Auctions with a multi-member bidder

Shiran Rachmilevitch
Department of Economics, University of Haifa

Auctions with a multi-member bidder

Auctions with a multi-member bidder

- Works in auction theory typically assume that bidders are individual agents (firms, organizations, persons).

Auctions with a multi-member bidder

- Works in auction theory typically assume that bidders are individual agents (firms, organizations, persons).
- In practice, they are often not.

Auctions with a multi-member bidder

- Works in auction theory typically assume that bidders are individual agents (firms, organizations, persons).
- In practice, they are often not.
- Examples:

1. Spectrum auctions;
2. A couple of roommates jointly bidding on a TV set.

Auctions with a multi-member bidder

- Works in auction theory typically assume that bidders are individual agents (firms, organizations, persons).
- In practice, they are often not.
- Examples:

1. Spectrum auctions;
2. A couple of roommates jointly bidding on a TV set.

- Economic characteristics:

1. Public good;
2. Aggregation problem in a strategic bidding setting.

Literature

Literature

- Team play: Duggan 2001, Kim et al. 2021.

Literature

- Team play: Duggan 2001, Kim et al. 2021.
- Auctions for patents: Asker et al. 2021.

Literature

- Team play: Duggan 2001, Kim et al. 2021.
- Auctions for patents: Asker et al. 2021.
- Collusion - a cartel is a "bidding team." E.g., McAfee and McMillan 1992, Mailath and Zemsky 1991, many more.

Literature

- Team play: Duggan 2001, Kim et al. 2021.
- Auctions for patents: Asker et al. 2021.
- Collusion - a cartel is a "bidding team." E.g., McAfee and McMillan 1992, Mailath and Zemsky 1991, many more.
- Group contests - the group/team wins together or loses together. E.g., Kobayashi and Konishi 2021.

Model

- Second-price auction with two bidders.

Model

- Second-price auction with two bidders.
- Bidder A consists of n symmetric individuals: players $1, \cdots, n$. Type dist - F on $[0,1]$.

Model

- Second-price auction with two bidders.
- Bidder A consists of n symmetric individuals: players $1, \cdots, n$. Type dist - F on $[0,1]$.
- Bidder B is a single agent, player $n+1$ (the regular bidder). Type dist. according to the CDF G.

Model

- Second-price auction with two bidders.
- Bidder A consists of n symmetric individuals: players $1, \cdots, n$. Type dist - F on $[0,1]$.
- Bidder B is a single agent, player $n+1$ (the regular bidder). Type dist. according to the CDF G.
- If bidder A wins and its members' valuations are $\left(\theta_{1}, \cdots, \theta_{n}\right)$, then the utility of player i is:

$$
\theta_{i}-p_{i}
$$

where $\sum_{i=1}^{n} p_{i}=$ cost

Model

- Second-price auction with two bidders.
- Bidder A consists of n symmetric individuals: players $1, \cdots, n$. Type dist - F on $[0,1]$.
- Bidder B is a single agent, player $n+1$ (the regular bidder). Type dist. according to the CDF G.
- If bidder A wins and its members' valuations are $\left(\theta_{1}, \cdots, \theta_{n}\right)$, then the utility of player i is:

$$
\theta_{i}-p_{i}
$$

where $\sum_{i=1}^{n} p_{i}=$ cost

- Team mechanism $=\left(A, p_{1}, \cdots, p_{n}\right)$

The mechanism (A, p)

The mechanism (A, p)

- $A: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$.

The mechanism (A, p)

- $A: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$.
- $A(0, \cdots, 0)=0$.

The mechanism (A, p)

- $A: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$.
- $A(0, \cdots, 0)=0$.
- $b \gg 0 \rightarrow A(b)>0$.

The mechanism (A, p)

- $A: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$.
- $A(0, \cdots, 0)=0$.
- $b \gg 0 \rightarrow A(b)>0$.
- Continuous, weakly increasing in each coordinate.

The mechanism (A, p)

- $A: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$.
- $A(0, \cdots, 0)=0$.
- $b \gg 0 \rightarrow A(b)>0$.
- Continuous, weakly increasing in each coordinate.
- $p_{i}\left(b_{1}, \cdots . b_{n}, x\right) \geq 0$ is continuous, weakly increasing in b_{i}.

The mechanism (A, p)

- $A: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$.
- $A(0, \cdots, 0)=0$.
- $b \gg 0 \rightarrow A(b)>0$.
- Continuous, weakly increasing in each coordinate.
- $p_{i}\left(b_{1}, \cdots . b_{n}, x\right) \geq 0$ is continuous, weakly increasing in b_{i}.
- $\sum_{i=1}^{n} p_{i}\left(b_{1}, \cdots, b_{n}, x\right)=x$.

