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Introduction
• Quantity discounts are a common form of nonlinear pricing.

• Lower unit-price for larger quantities.
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Introduction
• Quantity discounts are a common form of nonlinear pricing.

• Lower unit-price for larger quantities.

• Enable firms to screen between high- and low-demand consumers ...

• ... but may be socially inefficient (Varian, 1992, textbook).

• Prominent in packaged goods (food, drinks, toiletry, etc.) and services (energy,
telecom, public transport, etc.).

• Despite widespread diffusion and a vast theoretical literature (Anderson and
Renault, 2011; Armstrong, 2016), relatively few empirical studies.
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Difficulties in Empirical Demand for Bundles / Multiple Units

• Practical complexity in estimation of demand for bundles.
• Even with a few products, number of bundles quickly grows large.

• Non-parametric estimation typically for small choice sets (Compiani, 2019).

• (Even) Parametric estimation can be hard with many bundles.
• Berry et al. (2014); Iaria and Wang (2019).
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This Paper: An Empirical Model of Demand for Bundles

• By construction, each product can be part of many bundles.

=⇒ Correlated preferences across bundles (Gentzkow, 2007).

• Multinomial logit and nested logit cannot capture this.
• Mixed logit can but may be hard to estimate with large choice sets.

• Product-Overlap Nested Logit (PONL): bundles belong to multiple nests.
• More flexible than nested logit but simpler than mixed logit.

• Concentrated 2SLS: extension of 2SLS by Berry (1994) to PONL.
• Convenient with large choice sets.
• Controls for price endogeity.
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This Paper: Quantity Discounts in Carbonated Soft Drinks (CSDs)

• As part of an anti-obesity strategy, proposal in the UK to ban from
supermarkets quantity discounts on high-salt/sugar products.

• Use IRI data (USA, 2008-11) to estimate demand for bundles of CSDs.

• Simulate counterfactual linear pricing, a constant unit-price for each product.
• Quantity ↓ 20.7%, profit ↓ 19.7%, and consumer surplus ↓ 2.8%.
• Added sugar intake ↓ 22.1%.
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Product-Overlap Nested Logit (PONL): Basic Idea

Product-Overlap Nested Logit (PONL)

N1 N2 N3N0

1 (1,1) (1,2) 2 (2,2) 30

• Choice set defined over bundles, and bundle b a collection of units of products.

• Any b that includes at least one unit of product j belongs to nest Nj , j = 1, ..., J .

• Product-overlap among bundles determines the nests they share.
• ↑ similarity in product composition =⇒ ↑ correlation in unobserved preferences.
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PONL Model: Average Indirect Utility and Demand Synergies
Average utility of one unit of product j in market t (Berry, 1994):

δtj = δj + xtjβ − αptj + ξtj (1)

while of bundle b in market t (Gentzkow, 2007):

δtb =
∑
j∈b

δtj + Γtb. (2)

• Γtb is the demand synergy: extra-(dis)utility of joint purchase.
• Complementarity (Gentzkow, 2007), shopping costs (Thomassen et al., 2017),

preference for variety (Dubé, 2004), etc.
• Quantity Discounts: Γtb = −α

(
ptb −

∑
j∈b ptj

)
> 0.

• Remain agnostic about Γtb, a parameter to be identified and estimated.
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PONL Model: Overlapping Nests and Berry (1994)
The PONL inverse demand for bundle b in market t

ln(stb)− ln(st0) =
∑
j∈b

(δj + xtjβ − αptj + ξtj) + ln

∑
j∈b

ωbj
(
st(b|j)

)1−λj

+ Γtb (3)

with ωbj = 1b∈Nj /
∑J

j′=1 1b∈Nj′ a weight that proportionally allocates b to nests

while for one unit of product j

=⇒ b = j , ωbj = 1, and Γtb = 0

ln stj − ln st0 = δj + xtjβ − αptj + (1− λj) ln(st(j|j)) + ξtj , (4)

• If st(b|j) observed =⇒ Berry (1994): 2SLS from (4) + plug-in from (3).

