An Empirical Model of Quantity Discounts with Large Choice Sets

Alessandro laria (Bristol) Ao Wang (Warwick)

EEA-ESEM, Barcelona
August 2023

Introduction

- Quantity discounts are a common form of nonlinear pricing.
- Lower unit-price for larger quantities.

Introduction

- Quantity discounts are a common form of nonlinear pricing.
- Lower unit-price for larger quantities.
- Enable firms to screen between high- and low-demand consumers ...
- ... but may be socially inefficient (Varian, 1992, textbook).

Introduction

- Quantity discounts are a common form of nonlinear pricing.
- Lower unit-price for larger quantities.
- Enable firms to screen between high- and low-demand consumers ...
- ... but may be socially inefficient (Varian, 1992, textbook).
- Prominent in packaged goods (food, drinks, toiletry, etc.) and services (energy, telecom, public transport, etc.).
- Despite widespread diffusion and a vast theoretical literature (Anderson and Renault, 2011; Armstrong, 2016), relatively few empirical studies.

Difficulties in Empirical Demand for Bundles / Multiple Units

- Practical complexity in estimation of demand for bundles.
- Even with a few products, number of bundles quickly grows large.

Difficulties in Empirical Demand for Bundles / Multiple Units

- Practical complexity in estimation of demand for bundles.
- Even with a few products, number of bundles quickly grows large.
- Non-parametric estimation typically for small choice sets (Compiani, 2019).
- (Even) Parametric estimation can be hard with many bundles.
- Berry et al. (2014); laria and Wang (2019).

This Paper: An Empirical Model of Demand for Bundles

- By construction, each product can be part of many bundles.
\Longrightarrow Correlated preferences across bundles (Gentzkow, 2007).

This Paper: An Empirical Model of Demand for Bundles

- By construction, each product can be part of many bundles.
\Longrightarrow Correlated preferences across bundles (Gentzkow, 2007).
- Multinomial logit and nested logit cannot capture this.
- Mixed logit can but may be hard to estimate with large choice sets.

This Paper: An Empirical Model of Demand for Bundles

- By construction, each product can be part of many bundles.
\Longrightarrow Correlated preferences across bundles (Gentzkow, 2007).
- Multinomial logit and nested logit cannot capture this.
- Mixed logit can but may be hard to estimate with large choice sets.
- Product-Overlap Nested Logit (PONL): bundles belong to multiple nests.
- More flexible than nested logit but simpler than mixed logit.
- Concentrated 2SLS: extension of 2SLS by Berry (1994) to PONL.
- Convenient with large choice sets.
- Controls for price endogeity.

This Paper: Quantity Discounts in Carbonated Soft Drinks (CSDs)

- As part of an anti-obesity strategy, proposal in the UK to ban from supermarkets quantity discounts on high-salt/sugar products.

This Paper: Quantity Discounts in Carbonated Soft Drinks (CSDs)

- As part of an anti-obesity strategy, proposal in the UK to ban from supermarkets quantity discounts on high-salt/sugar products.
- Use IRI data (USA, 2008-11) to estimate demand for bundles of CSDs.
- Simulate counterfactual linear pricing, a constant unit-price for each product.
- Quantity $\downarrow \mathbf{2 0 . 7 \%}$, profit $\downarrow \mathbf{1 9 . 7 \%}$, and consumer surplus $\downarrow 2.8 \%$.
- Added sugar intake $\downarrow 22.1 \%$.

Product-Overlap Nested Logit (PONL): Basic Idea

- Choice set defined over bundles, and bundle \mathbf{b} a collection of units of products.
- Any \mathbf{b} that includes at least one unit of product j belongs to nest $\mathbf{N}_{j}, j=1, \ldots, J$.

Product-Overlap Nested Logit (PONL): Basic Idea

- Choice set defined over bundles, and bundle \mathbf{b} a collection of units of products.
- Any \mathbf{b} that includes at least one unit of product j belongs to nest $\mathbf{N}_{j}, j=1, \ldots, J$.
- Product-overlap among bundles determines the nests they share.
- \uparrow similarity in product composition $\Longrightarrow \uparrow$ correlation in unobserved preferences.

