Shiran Rachmilevitch Department of Economics, University of Haifa

Works in auction theory typically assume that bidders are individual agents (firms, organizations, persons).

- Works in auction theory typically assume that bidders are individual agents (firms, organizations, persons).
- ▶ In practice, they are often not.

- Works in auction theory typically assume that bidders are individual agents (firms, organizations, persons).
- ▶ In practice, they are often not.
- Examples:
 - 1. Spectrum auctions;
 - 2. A couple of roommates jointly bidding on a TV set.

- Works in auction theory typically assume that bidders are individual agents (firms, organizations, persons).
- ▶ In practice, they are often not.
- Examples:
 - 1. Spectrum auctions;
 - 2. A couple of roommates jointly bidding on a TV set.
- Economic characteristics:
 - 1. Public good;
 - 2. Aggregation problem in a strategic bidding setting.

▶ Team play: Duggan 2001, Kim et al. 2021.

- ▶ Team play: Duggan 2001, Kim et al. 2021.
- ▶ Auctions for patents: Asker et al. 2021.

- ▶ Team play: Duggan 2001, Kim et al. 2021.
- ▶ Auctions for patents: Asker et al. 2021.
- Collusion a cartel is a "bidding team."
 E.g., McAfee and McMillan 1992, Mailath and Zemsky 1991, many more.

- ▶ Team play: Duggan 2001, Kim et al. 2021.
- ▶ Auctions for patents: Asker et al. 2021.
- Collusion a cartel is a "bidding team."
 E.g., McAfee and McMillan 1992, Mailath and Zemsky 1991, many more.
- ► Group contests the group/team wins together or loses together. E.g., Kobayashi and Konishi 2021.

Second-price auction with two bidders.

- Second-price auction with two bidders.
- ▶ Bidder A consists of n symmetric individuals: players $1, \dots, n$. Type dist F on [0, 1].

- Second-price auction with two bidders.
- ▶ Bidder A consists of n symmetric individuals: players $1, \dots, n$. Type dist F on [0, 1].
- ▶ Bidder B is a single agent, player n + 1 (the regular bidder). Type dist. according to the CDF G.

- Second-price auction with two bidders.
- ▶ Bidder A consists of n symmetric individuals: players $1, \dots, n$. Type dist F on [0, 1].
- ▶ Bidder B is a single agent, player n + 1 (the regular bidder). Type dist. according to the CDF G.
- ▶ If bidder A wins and its members' valuations are $(\theta_1, \dots, \theta_n)$, then the utility of player i is:

$$\theta_i - p_i$$
,

where
$$\sum_{i=1}^{n} p_i = cost$$

- Second-price auction with two bidders.
- ▶ Bidder A consists of n symmetric individuals: players $1, \dots, n$. Type dist F on [0,1].
- ▶ Bidder B is a single agent, player n + 1 (the regular bidder). Type dist. according to the CDF G.
- ▶ If bidder A wins and its members' valuations are $(\theta_1, \dots, \theta_n)$, then the utility of player i is:

$$\theta_i - p_i$$

where
$$\sum_{i=1}^{n} p_i = cost$$

▶ Team mechanism= (A, p_1, \dots, p_n)

 $\blacktriangleright A \colon \mathbb{R}^n_+ \to \mathbb{R}_+.$

- $\blacktriangleright A \colon \mathbb{R}^n_+ \to \mathbb{R}_+.$
- $\qquad \qquad A(0,\cdots,0)=0.$

- $ightharpoonup A \colon \mathbb{R}^n_+ \to \mathbb{R}_+.$
- ► $A(0, \dots, 0) = 0$.
- ▶ $b >> 0 \to A(b) > 0$.

- $ightharpoonup A \colon \mathbb{R}^n_+ \to \mathbb{R}_+.$
- ► $A(0, \dots, 0) = 0$.
- ▶ $b >> 0 \to A(b) > 0$.
- Continuous, weakly increasing in each coordinate.

- $ightharpoonup A \colon \mathbb{R}^n_+ \to \mathbb{R}_+.$
- ► $A(0, \dots, 0) = 0$.
- ▶ $b >> 0 \to A(b) > 0$.
- ▶ Continuous, weakly increasing in each coordinate.
- ▶ $p_i(b_1, \dots, b_n, x) \ge 0$ is continuous, weakly increasing in b_i .