• Unfortunately, not in PONL: only observe stb =
∑J

j=1 st(b|j)stNj . Details
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Estimation: Concentrated Two-Stage Least Square (C2SLS)

• Consider each unobserved st(j|j) = πtj as an additional auxiliary parameter.

• Augment 2SLS system with nonliner equations for πt = (πtj)J
j=1.

• To pin down πt , need also to determine demand synergies Γt .
• Use the remaining equations implied by PONL model.

• Intuitively: Concentrate out unknown πt from 2SLS by Berry (1994).
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Implementation: A Convenient Iterative Procedure

• Properties of Concentrated 2SLS (C2SLS):

• Good in theory: PONL identified; C2SLS consistent and asym. normal. Details

• Hard in practice: directly solving nonlinear system complex with large choice sets.

• Use Gauss-Seidel iterative procedure to implement C2SLS (Hallett, 1982).

• Algorithm only involves iterating between linear regressions and plug-ins.

11



Implementation: A Convenient Iterative Procedure

• Properties of Concentrated 2SLS (C2SLS):

• Good in theory: PONL identified; C2SLS consistent and asym. normal. Details

• Hard in practice: directly solving nonlinear system complex with large choice sets.

• Use Gauss-Seidel iterative procedure to implement C2SLS (Hallett, 1982).

• Algorithm only involves iterating between linear regressions and plug-ins.

11



Implementation: A Convenient Iterative Procedure

Three computational advantages:

(i) Optimization-free.

(ii) Derivative-free.

(iii) Fully parallelizable over (t,b).

On the convergence of the algorithm:

• (Necessary Condition) Convergence of the algorithm =⇒ C2SLS.

• Numerical convergence (or lack of it) can be easily verified.
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Quantity Discounts in Carbonated Soft Drinks

• IRI Data: 6,155 households purchasing 16,873 different bundles of CSDs in
Pittsfield and Eau Claire (USA), 2008-2011.

• Discretize Quantity: Consider purchases up to 1L as one unit, between 1L and
2L as two units, etc.

Facts in the data:
1. Prevalence of purchases of multiple units (93.24% shopping trips) of the same

and of different products.

2. Multi-person households purchase larger bundles than single-person
households.

3. Pervasiveness of quantity discounts.
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Demand Specification: PONL Model by Household Size

• Average utility of household of size hs ∈ {single, multi} for one unit of j and for
bundle b, respectively:

δhs
tj = δhs

j − αhsptj + δstore(t) + δtime(t) + ξhs
tj

δhs
tb =

∑
j∈b

δhs
tj + Γhs

tb.

• Because of quantity discounts, the ≈176,700 demand synergies are:

Γhs
tb = −αhs

ptb −
∑
j∈b

ptj

+ γhs
tb .

• Practical implementation of C2SLS:
• Hausman-type instruments, prices from other cities (Hausman, 1996; Nevo, 2001).
• Iterative procedure converges in a couple of minutes (25 iterations).
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Demand Estimates

• Nesting parameter λ similar across household sizes, around 0.88.
• Price coefficients: αsingle = 0.75 <∗∗∗ αmulti = 1.03.

• Multi-person households more price elastic.
• When prices of multiple units increase, multi-person households substitute away from

larger bundles more sharply than single-person households.

• Incentives for quantity discounts: demand synergies rather than cost savings.
• Estimated marginal costs non-decreasing in quantities.
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Counterfactual Linear Pricing

1. Profitable for producers of CSDs in line with Varian (1992).
• From quantity discounts to linear pricing, industry profit down by 19.7%.

2. Large reduction in purchased quantities (−20.7%).
• Price increase for larger quantities (+14.9%).
• Price decrease for smaller quantities (−31.6%).

3. Consumer surplus remains small.
• CV of +3.7$ per household-year (2.8% of total expenditure of CSDs).
• Contraction in purchased quantities, but also lower prices for single units.