The mechanism (A, p)

- $A: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$.
- $A(0, \cdots, 0)=0$.
- $b \gg 0 \rightarrow A(b)>0$.
- Continuous, weakly increasing in each coordinate.
- $p_{i}\left(b_{1}, \cdots . b_{n}, x\right) \geq 0$ is continuous, weakly increasing in b_{i}.
- $\sum_{i=1}^{n} p_{i}\left(b_{1}, \cdots, b_{n}, x\right)=x$.
- Order. If $b_{i} \geq b_{j}$ implies that $p_{i}\left(b_{1}, \cdots, b_{n}, x\right) \geq p_{j}\left(b_{1}, \cdots, b_{n}, x\right)$, for every i, j, b and x.

The mechanism (A, p)

- $A: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$.
- $A(0, \cdots, 0)=0$.
- $b \gg 0 \rightarrow A(b)>0$.
- Continuous, weakly increasing in each coordinate.
- $p_{i}\left(b_{1}, \cdots . b_{n}, x\right) \geq 0$ is continuous, weakly increasing in b_{i}.
- $\sum_{i=1}^{n} p_{i}\left(b_{1}, \cdots, b_{n}, x\right)=x$.
- Order. If $b_{i} \geq b_{j}$ implies that $p_{i}\left(b_{1}, \cdots, b_{n}, x\right) \geq p_{j}\left(b_{1}, \cdots, b_{n}, x\right)$, for every i, j, b and x.
- Unboundedness. For every r there exists a b^{*} such that if $b_{i} \geq b^{*}$ for some i then $A(b) \geq r$.

Equilibrium existence

- Equilibrium=Bayes Nash equilibrium.

Equilibrium existence

- Equilibrium=Bayes Nash equilibrium.
- Theorem

For any mechanism (that satisfies order+unboundedness), the corresponding game has an equilibrium.

Equilibrium existence

- Equilibrium=Bayes Nash equilibrium.
- Theorem

For any mechanism (that satisfies order+unboundedness), the corresponding game has an equilibrium.

- Proof: There exists a $B>n$ such that $A(B, 0, \cdots, 0)>n$. [Unboundedness]

Equilibrium existence

- Equilibrium=Bayes Nash equilibrium.
- Theorem

For any mechanism (that satisfies order+unboundedness), the corresponding game has an equilibrium.

- Proof: There exists a $B>n$ such that $A(B, 0, \cdots, 0)>n$. [Unboundedness]
- If all $b_{j} \leq B$ then the optimal $b_{i} \leq B$.

Equilibrium existence

- Equilibrium=Bayes Nash equilibrium.
- Theorem

For any mechanism (that satisfies order+unboundedness), the corresponding game has an equilibrium.

- Proof: There exists a $B>n$ such that $A(B, 0, \cdots, 0)>n$. [Unboundedness]
- If all $b_{j} \leq B$ then the optimal $b_{i} \leq B$.
- Compare B to $B+\delta$: if the latter wins and the former loses, then the price is at least $x>n$, hence i will pay $>\frac{x}{n}>1$. [Max-report-payment]

Equilibrium existence

- Equilibrium=Bayes Nash equilibrium.
- Theorem

For any mechanism (that satisfies order+unboundedness), the corresponding game has an equilibrium.

- Proof: There exists a $B>n$ such that $A(B, 0, \cdots, 0)>n$. [Unboundedness]
- If all $b_{j} \leq B$ then the optimal $b_{i} \leq B$.
- Compare B to $B+\delta$: if the latter wins and the former loses, then the price is at least $x>n$, hence i will pay $>\frac{x}{n}>1$. [Max-report-payment]
- In the game with truncated report-sets $[0, B]$ there is an equilibrium-it is also an equilibrium in the original game.

The linear-proportional mechanism

The linear-proportional mechanism

- Bid aggregation: $A=\sum_{i=1}^{n} b_{i}$.

The linear-proportional mechanism

- Bid aggregation: $A=\sum_{i=1}^{n} b_{i}$.
- Cost sharing: $p_{i}\left(b_{1}, \cdots, b_{n}, x\right)=\frac{b_{i}}{\sum_{j=1}^{p_{j}} b_{j}} \cdot x$.

The linear-proportional mechanism

- Bid aggregation: $A=\sum_{i=1}^{n} b_{i}$.
- Cost sharing: $p_{i}\left(b_{1}, \cdots, b_{n}, x\right)=\frac{b_{i}}{\sum_{j=1}^{n_{j}} b_{j}} \cdot x$.
- G - uniform on $[0, M]$.

