}(\delta / n)\right)}{\epsilon_{1}(\delta)\left(\epsilon_{1}(\delta)-\epsilon_{1}(\delta / n)\right)}=\frac{M-q_{2}-q_{3}}{M-q_{1}-q_{3}}
$$

which implies $\epsilon_{2}(\delta)>\epsilon_{1}(\delta)$. Thus, no bunching by B_{1}.
No contradiction when bunching by B_{2}.

Necessary and sufficient conditions for B_{2} bunching

If B_{2} bunches in the subgame, $\exists \tilde{\epsilon}_{2}(\delta)<\epsilon_{2}(\delta)$ such that B_{2} pools for costs between $\underline{c}+\tilde{\epsilon}_{2}(\delta)$ and $\underline{c}+\epsilon_{2}(\delta)$. Therefore,

$$
\frac{\sigma\left(\underline{c}+\tilde{\epsilon}_{2}(\delta)\right)}{\sigma\left(\underline{c}+\epsilon_{1}(\delta)\right)} \frac{\phi_{2, \mathcal{A} 2, \varnothing}^{\prime}(\underline{c}+\delta)}{\phi_{1, \mathcal{A} 2, \varnothing}^{\prime}(\underline{c}+\delta)} \frac{\delta-\epsilon_{1}(\delta)}{\delta-\tilde{\epsilon}_{2}(\delta)}=\frac{M-q_{2}}{M-q_{1}}
$$

which implies that $\frac{\delta-\epsilon_{1}(\delta)}{\delta-\tilde{\epsilon}_{2}(\delta)} \frac{\tilde{\epsilon}_{2}(\delta)\left(\tilde{\epsilon}_{2}(\delta)-\tilde{\epsilon}_{2}(\delta / n)\right)}{\epsilon_{1}(\delta)\left(\epsilon_{1}(\delta)-\epsilon_{1}(\delta / n)\right)}=\frac{M-q_{2}}{M-q_{1}}$, and ultimately I can infer that $\frac{\delta-\epsilon_{1}(\delta)}{\delta-\epsilon_{2}(\delta)} \frac{\epsilon_{2}(\delta)}{\epsilon_{1}(\delta)} \frac{\left(\epsilon_{2}(\delta)-\epsilon_{2}(\delta / n)\right)}{\left(\epsilon_{1}(\delta)-\epsilon_{1}(\delta / n)\right)}>\frac{M-q_{2}}{M-q_{1}}$.

Necessary and sufficient conditions for B_{2} bunching

If B_{2} bunches in the subgame, $\exists \tilde{\epsilon}_{2}(\delta)<\epsilon_{2}(\delta)$ such that B_{2} pools for costs between $\underline{c}+\tilde{\epsilon}_{2}(\delta)$ and $\underline{c}+\epsilon_{2}(\delta)$. Therefore,

$$
\frac{\sigma\left(\underline{c}+\tilde{\epsilon}_{2}(\delta)\right)}{\sigma\left(\underline{c}+\epsilon_{1}(\delta)\right)} \frac{\phi_{2, \mathcal{A} 2, \varnothing}^{\prime}(\underline{c}+\delta)}{\phi_{1, \mathcal{A} 2, \emptyset}^{\prime}(\underline{c}+\delta)} \frac{\delta-\epsilon_{1}(\delta)}{\delta-\tilde{\epsilon}_{2}(\delta)}=\frac{M-q_{2}}{M-q_{1}}
$$