PONL Model: Average Indirect Utility and Demand Synergies

Average utility of one unit of product j in market t (Berry, 1994):

$$
\begin{equation*}
\delta_{t j}=\delta_{j}+x_{t j} \beta-\alpha p_{t j}+\xi_{t j} \tag{1}
\end{equation*}
$$

while of bundle b in market t (Gentzkow, 2007):

$$
\begin{equation*}
\delta_{t \mathbf{b}}=\sum_{j \in \mathbf{b}} \delta_{t j}+\Gamma_{t \mathbf{b}} \tag{2}
\end{equation*}
$$

PONL Model: Average Indirect Utility and Demand Synergies

Average utility of one unit of product j in market t (Berry, 1994):

$$
\begin{equation*}
\delta_{t j}=\delta_{j}+x_{t j} \beta-\alpha p_{t j}+\xi_{t j} \tag{1}
\end{equation*}
$$

while of bundle b in market t (Gentzkow, 2007):

$$
\begin{equation*}
\delta_{t \mathbf{b}}=\sum_{j \in \mathbf{b}} \delta_{t j}+\Gamma_{t \mathbf{b}} \tag{2}
\end{equation*}
$$

- $\Gamma_{t b}$ is the demand synergy: extra-(dis)utility of joint purchase.
- Complementarity (Gentzkow, 2007), shopping costs (Thomassen et al., 2017), preference for variety (Dubé, 2004), etc.
- Quantity Discounts: $\Gamma_{\text {tb }}=-\alpha\left(p_{t \mathbf{b}}-\sum_{j \in \mathbf{b}} p_{t j}\right)>0$.

PONL Model: Average Indirect Utility and Demand Synergies

Average utility of one unit of product j in market t (Berry, 1994):

$$
\begin{equation*}
\delta_{t j}=\delta_{j}+x_{t j} \beta-\alpha p_{t j}+\xi_{t j} \tag{1}
\end{equation*}
$$

while of bundle b in market t (Gentzkow, 2007):

$$
\begin{equation*}
\delta_{t \mathbf{b}}=\sum_{j \in \mathbf{b}} \delta_{t j}+\Gamma_{t \mathbf{b}} . \tag{2}
\end{equation*}
$$

- $\Gamma_{t \mathrm{~b}}$ is the demand synergy: extra-(dis)utility of joint purchase.
- Remain agnostic about $\Gamma_{t \mathrm{~b}}$, a parameter to be identified and estimated.

PONL Model: Overlapping Nests and Berry (1994)

The PONL inverse demand for bundle \mathbf{b} in market t

$$
\begin{equation*}
\ln \left(s_{t \mathbf{b}}\right)-\ln \left(s_{t 0}\right)=\sum_{j \in \mathbf{b}}\left(\delta_{j}+x_{t j} \beta-\alpha p_{t j}+\xi_{t j}\right)+\ln \left(\sum_{j \in \mathbf{b}} \omega_{\mathbf{b} j}\left(s_{t(\mathbf{b} \mid j}\right)^{1-\lambda_{j}}\right)+\Gamma_{t \mathbf{b}} \tag{3}
\end{equation*}
$$

with $\omega_{\mathbf{b} j}=\mathbb{1}_{\mathbf{b} \in \mathbf{N}_{j}} / \sum_{j^{\prime}=1}^{J} \mathbb{1}_{\mathbf{b} \in \mathbf{N}_{j^{\prime}}}$ a weight that proportionally allocates \mathbf{b} to nests

PONL Model: Overlapping Nests and Berry (1994)