The linear-proportional mechanism

- Bid aggregation: $A=\sum_{i=1}^{n} b_{i}$.
- Cost sharing: $p_{i}\left(b_{1}, \cdots, b_{n}, x\right)=\frac{b_{i}}{\sum_{j=1}^{b_{j}} b_{j}} \cdot x$.
- G - uniform on $[0, M]$.
- Theorem

Suppose that $M \geq 2 n$. Then the linear-proportional model has a unique equilibrium. The equilibrium is symmetric: $\beta_{1}=\cdots=\beta_{n}=\beta^{S P A}$, where the bid function β is given by:

$$
\beta^{S P A}(\theta)=\max \{\theta-a, 0\}
$$

where a is the unique solution to:

$$
a=\frac{n-1}{n+1} \cdot\left(\int_{a}^{1} t f(t) d t+a F(a)\right)
$$

Properties, interpretation

Properties, interpretation

$$
\beta^{S P A}(\theta)=\max \{\theta-a, 0\}
$$

Properties, interpretation

$$
\beta^{S P A}(\theta)=\max \{\theta-a, 0\}
$$

- If $n=1$ then $a=0$: the weak dominance equilibrium of the standard (IPV) second-price auction.

Properties, interpretation

$$
\beta^{S P A}(\theta)=\max \{\theta-a, 0\}
$$

- If $n=1$ then $a=0$: the weak dominance equilibrium of the standard (IPV) second-price auction.
- Proposition

In the linear-proportional model, the equilibrium-expected-utility of a team member with type θ is:

$$
\pi^{*}(\theta)=\frac{1}{2 M} \cdot[2 \theta-\max \{\theta-a, 0\}] \cdot[2 a+\max \{\theta-a, 0\}] .
$$

Properties, interpretation

$$
\beta^{S P A}(\theta)=\max \{\theta-a, 0\}
$$

- If $n=1$ then $a=0$: the weak dominance equilibrium of the standard (IPV) second-price auction.
- Proposition

In the linear-proportional model, the equilibrium-expected-utility of a team member with type θ is:

$$
\pi^{*}(\theta)=\frac{1}{2 M} \cdot[2 \theta-\max \{\theta-a, 0\}] \cdot[2 a+\max \{\theta-a, 0\}] .
$$

- The team size n and type. dist. F only affects the cutoff a.
- $a_{n}=$ the cutoff a corresponding to a bidding team of size n.
- $a_{n}=$ the cutoff a corresponding to a bidding team of size n.
- Proposition

The cutoff a_{n} satisfies the following:

1. a_{n} is strictly increasing in n.
2. $\lim _{n \rightarrow \infty} a_{n}=1$.
3. $\left(\frac{n-1}{n+1}\right) \mathbb{E}(\theta) \leq a_{n}$ for all $n \geq 1$.

- $a_{n}=$ the cutoff a corresponding to a bidding team of size n.
- Proposition

The cutoff a_{n} satisfies the following:

1. a_{n} is strictly increasing in n.
2. $\lim _{n \rightarrow \infty} a_{n}=1$.
3. $\left(\frac{n-1}{n+1}\right) \mathbb{E}(\theta) \leq a_{n}$ for all $n \geq 1$.

- Proposition

Consider two copies of the model-one in which the type distribution is F and one in which it is H, where F first-order stochastically dominates H. Let a^{z} be the cutoff corresponding to $z \in\{F, H\}$. Then $a^{F} \geq a^{H}$.

- $\Pi^{*}(\theta)=$ the expected payoff under commitment and truthful reporting.
- $\Pi^{*}(\theta)=$ the expected payoff under commitment and truthful reporting.
- Proposition

$$
\lim _{n \rightarrow \infty} \frac{n \times \pi^{*}(\theta)}{\Pi^{*}(\theta)}=\frac{4}{\mathbb{E}(\theta)}
$$

Other formats

Other formats

- Proposition

Consider the linear-proportional mechanism with $n=2$. There exist F and G such that the "main equilibrium" is an equilibrium under the second-price format, but not under the first-price format.

Other formats

- Proposition

Consider the linear-proportional mechanism with $n=2$. There exist F and G such that the "main equilibrium" is an equilibrium under the second-price format, but not under the first-price format.

- Proposition

Consider the linear-proportional mechanisms with $n=2$, and where the regular bidder's type is uniform over $[0,1]$. Then:

1. Under the second-price format, the game has a symmetric equilibrium.
2. Under the all-pay format, the game has no symmetric equilibrium that is equivalent to a symmetric equilibrium of the second-price game.
3. Under the all-pay format, the game has equilibria with complete free riding.
4. Under the second-price format, the game has no equilibrium with complete free riding.

Future research

Future research

- Not an exogenous mechanism (A, p); instead, within-team negotiation;

Future research

- Not an exogenous mechanism (A, p); instead, within-team negotiation;
- Competition between multiple teams.

