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Motivation

Decomposition methods useful to understand sources of
differences between two groups.

Originally done for mean outcomes in linear models under
ignorability assumption: Oaxaca (1973), Blinder(1973).

Two components: endowments and coefficients.
Endowments captures differences in explanatory variables.
Coefficients captures differences in returns to explanatory
variables (structural): often interpreted as discrimination,
differences in preferences, or average treatment effect (Kline,
2011).
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Motivation

Decomposition methods have been extended to cover other
outcomes and models (Fortin et al., 2011).
Decomposition of outcomes other than the mean, most
notably the unconditional distributions:

Quantile regression: Machado and Mata (2005), Melly (2006),
Chernozhukov et al. (2013).
Distribution regression: Chernozhukov et al. (2013).
Reweighting methods: DiNardo et al. (1996), Firpo et al.
(2018).

Decomposition in models with selection on unobservables:
Linear models: Neuman and Oaxaca (2003,2004), Mora
(2008), Cukrowska-Torzewska and Lovasz (2016), Huber et al.
(2020).
Nonlinear models: Maasoumi and Wang (2017,2019),
Chernozhukov et al. (2019).
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Motivation
Maasoumi and Wang (2017):

Estimation of the distribution of potential outcomes for the
entire population (using reweighting methods).
Bounds for the decomposed components.
Decomposition into two components (same as
Oaxaca-Blinder).

Maasoumi and Wang (2019):
Estimation of the distribution of potential outcomes for the
entire population (using quantile regression methods).
Comparison of the gap (for the mean and several other
functions) if everybody participated.
Empirical paper on gender wage gap (not theoretical).

Chernozhukov et al. (2019):
Estimation of the distribution of observed outcomes for the
selected sample (using distribution regression methods).
Decomposition into four components (2 from
Oaxaca-Blinder+sorting+“employment structure”).
Selection modeled using local copulas.
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This paper
Model sample selection with quantiles (Arellano and
Bonhomme, 2017).

Same as in Maasoumi and Wang (2019).
Clearer interpretation than Chernozhukov et al. (2019).
Provide uniform asymptotic theory.

Consider two types of decompositions:
Distribution of actual outcomes for participants.
Distribution of actual outcomes for the entire population.
They depend on four components (2 from
Oaxaca-Blinder+participation+self-selection).

Consider two ancillary decompositions:
Participation decomposition.
Self-selection decomposition.

Review gender wage gap estimates by Maasoumi and Wang
(2019) & decompositions.
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Model and components
Sample selection model:

Y = gD (X , U) S
S = 1 (πD (Z ) − V > 0)

Y ≡ outcome (continuous).
X ≡ predetermined covariates.
Z ≡ (Z1, X ) instrument for participation+predetermined covariates.
S ≡ participation indicator.
U ≡ unobservable r.v. of outcome equation.
V ≡ unobservable r.v. of participation equation.
D ≡ group indicator.
πD ≡ propensity score.
gd ≡ structural quantile function.
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Model and components

In a gender wage gap analysis:
Y ≡ log wage.
X ≡ education, marital status, age polynomial, race, regional
dummies,...
Z1 ≡ has any children less than 5 years old.
S ≡ 1 if employed.
U ≡ unobserved ability.
V ≡ unobserved propensity to participate.
D ≡ gender indicator.
πD (Z ) ≡ probability to work for person with characteristics Z .
gd (X , U) ≡ potential (latent) wage for a person with
characteristics X , U.
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Unobservables

V can be normalized to be uniform (Heckman and Vytlacil,
2005).
U can also be normalized → Skorohod representation:
U|X ∼ U (0, 1)
Can interpret U as conditional (on X ) rank or quantile.
Normalization without loss of generality ( Lemma 1 ).
Joint distribution independent ⇔ lack of self-selection on
unobservables.
Model joint distribution with a copula:
Cd ,x (u, v) ≡ P (U ≤ u, V ≤ v |D = d , X = x) ( definition ).