- $ightharpoonup A \colon \mathbb{R}^n_+ \to \mathbb{R}_+.$
- ► $A(0, \dots, 0) = 0$.
- ▶ $b >> 0 \to A(b) > 0$.
- Continuous, weakly increasing in each coordinate.
- ▶ $p_i(b_1, \dots, b_n, x) \ge 0$ is continuous, weakly increasing in b_i .
- $\sum_{i=1}^{n} p_i(b_1, \cdots, b_n, x) = x.$

- $ightharpoonup A \colon \mathbb{R}^n_+ \to \mathbb{R}_+.$
- ► $A(0, \dots, 0) = 0$.
- ▶ $b >> 0 \to A(b) > 0$.
- Continuous, weakly increasing in each coordinate.
- ▶ $p_i(b_1, \dots, b_n, x) \ge 0$ is continuous, weakly increasing in b_i .
- $\sum_{i=1}^{n} p_i(b_1, \cdots, b_n, x) = x.$
- ▶ **Order**. If $b_i \ge b_j$ implies that $p_i(b_1, \dots, b_n, x) \ge p_j(b_1, \dots, b_n, x)$, for every i, j, b and x.

- $ightharpoonup A \colon \mathbb{R}^n_+ \to \mathbb{R}_+.$
- $A(0,\cdots,0)=0.$
- ▶ $b >> 0 \to A(b) > 0$.
- Continuous, weakly increasing in each coordinate.
- ▶ $p_i(b_1, \dots, b_n, x) \ge 0$ is continuous, weakly increasing in b_i .
- $\sum_{i=1}^{n} p_i(b_1, \dots, b_n, x) = x.$
- ▶ **Order**. If $b_i \ge b_j$ implies that $p_i(b_1, \dots, b_n, x) \ge p_j(b_1, \dots, b_n, x)$, for every i, j, b and x.
- ▶ **Unboundedness**. For every r there exists a b^* such that if $b_i \ge b^*$ for some i then $A(b) \ge r$.

► Equilibrium=Bayes Nash equilibrium.

► Equilibrium=Bayes Nash equilibrium.

► Theorem

Equilibrium=Bayes Nash equilibrium.

► Theorem

For any mechanism (that satisfies order+unboundedness), the corresponding game has an equilibrium.

▶ Proof: There exists a B > n such that $A(B, 0, \dots, 0) > n$. [Unboundedness]

Equilibrium=Bayes Nash equilibrium.

► Theorem

- ▶ Proof: There exists a B > n such that $A(B, 0, \dots, 0) > n$. [Unboundedness]
- ▶ If all $b_i \le B$ then the optimal $b_i \le B$.

Equilibrium=Bayes Nash equilibrium.

► Theorem

- ▶ Proof: There exists a B > n such that $A(B, 0, \dots, 0) > n$. [Unboundedness]
- ▶ If all $b_i \leq B$ then the optimal $b_i \leq B$.
- ▶ Compare B to $B + \delta$: if the latter wins and the former loses, then the price is at least x > n, hence i will pay $> \frac{x}{n} > 1$. [Max-report-payment]

Equilibrium=Bayes Nash equilibrium.

► Theorem

- ▶ Proof: There exists a B > n such that $A(B, 0, \dots, 0) > n$. [Unboundedness]
- ▶ If all $b_j \leq B$ then the optimal $b_i \leq B$.
- ▶ Compare B to $B + \delta$: if the latter wins and the former loses, then the price is at least x > n, hence i will pay $> \frac{x}{n} > 1$. [Max-report-payment]
- ▶ In the game with truncated report-sets [0, B] there is an equilibrium—it is also an equilibrium in the original game.

▶ Bid aggregation: $A = \sum_{i=1}^{n} b_i$.

- ▶ Bid aggregation: $A = \sum_{i=1}^{n} b_i$.
- ► Cost sharing: $p_i(b_1, \dots, b_n, x) = \frac{b_i}{\sum_{j=1}^n b_j} \cdot x$.

- ▶ Bid aggregation: $A = \sum_{i=1}^{n} b_i$.
- ▶ Cost sharing: $p_i(b_1, \dots, b_n, x) = \frac{b_i}{\sum_{i=1}^n b_i} \cdot x$.
- ► *G* uniform on [0, *M*].

- ▶ Bid aggregation: $A = \sum_{i=1}^{n} b_i$.
- ► Cost sharing: $p_i(b_1, \dots, b_n, x) = \frac{b_i}{\sum_{j=1}^n b_j} \cdot x$.
- ► *G* uniform on [0, *M*].