which implies that $\frac{\delta-\epsilon_{1}(\delta)}{\delta-\tilde{\epsilon}_{2}(\delta)} \frac{\tilde{\epsilon}_{2}(\delta)\left(\tilde{\epsilon}_{2}(\delta)-\tilde{\epsilon}_{2}(\delta / n)\right)}{\epsilon_{1}(\delta)\left(\epsilon_{1}(\delta)-\epsilon_{1}(\delta / n)\right)}=\frac{M-q_{2}}{M-q_{1}}$, and ultimately I can infer that $\frac{\delta-\epsilon_{1}(\delta)}{\delta-\epsilon_{2}(\delta)} \frac{\epsilon_{2}(\delta)}{\epsilon_{1}(\delta)} \frac{\left(\epsilon_{2}(\delta)-\epsilon_{2}(\delta / n)\right)}{\left(\epsilon_{1}(\delta)-\epsilon_{1}(\delta / n)\right)}>\frac{M-q_{2}}{M-q_{1}}$.
This condition is satisfied

$$
1 \times \text { Back }
$$

Theorem for existence uniqueness

Theorem 2

If $b^{R}>\bar{c}$, equilibrium described by Lemma 3 may not always exist, but when it exists, it is unique. If $b^{R}=\bar{c}$, the equilibrium exists and is unique.

If B_{2} bunching in the subgame started by B_{3} 's exit at some bid, it's bunching in subgame started at any such bid. Thus, FOCs can be written as:

$$
\begin{align*}
& \left.\left(q_{1}+q_{2}+q_{3}-M\right)\left(b-\phi_{1, \mathcal{A} 2, B_{3}}(b)\right)\right) \sigma(b) 1_{b \leq \bar{c}} \\
& +\left(b-\phi_{1, \mathcal{A} 2, B_{3}}(b)\right)\left(q_{1}+q_{2}+q_{3}-M\right) \sigma\left(\phi_{2, \mathcal{A} 2, B_{3}}(b)\right) \phi_{2, \mathcal{A} 2, B_{3}}^{\prime}(b)=M-q_{2}-q_{3} \tag{8}\\
& q_{3}\left(b-\phi_{2, \mathcal{A} 2, B_{3}}(b)\right) \sigma(b) 1_{b \leq \bar{c}} \\
& +\left(b-\phi_{2, \mathcal{A} 2, B_{3}}(b)\right)\left(q_{1}+q_{2}+q_{3}-M\right) \sigma\left(\phi_{1, \mathcal{A} 2, B_{3}}(b)\right) \phi_{1, \mathcal{A} 2, B_{3}}^{\prime}(b)=M-q_{1}-q_{3}
\end{align*}
$$

proof contd

For any bids less than \bar{c}, the equations 8 can be rewritten as:

$$
\begin{align*}
\left.\left(b-\phi_{1, \mathcal{A} 2, B_{3}}(b)\right)\right)\left(\sigma(b)+\sigma\left(\phi_{2, \mathcal{A} 2, B_{3}}(b)\right) \phi_{2, \mathcal{A} 2, B_{3}}^{\prime}(b)\right) & =\frac{M-q_{2}-q_{3}}{q_{1}+q_{2}+q_{3}-M} \\
\left(b-\phi_{2, \mathcal{A} 2, B_{3}}(b)\right)\left(\frac{q_{3}}{\left(q_{1}+q_{2}+q_{3}-M\right)} \sigma(b)+\sigma\left(\phi_{1, \mathcal{A} 2, B_{3}}(b)\right) \phi_{1, \mathcal{A} 2, B_{3}}^{\prime}(b)\right) & =\frac{M-q_{1}-q_{3}}{q_{1}+q_{2}+q_{3}-M} \tag{9}
\end{align*}
$$

As in theorem 1, it can be shown that solution to BVP defined by above, and boundary condition, $\phi_{2, \mathcal{A} 2, B_{3}}(\bar{c})=c_{2}^{*}$ and $\lim _{b \rightarrow c^{+}} \phi_{i, \mathcal{A} 2, B_{3}}(c)=\underline{c}$ for exactly one c_{2}^{*}.