Negative correlation of the copula ⇔ positive selection into
participation.
Copula informative of potential outcomes for nonparticipants.
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Structural components

Structural Quantile Function: gd (x , u).

Distribution of the observables: F d
Z (z).

Propensity score: πd (z).

Conditional (on X=x) copula of the unobservables:
Cd ,x (u, v).

Conditional (on S=1 and X=x) copula of the unobservables:
Gd ,x (u, v) ≡ P (U ≤ u|D = d , X = x , V ≤ v) = Cd,x (u,v)

v .
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Primitives of the decompositions
Let h, k, l , m = {0, 1}.
Mean outcome (for participants and full population):

E
[
Y hklm|S = 1

]
≡

∫
Z

∫ 1

0
gk (x , u) dGl,x (u, πm (z)) dF h

Z (z)

E
[
Y hklm]

≡
∫

Z

∫ 1

0
gk (x , u) dCl,x (u, πm (z)) dF h

Z (z)

Unconditional distribution (for participants and full population):

F hklm
Y |S=1 (y) ≡

∫
Z

∫ 1

0
1 (gk (x , u) ≤ y) dGl,x (u, πm (z)) dF h

Z (z)

F hklm
Y (y) ≡

∫
Z

[∫ 1

0
1 (gk (x , u) ≤ y) dCl,x (u, πm (z)) + (1 − πm (z))

]
dF h

Z (z)

Unconditional quantile function (for participants and full population):

Qhklm
Y |S=1 (τ) ≡ inf

{
y : τ ≤ F hklm

Y |S=1 (y)
}

Qhklm
Y (τ) ≡ inf

{
y : τ ≤ F hklm

Y (y)
}
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Particular cases

This model nests several others considered in the literature.

Feasible to do same decompositions under simplifying
assumptions:

Additively separable unobserved term ( Appendix ).

Linear model ( Appendix ).

No self-selection ( Appendix ).
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Mean decomposition for participants

By definition, E [Y |D = 1, S = 1] = E
[
Y 1111|S = 1

]
and

E [Y |D = 0, S = 1] = E
[
Y 0000|S = 1

]
.

Decompose the difference between these two as:

E [Y |D = 1, S = 1] − E [Y |D = 0, S = 1] = E
[
Y 1111|S = 1

]
− E

[
Y 0111|S = 1

]︸ ︷︷ ︸
endowments component

+ E
[
Y 0111|S = 1

]
− E

[
Y 0011|S = 1

]︸ ︷︷ ︸
coefficients component

+ E
[
Y 0011|S = 1

]
− E

[
Y 0001|S = 1

]︸ ︷︷ ︸
selection component

+ E
[
Y 0001|S = 1

]
− E

[
Y 0000|S = 1

]︸ ︷︷ ︸
participation component
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Interpretation of the components
Endowments component: overall gap explained by changes in
distribution of observable characteristics.

The group with better average characteristics has a higher
mean outcome.

Coefficients component: overall gap explained by differences
in SQF.

The group with highest returns to characteristics has a higher
mean outcome.

Selection component: overall gap explained by differences in
the amount of self-selection (copula).

The group with higher unobserved ability for participants has a
higher mean outcome.

Participation component: overall gap explained by differences
in structural propensity to participate.

With positive (negative) selection, the group with lowest
(highest) participation has a higher mean unobserved ability
and outcome.
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Additional decompositions

The same decomposition can be applied to the entire
population by using E

[
Y hklm

]
instead.

Participation component has two effects: as participation
increases, less individuals with 0 outcome, so higher mean
outcome; in addition, changes in average U.

Similar decompositions can be performed for the
unconditional distribution and functionals of it.