Policy question: Could a ban on quantity discounts serve as a policy to limiting
added sugar intake from CSDs?
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Counterfactual Linear Pricing: Changes in Added Sugar Intake

Ban on quantity discounts Sugar tax
on all CSDs only on sugary CSDs 1¢/oz of added sugar

Predicted added sugar change −22.93% −22.08% −22.90%
Quantity change −20.66% −8.93% −10.35%

Sugary CSDs −23.95% −21.89% −21.98%
Non-Sugary CSDs −17.83% +1.71% +2.14%

Profit change −19.74% −9.46% −7.01%
CV ($ per household-year) +3.70$ +1.77$ +2.35$

CV/Expenditure +2.82% +1.29% +1.61%
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Conclusions

• Propose empirical model of demand for bundles:
1. Accommodates intuitive form of correlation in the preferences of bundles.
2. Convenient in applications with large choice sets.

• Inform policy debate on a ban on quantity discounts in CSDs.

• Proposed model can also facilitate the study of:
• Demand across multiple product categories (grocery, online shopping, etc.).
• Mergers in markets with both substitutes and complements.
• Spillovers of taxes from a product category to others.
• Portfolio choice models of asset pricing.
• ...
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Backup Slides
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Lack of Observability of Within-Nest Purchase Probabilities Back

• Because some b ∈ multiple nests, cannot determine st(b|j)’s from stb’s.

• N1 = {1, (1, 1), (1, 2), (1, 3)}, N2 = {2, (2, 2), (1, 2)}, and N3 = {3, (1, 3)}.

• Then 8 observed purchase probabilities and 9 unknowns:

stk = st(k|k)stNk k = 1, 2, 3
st(j,j) = st(j,j|j)stNj j = 1, 2

st(1,2) = st(1,2|1)stN1 +
(
1− st(2|2) − st(2,2|2)

)
stN2

st(1,3) =
(
1− st(1|1) − st(1,1|1) − st(1,2|1)

)
stN1 +

(
1− st(3|3)

)
stN3

st0 = 1−
3∑

j=1
stNj .

(5)
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Details: Estimation Back

(i) Uniqueness of Γt and πt given λ for each market t.
• πt uniquely determined as πt = π(λ; st).
• Γtb uniquely determined as Γtb = Γb(λ;πt , st) = Γb(λ;π(λ; st), st).
• This means that we can concentrate out Γt and πt in each t.

(ii) Given (i), C2SLS reduces to a nonlinear system in (δ, β, α, λ).
• Assume rank condition at the true parameters of the nonlinear system. Two roles:
• First, in finite samples existence of (δ̂, β̂, α̂, λ̂) in neighbourhood of true values with

probability one as T →∞.
• Second, asymptotically (δ̂, β̂, α̂, λ̂) consistent and normal.

(iii) Finally, Γ̂t and π̂t also consistent and asymptotically normal as functions of
(δ̂, β̂, α̂, λ̂).
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Choice of Instruments Back

• Despite the lack of observability of πtj , instruments for stj/st0
πtj

can be chosen on
the basis of their correlation with st(j|j).

• Denote by πj(λ; st) the unique πtj that rationalizes the model for given (λ; st).

• 1st-order Taylor approx. of ln(πj(λ; st)) around true value ln(πj(λ0; st)):

ln stj − ln st0 = δj + xtjβ − αptj + (1− λj)
[

ln
(
stj/st0

π0
tj

)
− 1

s
j
t

∂πj(λ0; st)
∂λ

(λ− λ0)
]

+ ξtj

= δj + xtjβ − αptj + (1− λj)
[

ln st(j|j) −
1
s

j
t

∂πj(λ0; st)
∂λ

(λ− λ0)
]

+ ξtj

• ln st(j|j) leading term: valid IVs “shift” ln st(j|j) independently of ξtj .
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Choice of Instruments Back

Re-express st(j|j) as:

st(j|j) = exp(δtj)1/λj∑
b′∈Nj (ωb′j exp(δtb′))1/λj

= 1
1 +

∑
b′∈Nj ,b′ 6=j(ωb′j exp(δtb′ − δtj))1/λj

.

• Valid IVs shift δtb′ − δtj independently of ξtj for b′ ∈ Nj .

• Differentiation IVs (Gandhi and Houde, 2019)
• xtb′ − xtj .
• xtk − xtj for k 6= j as long as nests j and k are overlapping, Nk ∩Nj 6= ∅.

• Excluded prices as pk for k 6= j and Nk ∩Nj 6= ∅
• Cost shifters (or their proxies) for pk .
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