Supply Chain Formation and Fragilities under Imperfect Information

Andrea Titton

CeNDEF, University of Amsterdam

EEA-ESEM, 31 August 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation	Research Question	Setup	Equilibrium	Conclusion
●0	0	0000000	0000000	0

Hurricane Laura shuts 84% of US oil output in Gulf, one-third of SBR capacity

Hurricane Ida Threatens Global Plastic Markets

Peter C. Earle – August 30, 2021

Reading Time: 7 minutes

Image: A math a math

AIER >> Daily Economy >> Government >> Financial Markets >> Crisis

CeNDEF, University of Amsterdam

Supply Chain Formation and Fragilities under Imperfect Information

Motivation	Research Question	Setup	Equilibrium	Conclusion
○●	0	0000000	0000000	0

Stylised facts:

Andrea Titton

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�(

CeNDEF, University of Amsterdam

Motivation	Research Question	Setup	Equilibrium	Conclusion
○●	0	0000000	0000000	0

Stylised facts:

 Firms react to risk by multi-sourcing (Zhao and Freeman, 2019).

CeNDEF, University of Amsterdam

Supply Chain Formation and Fragilities under Imperfect Information

Motivation	Research Question	Setup	Equilibrium	Conclusion
○●	0	0000000	0000000	0

Stylised facts:

- Firms react to risk by multi-sourcing (Zhao and Freeman, 2019).
- **2** The supply chain is *opaque* (Williams et al., 2013).

CeNDEF, University of Amsterdam

Andrea Titton

Motivation	Research Question	Setup	Equilibrium	Conclusion
	•			

Research Question

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < つ へ ⊙

CeNDEF, University of Amsterdam

Supply Chain Formation and Fragilities under Imperfect Information

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	•	0000000	0000000	0

Research Question

1 How do production networks form under opacity?

Andrea Titton

CeNDEF, University of Amsterdam

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	●	0000000	0000000	0

Research Question

- 1 How do production networks form under **opacity**?
- 2 What are the implications for endogenous fragility?

Supply Chain Formation and Fragilities under Imperfect Information

Motivation	Research Question	Setup	Conclusion
		•000000	

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ □臣 = 釣�?

CeNDEF, University of Amsterdam

Andrea Titton

Motivation	Research Question	Setup	Equilibrium	Conclusion
		•0000000		

1 Vertical economy with $k \in \{0, 1, \dots, K\}$ goods / layers

CeNDEF, University of Amsterdam

Supply Chain Formation and Fragilities under Imperfect Information

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	0	•0000000	0000000	O

1 Vertical economy with $k \in \{0, 1, ..., K\}$ goods / layers 2 Identical firms $(k, 0), (k, 1) \dots (k, m)$

Supply Chain Formation and Fragilities under Imperfect Information

Motivation	Research Question	Setup	Conclusion
		•0000000	

- **1** Vertical economy with $k \in \{0, 1, \dots, K\}$ goods / layers
- 2 Identical firms $(k,0), (k,1) \dots (k,m)$
- 3 Production yields an exogenous payoff π

Supply Chain Formation and Fragilities under Imperfect Information

Motivation	Research Question	Setup	Equilibrium	Conclusion
		•000000		

- **1** Vertical economy with $k \in \{0, 1, \dots, K\}$ goods / layers
- **2** Identical firms $(k, 0), (k, 1) \dots (k, m)$
- 3 Production yields an exogenous payoff π
- **4** Firm contract with suppliers $S_{k,i}$ at a marginal cost $c |S_{k,i}|$

Motivation	Research Question	Setup	Equilibrium	Conclusion
		•000000		

- **1** Vertical economy with $k \in \{0, 1, \dots, K\}$ goods / layers
- **2** Identical firms $(k, 0), (k, 1) \dots (k, m)$
- 3 Production yields an exogenous payoff π
- **4** Firm contract with suppliers $S_{k,i}$ at a marginal cost $c |S_{k,i}|$
- **5** A firm is disrupted $(k, i) \in D_k$ if all its suppliers are disrupted $S_{k,i} \subset D_k$

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	O	o●oooooo	0000000	0

Andrea Titton

Э CeNDEF, University of Amsterdam

æ

< □ > < □ > < □

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	O	00●00000	0000000	0

Andrea Titton

Э CeNDEF, University of Amsterdam

æ

(a)

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	O	000●0000	0000000	0

Andrea Titton

Э CeNDEF, University of Amsterdam

æ

(a)

Motivation 00	Research Question 0	Setup 0000●000	Equilibrium 0000000	Conclusion 0
Opacity				

The upstream realisation of the production network $\mathcal{S}_{l,j}, l < k$ is not observable

Supply Chain Formation and Fragilities under Imperfect Information

Motivation	Research Question	Setup	Equilibrium	Conclusion
		00000000		

Problem of the firm

Choose a set of suppliers $S_{k+1,i}$ to maximise expected profits

$$\Pi(\mathcal{S}_{k+1,i}) = \left(1 - \mathbb{P}\big(\mathcal{S}_{k+1,i} \subset \mathcal{D}_k\big)\right) \, \pi - \frac{c}{2} |\mathcal{S}_{k+1,i}|^2$$

CeNDEF, University of Amsterdam

Andrea Titton

Motivation 00	Research Question 0	Setup 000000●0	Equilibrium 0000000	Conclusion 0