Leading case, unconditional quantile distribution:

QY |D=1,S=1 (τ) − QY |D=0,S=1 (τ) = Q1111
Y |S=1 (τ) − Q0111

Y |S=1 (τ)︸ ︷︷ ︸
endowments component

+ Q0111
Y |S=1 (τ) − Q0011

Y |S=1 (τ)︸ ︷︷ ︸
coefficients component

+ Q0011
Y |S=1 (τ) − Q0001

Y |S=1 (τ)︸ ︷︷ ︸
selection component

+ Q0001
Y |S=1 (τ) − Q0000

Y |S=1 (τ)︸ ︷︷ ︸
participation component
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Ancillary decompositions

Participation decomposition: Oaxaca-Blinder with a (possibly)
non-linear propensity score.

Self-selection decomposition.
Average value of U for h, l , m = {0, 1}:
E

[
Uhlm|S = 1

]
≡

∫
Z

∫ 1
0 udGl,x (u, πm (z)) dF h

Z (z).
Decomposition:

E [U|D = 1, S = 1] − E [U|D = 0, S = 1] = E
[
U111|S = 1

]
− E

[
U011|S = 1

]︸ ︷︷ ︸
endowments component

+ E
[
U011|S = 1

]
− E

[
U001|S = 1

]︸ ︷︷ ︸
selection component

+ E
[
U001|S = 1

]
− E

[
U000|S = 1

]︸ ︷︷ ︸
participation component
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Estimation
Let υℓ (z , τ, η, f ) ≡

(
gk (x , τ) , cl ,x (τ, η) , πm (z) ,

∫
Z fdF h

Z

)
,

where ℓ ≡ (h, k, l , m).

Condition 1
The estimator of the components of the decomposition for the
general model, υ̂ℓ (z , τ, η, f ), satisfies the law√

n (υ̂ℓ (z , τ, η, f ) − υℓ (z , τ, η, f )) ⇒ Zυℓ
(z , τ, η, f ) for all ℓ, where

Zυℓ
(z , τ, η, f ) is a zero-mean Gaussian process.

This is satisfied by the Rotated Quantile Regression estimator
(Arellano and Bonhomme, 2017; Theorem 2 & Corollary 1 ).

1 The propensity score is calculated using common methods
(e.g., probit, logit, linear probability model).

2 The quantiles are specified linearly, i.e., gd (x , τ) = x ′βd (τ).
3 The copula is modeled parametrically (many choices:

Gaussian, t, Frank, Clayton, Gumbel, Bernstein,...).
Under simplifying assumptions, alternative methods available
(e.g., Heckman 2 stage).
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Implementation
1 Estimate the propensity score by π̂d (zi) ≡ πd (zi , γ̂d).
2 Fix a value of t ∈ Θ. For d = 0, 1 and τ ∈ T , compute β̂d (τ ; t) as

β̂d (τ ; t) ≡ arg min
b∈B

n∑
i=1

1 (Di = d) SiρGd,x (τ,π̂d (Zi );t)
(
Yi − X ′

i b
)

where ρu (x) ≡ xu1 (x ≥ 0) − (1 − u) x1 (x < 0) denotes the check
function.

3 Estimate the copula parameters for d = 0, 1 by minimizing over t ∈ Θ:

θ̂d ≡ arg min
t∈Θ

∥∥∥∥∥
n∑

i=1

∫ 1−ε

ε

1 (Di = d) Si φ (τ, Zi )
[

1
(

Yi ≤ X ′
i β̂d (τ ; t)

)
− Gd,x (τ, π̂ (Zi ) ; t)

]
dτ

∥∥∥∥∥
where φ (τ, Zi) is an instrument function (E.g., a polynomial of the

propensity score).
4 The slope parameters are obtained by β̂d (τ) ≡ β̂d

(
τ ; θ̂d

)
for d = 0, 1.

5 The SQF and the copula are respectively given by ĝd (x , τ) = x ′β̂d (τ)
and Ĉd,x (τ, π) = Cd,x

(
τ, π; θ̂d

)
.
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Implementation
Estimate the counterfactual with covariates from group h,
SQF from group k, copula from group l and propensity score
from group m (ℓ = (h, k, l , m)).