► Theorem

Suppose that $M \ge 2n$. Then the linear-proportional model has a unique equilibrium. The equilibrium is symmetric:

 $\beta_1 = \cdots = \beta_n = \beta^{SPA}$, where the bid function β is given by:

$$\beta^{SPA}(\theta) = \max\{\theta - a, 0\},\$$

where a is the unique solution to:

$$a = \frac{n-1}{n+1} \cdot \left(\int_a^1 t f(t) dt + a F(a) \right).$$

$$\beta^{SPA}(\theta) = \max\{\theta - a, 0\},$$

▶

$$\beta^{SPA}(\theta) = \max\{\theta - a, 0\},\$$

▶ If n = 1 then a = 0: the weak dominance equilibrium of the standard (IPV) second-price auction.

$$\beta^{SPA}(\theta) = \max\{\theta - a, 0\},\$$

▶ If n = 1 then a = 0: the weak dominance equilibrium of the standard (IPV) second-price auction.

Proposition

In the linear-proportional model, the equilibrium-expected-utility of a team member with type θ is:

$$\pi^*(\theta) = \frac{1}{2M} \cdot [2\theta - max\{\theta - a, 0\}] \cdot [2a + max\{\theta - a, 0\}].$$

$$\beta^{SPA}(\theta) = \max\{\theta - a, 0\},\$$

▶ If n = 1 then a = 0: the weak dominance equilibrium of the standard (IPV) second-price auction.

Proposition

In the linear-proportional model, the equilibrium-expected-utility of a team member with type θ is:

$$\pi^*(\theta) = \frac{1}{2M} \cdot [2\theta - max\{\theta - a, 0\}] \cdot [2a + max\{\theta - a, 0\}].$$

▶ The team size *n* and type. dist. *F* only affects the cutoff *a*.

 $ightharpoonup a_n$ =the cutoff a corresponding to a bidding team of size n.

- ightharpoonup an = the cutoff a corresponding to a bidding team of size n.
- Proposition

The cutoff a_n satisfies the following:

- 1. a_n is strictly increasing in n.
- 2. $\lim_{n\to\infty} a_n = 1$.
- 3. $\left(\frac{n-1}{n+1}\right)\mathbb{E}(\theta) \leq a_n \text{ for all } n \geq 1.$

 $ightharpoonup a_n$ =the cutoff a corresponding to a bidding team of size n.

Proposition

The cutoff a_n satisfies the following:

- 1. a_n is strictly increasing in n.
- 2. $\lim_{n\to\infty} a_n = 1$.
- 3. $(\frac{n-1}{n+1})\mathbb{E}(\theta) \leq a_n$ for all $n \geq 1$.

► Proposition

Consider two copies of the model—one in which the type distribution is F and one in which it is H, where F first-order stochastically dominates H. Let a^z be the cutoff corresponding to $z \in \{F, H\}$. Then $a^F \ge a^H$.

▶ $\Pi^*(\theta)$ =the expected payoff under commitment and truthful reporting.

- ▶ $\Pi^*(\theta)$ =the expected payoff under commitment and truthful reporting.
- ► Proposition

$$lim_{n\to\infty} \frac{n \times \pi^*(\theta)}{\Pi^*(\theta)} = \frac{4}{\mathbb{E}(\theta)}.$$

Other formats

Other formats

Proposition

Consider the linear-proportional mechanism with n = 2. There exist F and G such that the "main equilibrium" is an equilibrium under the second-price format, but not under the first-price format.

Other formats

Proposition

Consider the linear-proportional mechanism with n = 2. There exist F and G such that the "main equilibrium" is an equilibrium under the second-price format, but not under the first-price format.

► Proposition

Consider the linear-proportional mechanisms with n=2, and where the regular bidder's type is uniform over [0,1]. Then:

- 1. Under the second-price format, the game has a symmetric equilibrium.
- Under the all-pay format, the game has no symmetric equilibrium that is equivalent to a symmetric equilibrium of the second-price game.
- 3. Under the all-pay format, the game has equilibria with complete free riding.
- 4. Under the second-price format, the game has no equilibrium with complete free riding.

Future research

Future research

▶ Not an exogenous mechanism (A, p); instead, within-team negotiation;

Future research

- ▶ Not an exogenous mechanism (A, p); instead, within-team negotiation;
- ▶ Competition between multiple teams.