The PONL inverse demand for bundle \mathbf{b} in market t

$$
\begin{equation*}
\ln \left(s_{t \mathbf{b}}\right)-\ln \left(s_{t 0}\right)=\sum_{j \in \mathbf{b}}\left(\delta_{j}+x_{t j} \beta-\alpha p_{t j}+\xi_{t j}\right)+\ln \left(\sum_{j \in \mathbf{b}} \omega_{\mathbf{b} j}\left(s_{t(\mathbf{b} \mid j}\right)^{1-\lambda_{j}}\right)+\Gamma_{t \mathbf{b}} \tag{3}
\end{equation*}
$$

while for one unit of product $j \Longrightarrow \mathbf{b}=j, \omega_{\mathbf{b} j}=1$, and $\Gamma_{t \mathbf{b}}=0$

$$
\begin{equation*}
\ln s_{t j}-\ln s_{t 0}=\delta_{j}+x_{t j} \beta-\alpha p_{t j}+\left(1-\lambda_{j}\right) \ln \left(s_{t(j \mid j)}\right)+\xi_{t j}, \tag{4}
\end{equation*}
$$

PONL Model: Overlapping Nests and Berry (1994)

The PONL inverse demand for bundle \mathbf{b} in market t

$$
\begin{equation*}
\ln \left(s_{t \mathbf{b}}\right)-\ln \left(s_{t 0}\right)=\sum_{j \in \mathbf{b}}\left(\delta_{j}+x_{t j} \beta-\alpha p_{t j}+\xi_{t j}\right)+\ln \left(\sum_{j \in \mathbf{b}} \omega_{\mathbf{b} j}\left(s_{t(\mathbf{b} \mid j)}\right)^{1-\lambda_{j}}\right)+\Gamma_{t \mathbf{b}} \tag{3}
\end{equation*}
$$

while for one unit of product j

$$
\begin{equation*}
\ln s_{t j}-\ln s_{t 0}=\delta_{j}+x_{t j} \beta-\alpha p_{t j}+\left(1-\lambda_{j}\right) \ln \left(s_{t(j \mid j)}\right)+\xi_{t j}, \tag{4}
\end{equation*}
$$

- If $s_{t(\mathbf{b} \mid j)}$ observed \Longrightarrow Berry (1994): 2SLS from (4) + plug-in from (3).

PONL Model: Overlapping Nests and Berry (1994)

The PONL inverse demand for bundle \mathbf{b} in market t

$$
\begin{equation*}
\ln \left(s_{t \mathbf{b}}\right)-\ln \left(s_{t 0}\right)=\sum_{j \in \mathbf{b}}\left(\delta_{j}+x_{t j} \beta-\alpha p_{t j}+\xi_{t j}\right)+\ln \left(\sum_{j \in \mathbf{b}} \omega_{\mathbf{b} j}\left(s_{t(\mathbf{b} \mid j)}\right)^{1-\lambda_{j}}\right)+\Gamma_{t \mathbf{b}} \tag{3}
\end{equation*}
$$

while for one unit of product j

$$
\begin{equation*}
\ln s_{t j}-\ln s_{t 0}=\delta_{j}+x_{t j} \beta-\alpha p_{t j}+\left(1-\lambda_{j}\right) \ln \left(s_{t(j \mid j)}\right)+\xi_{t j}, \tag{4}
\end{equation*}
$$

- If $s_{t(\mathbf{b} \mid j)}$ observed \Longrightarrow Berry (1994): 2SLS from (4) + plug-in from (3).
- Unfortunately, not in PONL: only observe $s_{t \mathbf{b}}=\sum_{j=1}^{J} s_{t(\mathbf{b} \mid j)}{ }_{t} \mathbf{N}_{j}$.

```* Details
```


Estimation: Concentrated Two-Stage Least Square (C2SLS)

- Consider each unobserved $\jmath_{t(j \mid j)}=\pi_{t j}$ as an additional auxiliary parameter.