Substitute each function by its estimated counterpart:

Ê
[
Y ℓ|S = 1

]
=

1
nh

∑n
i=1

∫ 1−ε
ε ĝk (Xi , u) dĜl ,x (u, π̂m (Zi)) 1 (Di = h).

F̂ ℓ
Y |S=1 (y) =

1
nh

∑n
i=1

[
ε +

∫ 1−ε
ε 1 (ĝk (Xi , u) ≤ y) dĜl ,x (u, π̂m (Zi))

]
1 (Di = h).

Q̂ℓ
Y |S=1 (τ) = inf

{
y : τ ≤ F̂ ℓ

Y |S=1 (y)
}

.

Similarly for the entire population .
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Ancillary decompositions

Counterfactual mean propensity score:

Ê
[
πℓ|S = 1

]
= 1

nh

n∑
i=1

π̂m (zi) 1 (Di = h)

Counterfactual mean value of the unobservables:

Ê
[
Uℓ|S = 1

]
= 1

nh

n∑
i=1

∫ 1−ε

ε
udĜl ,x (u, π̂m (Zi)) 1 (Di = h)

The different components of the decomposition are computed
accordingly.
Estimators are asymptotically Gaussian.
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Inference

Asymptotic variances are complicated integrals.

Matrices of the asymptotic variances depend on many density
functions.

Common approach in the literature (Melly, 2006;
Chernozhukov et al., 2013; Pereda-Fernández, 2019):
bootstrap.

In this paper, multiplicative bootstrap (Ma and Kosorok,
2005).
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Data

Current Population Survey (CPS) dataset.

Same sample as Maasoumi & Wang (2019):
1976-2013 period.

Individuals between 18 and 64 years old, who work for wages
and salary and do not live in group quarters.

Minimum 20 weeks of 25 hours worked in the previous year.
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Specifications

Dependent variable: log hourly wages.
Regressors: third degree polynomial of age, four levels of
education, four regional dummies, marital status, an indicator
for white race, and the interactions between age and the other
listed covariates, plus another variable they did not use: the
number of children.
Propensity score → probit.
Two parametric copulas: Frank and Gaussian.
Additional heterogeneous copulas: white vs non-white; college
vs less than college; married vs non-married.
Additionally: Heckman 2-stage estimator (i.e., linear,
homogeneous coefficients & fully Gaussian).
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Average propensity to work by gender

1980 1985 1990 1995 2000 2005 2010
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Male

Female
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Participation decomposition

1980 1985 1990 1995 2000 2005 2010
-0.1

0

0.1

0.2

0.3

0.4
Total difference

Endowments component

Coefficients component
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Participation trends

Male participation stable around 2/3 until financial crisis; drop
to 60% afterwards.
Female participation steadily increased from 35% to around
50%; slight drop after the financial crisis.
Participation gap more than halved during the period (from
33% to 16%).
Small gap increase after the financial crisis.
Participation decomposition shows change driven by
coefficients component (structural increase in female
participation).
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Kendall’s τ correlation coefficients

1980 1990 2000 2010
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Mean value of u for participants

1980 1990 2000 2010
0.4

0.45

0.5
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0.6

0.65
Male
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1980 1990 2000 2010
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Self-selection decomposition (Frank copula)

1980 1985 1990 1995 2000 2005 2010
-0.15

-0.1

-0.05

0

0.05

Total difference

Endowments component

Selection component

Participation component
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Self-selection trends

Estimates show some degree of fluctuation, particularly for
men.