proof contd

For any bids less than \bar{c}, the equations 8 can be rewritten as:

$$
\begin{align*}
\left.\left(b-\phi_{1, \mathcal{A} 2, B_{3}}(b)\right)\right)\left(\sigma(b)+\sigma\left(\phi_{2, \mathcal{A} 2, B_{3}}(b)\right) \phi_{2, \mathcal{A} 2, B_{3}}^{\prime}(b)\right) & =\frac{M-q_{2}-q_{3}}{q_{1}+q_{2}+q_{3}-M} \\
\left(b-\phi_{2, \mathcal{A} 2, B_{3}}(b)\right)\left(\frac{q_{3}}{\left(q_{1}+q_{2}+q_{3}-M\right)} \sigma(b)+\sigma\left(\phi_{1, \mathcal{A} 2, B_{3}}(b)\right) \phi_{1, \mathcal{A} 2, B_{3}}^{\prime}(b)\right) & =\frac{M-q_{1}-q_{3}}{q_{1}+q_{2}+q_{3}-M} \tag{9}
\end{align*}
$$

As in theorem 1, it can be shown that solution to BVP defined by above, and boundary condition, $\phi_{2, \mathcal{A} 2, B_{3}}(\bar{c})=c_{2}^{*}$ and $\lim _{b \rightarrow \underline{c}^{+}} \phi_{i, \mathcal{A} 2, B_{3}}(c)=\underline{c}$ for exactly one c_{2}^{*}.
Suppose that the solution gives $\phi_{i, \mathcal{A} 2, B_{3}}(\bar{c})=c_{i}^{*}$.

proof contd

For $b>\bar{c}$, the IVP of concern is:

$$
\begin{aligned}
& \left(b-\phi_{1, \mathcal{A} 2, B_{3}}(b)\right)\left(q_{1}+q_{2}+q_{3}-M\right) \sigma\left(\phi_{2, \mathcal{A} 2, B_{3}}(b)\right) \phi_{2, \mathcal{A} 2, B_{3}}^{\prime}(b)=M-q_{2}-q_{3} \\
& \left(b-\phi_{2, \mathcal{A} 2, B_{3}}(b)\right)\left(q_{1}+q_{2}+q_{3}-M\right) \sigma\left(\phi_{1, \mathcal{A} 2, B_{3}}(b)\right) \phi_{1, \mathcal{A} 2, B_{3}}^{\prime}(b)=M-q_{1}-q_{3}
\end{aligned}
$$

$\phi_{i, \mathcal{A} 2, B_{3}}(\bar{c})=c_{i}^{*}$, which will a solution such that $\phi_{2, \mathcal{A} 2, B_{3}}\left(b^{R}\right)=\bar{c}$ for exactly one value of b^{R}, for a given set of M, q_{1}, q_{2}, q_{3}.

proof contd

For $b>\bar{c}$, the IVP of concern is:

$$
\begin{aligned}
& \left(b-\phi_{1, \mathcal{A} 2, B_{3}}(b)\right)\left(q_{1}+q_{2}+q_{3}-M\right) \sigma\left(\phi_{2, \mathcal{A} 2, B_{3}}(b)\right) \phi_{2, \mathcal{A} 2, B_{3}}^{\prime}(b)=M-q_{2}-q_{3} \\
& \left(b-\phi_{2, \mathcal{A} 2, B_{3}}(b)\right)\left(q_{1}+q_{2}+q_{3}-M\right) \sigma\left(\phi_{1, \mathcal{A} 2, B_{3}}(b)\right) \phi_{1, \mathcal{A} 2, B_{3}}^{\prime}(b)=M-q_{1}-q_{3}
\end{aligned}
$$

$\phi_{i, \mathcal{A} 2, B_{3}}(\bar{c})=c_{i}^{*}$, which will a solution such that $\phi_{2, \mathcal{A} 2, B_{3}}\left(b^{R}\right)=\bar{c}$ for exactly one value of b^{R}, for a given set of M, q_{1}, q_{2}, q_{3}.
Thus, equilibrium may not always exist.