Estimation: Concentrated Two-Stage Least Square (C2SLS)

- Consider each unobserved $\jmath_{t(j \mid j)}=\pi_{t j}$ as an additional auxiliary parameter.
- Augment 2SLS system with nonliner equations for $\pi_{t}=\left(\pi_{t j}\right)_{j=1}^{J}$.
- To pin down $\boldsymbol{\pi}_{t}$, need also to determine demand synergies $\boldsymbol{\Gamma}_{t}$.
- Use the remaining equations implied by PONL model.

Estimation: Concentrated Two-Stage Least Square (C2SLS)

- Consider each unobserved $\jmath_{t(j \mid j)}=\pi_{t j}$ as an additional auxiliary parameter.
- Augment 2SLS system with nonliner equations for $\boldsymbol{\pi}_{t}=\left(\pi_{t j}\right)_{j=1}^{J}$.
- To pin down $\boldsymbol{\pi}_{t}$, need also to determine demand synergies $\boldsymbol{\Gamma}_{t}$.
- Use the remaining equations implied by PONL model.
- Intuitively: Concentrate out unknown π_{t} from 2SLS by Berry (1994).

Implementation: A Convenient Iterative Procedure

- Properties of Concentrated 2SLS (C2SLS):
- Good in theory: PONL identified; C2SLS consistent and asym. normal.
- Hard in practice: directly solving nonlinear system complex with large choice sets.

Implementation: A Convenient Iterative Procedure

- Properties of Concentrated 2SLS (C2SLS):
- Good in theory: PONL identified; C2SLS consistent and asym. normal.
- Hard in practice: directly solving nonlinear system complex with large choice sets.
- Use Gauss-Seidel iterative procedure to implement C2SLS (Hallett, 1982).
- Algorithm only involves iterating between linear regressions and plug-ins.

Implementation: A Convenient Iterative Procedure

Three computational advantages:
(i) Optimization-free.
(ii) Derivative-free.
(iii) Fully parallelizable over (t, \mathbf{b}).

Implementation: A Convenient Iterative Procedure

Three computational advantages:
(i) Optimization-free.
(ii) Derivative-free.
(iii) Fully parallelizable over (t, \mathbf{b}).

On the convergence of the algorithm:

- (Necessary Condition) Convergence of the algorithm \Longrightarrow C2SLS.

Implementation: A Convenient Iterative Procedure

Three computational advantages:
(i) Optimization-free.
(ii) Derivative-free.
(iii) Fully parallelizable over (t, \mathbf{b}).

On the convergence of the algorithm:

- (Necessary Condition) Convergence of the algorithm \Longrightarrow C2SLS.
- Numerical convergence (or lack of it) can be easily verified.

Quantity Discounts in Carbonated Soft Drinks

- IRI Data: 6,155 households purchasing 16,873 different bundles of CSDs in Pittsfield and Eau Claire (USA), 2008-2011.
- Discretize Quantity: Consider purchases up to 1 L as one unit, between 1 L and 2L as two units, etc.

Quantity Discounts in Carbonated Soft Drinks

- IRI Data: 6,155 households purchasing 16,873 different bundles of CSDs in Pittsfield and Eau Claire (USA), 2008-2011.
- Discretize Quantity: Consider purchases up to 1 L as one unit, between 1 L and 2 L as two units, etc.

Facts in the data:

1. Prevalence of purchases of multiple units (93.24% shopping trips) of the same and of different products.
2. Multi-person households purchase larger bundles than single-person households.
3. Pervasiveness of quantity discounts.