Related to weak instrument for men?
Steady increase of self-selection for females (positive since the
80s).
Flatter long-term trend for males.
Gender gap changed from less than 1 point in favor of males,
to over 10 in favor of females.
Selection and participation components contributed to the
reversal.
Selection component fluctuated a lot.
Results very similar with both copulas.
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Actual earnings distributions for participants by gender

1980 1990 2000 2010
0

1

2

3

4
Male

Mean
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Actual earnings decomposition for participants

1980 1985 1990 1995 2000 2005 2010
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Total difference

Endowments component

Coefficients component

Selection component

Participation component

Moving average estimates
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Actual earnings decomposition for participants

QRS
1980 1990 2000 2010
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Actual earnings decomposition for participants
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Actual earnings for the entire distribution trends

Earnings gaps for participants decreased over the period.
Largest fall until mid-nineties.
Slower catch-up since then.

Gap larger on the right tail of the distribution.
Main contributors to the decrease: selection & participation
components.
Smaller contribution by endowments component.
Selection & coefficients component volatile and mirror each
other (weak instrument?).
Most components quite constant across quantiles.
Exception: coefficients component.
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Actual earnings distributions for the entire population by
gender

1980 1990 2000 2010
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Actual earnings decomposition for the entire population

1980 1985 1990 1995 2000 2005 2010

0
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Actual earnings decomposition for the entire population

QRS
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Actual earnings decomposition for the entire population
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Actual earnings for the entire population trends

Greater gap & greater decrease than for just participants.

Participation component becomes main driver of dynamics:
Periods with structural increase in female participation close
the gap because more women have labor earnings.
Also, positive selection implies smaller female participation
further reduces the gap.

Smaller contributions of selection and endowments
components to close the gap.

Small gap increase in the aftermath of the financial crisis →
female participation hit harder than male’s.
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Conclusion (I)

Presented method to decompose differences between two
populations when there is sample selection.

Differences depend on four components, two of which capture
differences in participation and self-selection.

Ancillary decompositions help understanding sources of main
gaps.

Provided uniform asymptotic theory.

Existing estimators can be used to estimate the structural
functions.

Multiplier bootstrap to carry on uniformly valid inference.
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Conclusion (II)

Apply methods to evolution of gender pay gap in the US.

Ancillary decomposition show improvements in unobserved
ability more marked for women & larger increases in structural
participation.

Participation and selection components main drivers of gap
decreases.

Considering actual earnings for the entire population reveals
larger gaps and larger gaps decrease.

Structural component remains as main driver of the gap →
need further research into this (STEM, personality traits,
career interruptions, discrimination).



Lemma 1
Let Y = g̃D

(
X , Ũ

)
S and D = 1

(
π̃D (Z ) − Ṽ > 0

)
, where the

distribution of the unobservables is given by F̃Ũ,Ṽ |D,X

(
Ũ, Ṽ |D, X

)
,

with marginal distributions F̃Ũ|D,X and F̃Ṽ |D,X , that may depend
non-trivially on X. Then, there exist gD, πD such that the model
given by Equations 1-2, where U|D, X ∼ U [0, 1] and
V |D, X ∼ U [0, 1], generates the same distribution of (Y , S, D, Z ).

Back to main presentation



Model the Correlation with Copulas

X multivariate random variable with marginals Fi and
ui ≡ Fi (xi) for i = 1, ..., d , i.e. rank of variable.
Definition of copula:
C (u1, ..., ud) = P (U1 ≤ u1, ..., Ud ≤ ud).
Sklar’s Theorem (any multivariate cdf can be written in terms
of a copula).
Separately model the correlation from the marginal
distribution of the effects.
Independence copula: C (u1, ..., ud) =

∏d
i=1 ui .

Main parametric copulas: Archimedean (e.g. Clayton,
Gumbel, Frank), Elliptical (e.g. Gaussian, t), Bernstein.