Basal conditions

Assumption: The probability that a firm in the basal layer fails $p_{0,i}$ is sampled from a Beta with mean μ_0 and overdispersion ρ_0

Andrea Titton

Motivation	Research Question	Setup		Conclusion
00		0000000	0000000	

Overdispersion parameter

Andrea Titton

CeNDEF, University of Amsterdam

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	0	00000000	●୦୦୦୦୦୦	O
Solution	trick I			

Let $X_{k,j} = \mathbb{1}\{\text{firm } (k,j) \text{ is disrupted}\}\$

CeNDEF, University of Amsterdam

Supply Chain Formation and Fragilities under Imperfect Information

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	0	0000000	●000000	0

Andrea Titton

Let $X_{k,j} = \mathbb{1}\{\text{firm } (k,j) \text{ is disrupted}\}$

 $X_{k,0}, X_{k,1} \dots X_{k,m}$ are not independent.

CeNDEF, University of Amsterdam

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	0	0000000	●000000	0

Let $X_{k,j} = \mathbb{1}\{\text{firm } (k,j) \text{ is disrupted}\}\$

 $X_{k,0}, X_{k,1} \dots X_{k,m}$ are not independent.

Opacity and *identical firms* \implies exchangeability!

CeNDEF, University of Amsterdam

Image: A math a math

Andrea Titton

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	0	0000000	●000000	0

Let $X_{k,j} = \mathbb{1}\{\text{firm } (k,j) \text{ is disrupted}\}\$

 $X_{k,0}, X_{k,1} \dots X_{k,m}$ are not independent.

Opacity and *identical firms* \implies exchangeability!

 \implies what matters is the **number** of disrupted firms, $D_k = |\mathcal{D}_{k,i}|$

Image: A math a math

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	0	0000000	●୦୦୦୦୦୦	0

Let
$$X_{k,j} = \mathbb{1}\{\text{firm } (k,j) \text{ is disrupted}\}$$

 $X_{k,0}, X_{k,1} \dots X_{k,m}$ are not independent.

Opacity and *identical firms* \implies exchangeability!

- \implies what matters is the **number** of disrupted firms, $D_k = |\mathcal{D}_{k,i}|$
- \implies optimise only on the **number** of suppliers, $s_{k+1} = |S_{k+1,i}|$

CeNDEF, University of Amsterdam

Image: A math a math

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	0	0000000	o●ooooo	0

Andrea Titton

How do disruptions propagate from suppliers to firms, $D_k \rightarrow D_{k+1}$?

CeNDEF, University of Amsterdam

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	0	0000000	o●ooooo	0

How do disruptions propagate from suppliers to firms, $D_k \rightarrow D_{k+1}$?

Borrow from Pólya's urns: if $D_k = D_0^{s_1 s_2 \dots s_k}$ with $D_0 \sim$ Beta, $D_{k+1} = D_0^{s_1 s_2 \dots s_k s_{k+1}}$.

CeNDEF, University of Amsterdam

3

Andrea Titton

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	0	0000000	oo●oooo	0

CeNDEF, University of Amsterdam

Motivation	Research Question		Equilibrium	Conclusion
00		00000000	0000000	

Problem of the firm (revisited)

Choose the number of sources s_k to maximise expected profits

$$\Pi(s_{k+1}) = \left(1 - p(s_{k+1}, D_k)\right) = \left(1 - \frac{c}{2}s_k^2\right)$$

where $D_k = D_0^{s_1 s_2 \dots s_k}, D_0 \sim \text{Beta}.$

CeNDEF, University of Amsterdam

Image: A math a math

Andrea Titton

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	0	00000000	ooooooo	0

Optimal Number of Sources

Firms stop adding sources whenever doing so yields a negative marginal payoffs

$$\Pi(s_{k+1}+1) - \Pi(s_{k+1}),$$

this depends crucially on μ_0 and ρ_0 .

Motivation	Research Question	Setup	Equilibrium	Conclusion
			0000000	

Optimal Number of Sources

CeNDEF, University of Amsterdam

Andrea Titton

Motivation	Research Question	Setup	Equilibrium	Conclusion
		00000000		

Endogenous Fragility

CeNDEF, University of Amsterdam

Andrea Titton

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	0	0000000	0000000	•

Andrea Titton

- * ロ * * 個 * * 目 * * 目 * ・ 目 ・ の & 0

CeNDEF, University of Amsterdam

Motivation 00	Research Question 0	Setup 0000000	Equilibrium 0000000	Conclusion •

Andrea Titton

CeNDEF, University of Amsterdam

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	0	0000000	0000000	

Andrea Titton

directly generates tail risk,

CeNDEF, University of Amsterdam

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	O	0000000	0000000	

Andrea Titton

1 Overdispersion with opacity

- directly generates tail risk,
- **indirectly** changes the firms' incentives.

CeNDEF, University of Amsterdam

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	O	0000000	0000000	

Andrea Titton

1 Overdispersion with opacity

- directly generates tail risk,
- indirectly changes the firms' incentives.
- 2 Common externalities are exacerbated

Motivation	Research Question	Setup	Equilibrium	Conclusion
00	0	0000000	0000000	•

1 Overdispersion with opacity

- directly generates tail risk,
- indirectly changes the firms' incentives.
- 2 Common externalities are exacerbated
- 3 Self organised criticality: worse than we thought