Demand Specification: PONL Model by Household Size

- Average utility of household of size hs $\in\{$ single, multi\} for one unit of j and for bundle b, respectively:

$$
\begin{aligned}
& \delta_{t j}^{h s}=\delta_{j}^{h s}-\alpha^{h s} p_{t j}+\delta_{\text {store }(t)}+\delta_{\text {time }(t)}+\xi_{t j}^{h s} \\
& \delta_{t \mathbf{b}}^{h s}=\sum_{j \in \mathbf{b}} \delta_{t j}^{h s}+\Gamma_{t \mathbf{b}}^{h s} .
\end{aligned}
$$

- Because of quantity discounts, the $\approx 176,700$ demand synergies are:

$$
\Gamma_{t \mathbf{b}}^{h s}=-\alpha^{h s}\left(p_{t \mathbf{b}}-\sum_{j \in \mathbf{b}} p_{t j}\right)+\gamma_{t \mathbf{b}}^{h s}
$$

- Practical implementation of C2SLS:
- Hausman-type instruments, prices from other cities (Hausman, 1996; Nevo, 2001).
- Iterative procedure converges in a couple of minutes (25 iterations).

Demand Estimates

- Nesting parameter λ similar across household sizes, around 0.88 .
- Price coefficients: $\alpha^{\text {single }}=0.75<^{* * *} \alpha^{\text {multi }}=1.03$.
- Multi-person households more price elastic.
- When prices of multiple units increase, multi-person households substitute away from larger bundles more sharply than single-person households.

Demand Estimates

- Nesting parameter λ similar across household sizes, around 0.88 .
- Price coefficients: $\alpha^{\text {single }}=0.75<^{* * *} \alpha^{\text {multi }}=1.03$.
- Multi-person households more price elastic.
- When prices of multiple units increase, multi-person households substitute away from larger bundles more sharply than single-person households.
- Incentives for quantity discounts: demand synergies rather than cost savings.
- Estimated marginal costs non-decreasing in quantities.

Counterfactual Linear Pricing

1. Profitable for producers of CSDs in line with Varian (1992).

- From quantity discounts to linear pricing, industry profit down by 19.7%.

2. Large reduction in purchased quantities (-20.7%).

- Price increase for larger quantities $(+14.9 \%)$.
- Price decrease for smaller quantities (-31.6%).

3. Consumer surplus remains small.

- CV of $+3.7 \$$ per household-year (2.8% of total expenditure of CSDs).
- Contraction in purchased quantities, but also lower prices for single units.

Counterfactual Linear Pricing

1. Profitable for producers of CSDs in line with Varian (1992).

- From quantity discounts to linear pricing, industry profit down by 19.7%.

2. Large reduction in purchased quantities (-20.7%).

- Price increase for larger quantities ($+14.9 \%$).
- Price decrease for smaller quantities (-31.6%).

3. Consumer surplus remains small.

- CV of $+3.7 \$$ per household-year (2.8% of total expenditure of CSDs).
- Contraction in purchased quantities, but also lower prices for single units.

Policy question: Could a ban on quantity discounts serve as a policy to limiting added sugar intake from CSDs?

Counterfactual Linear Pricing: Changes in Added Sugar Intake

	Ban on quantity discounts		Sugar tax
	on all CSDs	only on sugary CSDs	$1 \Phi /$ oz of added sugar
Predicted added sugar change	-22.93%	-22.08%	-22.90%
Quantity change	-20.66%	-8.93%	-10.35%
Sugary CSDs	-23.95%	-21.89%	-21.98%
Non-Sugary CSDs	-17.83%	$+1.71 \%$	$+2.14 \%$
Profit change	-19.74%	-9.46%	-7.01%
CV $\$$ per household-year $)$	$+3.70 \$$	$+1.77 \$$	$+2.35 \$$
CV/Expenditure	$+2.82 \%$	$+1.29 \%$	$+1.61 \%$

Conclusions

- Propose empirical model of demand for bundles:

1. Accommodates intuitive form of correlation in the preferences of bundles.
2. Convenient in applications with large choice sets.

- Inform policy debate on a ban on quantity discounts in CSDs.

Conclusions

- Propose empirical model of demand for bundles:

1. Accommodates intuitive form of correlation in the preferences of bundles.
2. Convenient in applications with large choice sets.

- Inform policy debate on a ban on quantity discounts in CSDs.
- Proposed model can also facilitate the study of:
- Demand across multiple product categories (grocery, online shopping, etc.).
- Mergers in markets with both substitutes and complements.
- Spillovers of taxes from a product category to others.
- Portfolio choice models of asset pricing.
- ...