Back to main presentation



Example
X1 ∼ N (0, 1), X2 ∼ N (0, 1)
(F1 (X1) , F2 (X2)) ∼ Gaussian (ρ)

Back to main presentation



Example
X1 ∼ N (0, 1), X2 ∼ N (0, 1)
(F1 (X1) , F2 (X2)) ∼ Clayton (ρ)

Back to main presentation



Additively separable unobservable term
Y =

(
gD (X) + Ũ

)
S.

where Ũ = QU|D,X (U) denotes the conditional quantile function of the
uniformly distributed random variable U.
Simplification to the expected outcome:

E
[
Y hklm|S = 1

]
=

∫
Z

∫ 1

0

[
gk (x) + QU|k,x (u)

]
dGl,x (u, πm (z)) dF h

Z (z)

=
∫

X
gk (x) dF h

X (x) +
∫

Z

∫ 1

0
QU|k,x (u) dGl,x (u, πm (z)) dF h

Z (z)

E
[
Y hklm]

=
∫

X
gk (x) dF h

X (x) +
∫

Z

∫ 1

0
QU|k,x (u) dCl,x (u, πm (z)) dF h

Z (z)

First term depends on structural function and distribution of covariates.
Second term depends on the copula, the propensity score and the
distribution of the covariates.
Can estimate g nonparametrically (e.g., Das et al., 2003).

Back to main presentation



Linear model

gd (x , u) = x ′βd + ũ.
where ũ = Qu|d ,x (u) denotes the conditional quantile function
of the uniformly distributed random variable U.
Further simplification from previous case:

E
[
Y hklm|S = 1

]
= Eh (X)′ βk +

∫
Z

∫ 1

0
QU|k,x (u) dGl,x (u, πm (z)) dF h

Z (z)

E
[
Y hklm]

= Eh (X)′ βk +
∫

Z

∫ 1

0
QU|k,x (u) dCl,x (u, πm (z)) dF h

Z (z)

Can estimate g either parametrically (e.g., Heckman, 1976;
Heckman, 1979; Lee, 1983) or semiparametrically (e.g.,
Newey, 2009).

Back to main presentation



No self-selection
Independence copula: Cd ,x (u, v) = uv and Gd ,x (u, v) = u.

No selection component in the decompositions.

Participation component vanishes for decompositions for
participants.

Mean and unconditional quantiles for entire population
depend on propensity score.

No need to estimate the copula; use methods without sample
selection (Machado and Mata, 2005; Chernozhukov et al.,
2013, DiNardo et al. 1996).

Under linearity, can use the Oaxaca-Blinder decomposition.
Back to main presentation



Assumptions
1 (Yi , Si , Di , Z ′

i )
′ are iid for i = 1, ..., n, defined on the

probability space (Ω, F ,P) and take values in a compact set.

2 The sample size for the d-th group is non-decreasing in n,
such that n/nd → pd ∈ [0, ∞) ∀d as n → ∞.

3 πd (Z ) ≡ πd (Z ; γd), with dim (γd) < ∞. πd (Z ; γd) is
continuously differentiable with respect to γd . Moreover,
there exists an asymptotically linear estimator γ̂ ≡ (γ̂′

0, γ̂′
1)′

that admits the following representation:
γ̂ − γ = −B−1 1

nd

∑n
i=1 rd (si , zi ; γ) + oP

(
1√
n

)
.

4 Y has conditional density that is bounded from above and
away from zero, a.s. on a compact set Y. The density is given
by fY |S=1,D,Z (y) for D = 0, 1.



Assumptions

5 gd (x , τ) = x ′βd (τ) for d = 0, 1, where βd is continuous and such that
gd (x , τ) is increasing in its last argument.

6 Let Cd,x (u, v) ≡ Cd,x (u, v ; θd), with dim (θd) < ∞ for d = 0, 1.
Cd,x (u, v ; θd) is uniformly continuous and differentiable with respect to
its arguments a.e. Its density, cd,x (u, v ; θd), is well-defined and finite.

7 Let β (τ) ≡
(
β1 (τ)′ , β0 (τ)′)′ and θ ≡ (θ′

1, θ′
0)′. ∀τ ∈ T ,(

β (τ)′ , θ′, γ′)′ ∈ intB × Θ × G, where B × Θ × G is compact and
convex, and T = [ε, 1 − ε], for some constant ε that is used to avoid the
estimation of extreme quantiles.

8 Matrices of derivatives of the moments Jβd (τ), J̃βd (τ), Jγd (τ), J̃γd (τ),
Jθd (τ), J̃θd (τ) for d = 0, 1, as defined in Appendix A, are continuous
and have full rank, uniformly over B × Θ × Γ × T and d = 0, 1.

9 Denote the support of πd (Z) conditional on X = x by Pd,x . ∀x ∈ X and
d = 0, 1, Pd,x ∈ [0, 1] is an open interval.



Theorem 2

Let ϑ̂d (τ) ≡
(
β̂d (τ)′ , θ̂′

d , γ̂′
d

)′
. Under Assumptions 1-9, their joint

asymptotic distribution is given by√
n

(
ϑ̂d (τ) − ϑd (τ)

)
⇒ Zϑd (τ), where Zϑd (τ) is a zero-mean

Gaussian process with covariance function Σϑd (τ, τ ′), where:

Σϑd

(
τ, τ ′) = √pdpd ′Hd (τ) ΣRd

(
τ, τ ′) Hd ′

(
τ ′)′

Hd (τ) = F I
d (τ)

[
Cd (τ) +

(
I −

∫ 1−ε

ε
Dd (u) F I

d (u) du
)−1 ∫ 1−ε

ε
Dd (u) F I

d (u) Cd (u) du
]

ΣRd

(
τ, τ ′) = E

[
ZRd (τ)ZRd′

(
τ ′)′

]
and functions Cd (τ), Dd (τ), F I

d (τ) and ZRd (τ) are defined in
Appendix A.



Corollary 1
Let ĝd (x , τ) = x ′β̂d (τ), ĉd ,x (τ, η) = cd ,x

(
τ, η; θ̂d

)
,

π̂d (z) = πd (z ; γ̂d) and F̂ d
Z (z) = 1

nd

∑n
i=1 1 (di = d) 1 (Zi ≤ z).

They satisfy Condition 1.
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Implementation for the full population

Ê
[
Y ℓ

]
= 1

nh

∑n
i=1

∫ 1−ε
ε ĝk (xi , u) dĈl ,x (u, π̂m (zi)) 1 (di = h).

F̂ ℓ
Y (y) =

1
nh

∑n
i=1

[[
ε +

∫ 1−ε
ε 1 (ĝk (xi , u) ≤ y) dĈl ,x (u, π̂m (zi))

]
+ (1 − π̂m (zi))

]
1 (di = h).

Q̂ℓ
Y (τ) = inf

{
y : τ ≤ F̂ ℓ

Y (y)
}

.
Back to main presentation



Differences relative to Maasoumi and Wang (2019)

There are some implementation differences:
1 Include additional covariate (number of children).
2 Quantile grid used for the estimation: (0.01, 0.02, ..., 0.99);

they used (0.3, 0.4, ..., 0.7).
3 Instrument used: φ (u, z) = π̂ (z); they used

φ (u, z) =
√

u (1 − u) π̂ (z).

As a result, slightly different objective function to estimate θ.

On top of that, worse performance of Stata relative to Matlab.



Differences relative to Maasoumi and Wang (2019)

Table: Objective function for θ

τ
0.3 0.4 0.5 0.6 0.7

Matlab estimates 1216.086 2044.821 2672.171 3051.696 3090.995
Stata estimates 1216.519 2045.354 2673.005 3052.189 3091.509

Stata estimator of the check function performs worse.
Small errors sum up in the objective function for θ.
Slightly biased estimates in Stata.



Differences relative to Maasoumi and Wang (2019)



Moving average estimates of average U
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Moving average estimates of average U
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