Backup Slides

Lack of Observability of Within-Nest Purchase Probabilities

- Because some $\mathbf{b} \in$ multiple nests, cannot determine $s_{t(\mathbf{b} \mid j)}$'s from $s_{t \mathbf{b}}$'s.
- $\mathbf{N}_{1}=\{1,(1,1),(1,2),(1,3)\}, \mathbf{N}_{2}=\{2,(2,2),(1,2)\}$, and $\mathbf{N}_{3}=\{3,(1,3)\}$.
- Then 8 observed purchase probabilities and 9 unknowns:

$$
\begin{align*}
s_{t k} & =s_{t(k \mid k)} s_{t \mathbf{N}_{k}} \quad k=1,2,3 \\
s_{t(j, j)} & =s_{t(j, j \mid j)} s_{t \mathbf{N}_{j}} \quad j=1,2 \\
s_{t(1,2)} & =s_{t(1,2 \mid 1)} s_{t \mathbf{N}_{1}}+\left(1-s_{t(2 \mid 2)}-s_{t(2,2 \mid 2)}\right) s_{t \mathbf{N}_{2}} \\
s_{t(1,3)} & =\left(1-s_{t(1 \mid 1)}-s_{t(1,1 \mid 1)}-s_{t(1,2 \mid 1)}\right) s_{t \mathbf{N}_{1}}+\left(1-s_{t(3 \mid 3)}\right) s_{t \mathbf{N}_{3}} \tag{5}\\
s_{t 0} & =1-\sum_{j=1}^{3} s_{t \mathbf{N}_{j}} .
\end{align*}
$$

Details: Estimation

(i) Uniqueness of Γ_{t} and π_{t} given λ for each market t.

- π_{t} uniquely determined as $\pi_{t}=\pi\left(\lambda ; \jmath_{t}\right)$.
- $\Gamma_{\text {tb }}$ uniquely determined as $\Gamma_{t \mathbf{b}}=\Gamma_{\mathbf{b}}\left(\lambda ; \pi_{t}, s_{t}\right)=\Gamma_{\mathbf{b}}\left(\lambda ; \pi\left(\lambda ; s_{t}\right), s_{t}\right)$.
- This means that we can concentrate out Γ_{t} and π_{t} in each t.
(ii) Given (i), C2SLS reduces to a nonlinear system in ($\delta, \beta, \alpha, \lambda$).
- Assume rank condition at the true parameters of the nonlinear system. Two roles:
- First, in finite samples existence of $(\hat{\delta}, \hat{\beta}, \hat{\alpha}, \hat{\lambda})$ in neighbourhood of true values with probability one as $T \rightarrow \infty$.
- Second, asymptotically ($\hat{\delta}, \hat{\beta}, \hat{\alpha}, \hat{\lambda}$) consistent and normal.
(iii) Finally, $\hat{\Gamma}_{t}$ and $\hat{\pi}_{t}$ also consistent and asymptotically normal as functions of $(\hat{\delta}, \hat{\beta}, \hat{\alpha}, \hat{\lambda})$.

Choice of Instruments

- Despite the lack of observability of $\pi_{t j}$, instruments for $\frac{s_{t j} / s_{t 0}}{\pi_{t j}}$ can be chosen on the basis of their correlation with $s_{t(j \mid j)}$.
- Denote by $\pi_{j}\left(\lambda ; s_{t}\right)$ the unique $\pi_{t j}$ that rationalizes the model for given $\left(\lambda ; s_{t}\right)$.
- 1st-order Taylor approx. of $\ln \left(\pi_{j}\left(\lambda ; y_{t}\right)\right)$ around true value $\ln \left(\pi_{j}\left(\lambda^{0} ; y_{t}\right)\right)$:

$$
\begin{aligned}
\ln s_{t j}-\ln s_{t 0} & =\delta_{j}+x_{t j} \beta-\alpha p_{t j}+\left(1-\lambda_{j}\right)\left[\ln \left(\frac{s_{t j} / s_{t 0}}{\pi_{t j}^{0}}\right)-\frac{1}{s_{t}^{j}} \frac{\partial \pi_{j}\left(\lambda^{0} ; s_{t}\right)}{\partial \lambda}\left(\lambda-\lambda^{0}\right)\right]+\xi_{t j} \\
& =\delta_{j}+x_{t j} \beta-\alpha p_{t j}+\left(1-\lambda_{j}\right)\left[\ln s_{t(j \mid j)}-\frac{1}{s_{t}^{j}} \frac{\partial \pi_{j}\left(\lambda^{0} ; s_{t}\right)}{\partial \lambda}\left(\lambda-\lambda^{0}\right)\right]+\xi_{t j}
\end{aligned}
$$

- $\ln s_{t(j \mid j)}$ leading term: valid IVs "shift" $\ln s_{t(j \mid j)}$ independently of $\xi_{t j}$.

Choice of Instruments

Re-express $s_{t(j \mid j)}$ as:

$$
s_{t(j \mid j)}=\frac{\exp \left(\delta_{t j}\right)^{1 / \lambda_{j}}}{\sum_{\mathbf{b}^{\prime} \in \mathbf{N}_{j}}\left(\omega_{\mathbf{b}^{\prime} j} \exp \left(\delta_{t \mathbf{b}^{\prime}}\right)\right)^{1 / \lambda_{j}}}=\frac{1}{1+\sum_{\mathbf{b}^{\prime} \in \mathbf{N}_{j}, \mathbf{b}^{\prime} \neq j}\left(\omega_{\mathbf{b}^{\prime} j} \exp \left(\delta_{t \mathbf{b}^{\prime}}-\delta_{t j}\right)\right)^{1 / \lambda_{j}}} .
$$

- Valid IVs shift $\delta_{t \mathbf{b}^{\prime}}-\delta_{t j}$ independently of $\xi_{t j}$ for $\mathbf{b}^{\prime} \in \mathbf{N}_{j}$.
- Differentiation IVs (Gandhi and Houde, 2019)
- $x_{t \mathbf{b}^{\prime}}-x_{t j}$.
- $x_{t k}-x_{t j}$ for $k \neq j$ as long as nests j and k are overlapping, $\mathbf{N}_{k} \cap \mathbf{N}_{j} \neq \emptyset$.
- Excluded prices as p_{k} for $k \neq j$ and $\mathbf{N}_{k} \cap \mathbf{N}_{j} \neq \emptyset$
- Cost shifters (or their proxies) for p_{k}.

References

Anderson, S. P. and Renault, R. (2011). Price discrimination. Edward Elgar Publishing. Armstrong, M. (2016). Nonlinear pricing. Annual Review of Economics, 8:583-614. Berry, S., Khwaja, A., Kumar, V., Musalem, A., Wilbur, K. C., Allenby, G., Anand, B., Chintagunta, P., Hanemann, W. M., Jeziorski, P., et al. (2014). Structural models of complementary choices. Marketing Letters, 25(3):245-256.
Berry, S. T. (1994). Estimating discrete-choice models of product differentiation. The RAND Journal of Economics, pages 242-262.
Compiani, G. (2019). Market counterfactuals and the specification of multi-product demand: A nonparametric approach. Working Paper.
Dubé, J.-P. (2004). Multiple discreteness and product differentiation: Demand for carbonated soft drinks. Marketing Science, 23(1):66-81.
Gandhi, A. and Houde, J.-F. (2019). Measuring substitution patterns in differentiated products industries. Technical report, National Bureau of Economic Research.
Gentzkow, M. (2007). Valuing new goods in a model with complementarity: Online newspapers. The American Economic Review, 97(3):713-744.
Hallett, A. H. (1982). Alternative techniques for solving systems of nonlinear

