Relaxing Instrument Exogeneity with Common Confounders
 IV with Mismeasured Confounders

Christian Tien

EEA ESEM 2023

August 30, 2023

Outline

Setup
Linear Example

Identification

Returns to Education

Semiparametric Estimation

Conclusion

Idea

Quantity of interest: Causal effect of treatment $A \quad \theta=\int Y(a) \pi(a) d \mu_{A}(a)$ on outcome Y.
A is endogenous (simultaneity, unobserved con$Y(a) \not \Perp A$ founders).
We want to use relevant instruments Z for A. $A(z) \neq A$
Instruments NOT unconditionally exogenous. $\quad Y(a) \not \Perp Z$

The unobserved common confounders U fully ex- $\quad Z \Perp W \mid U$ plain the association between Z and proxies W.
Instruments would be exogenous conditional on $\quad Y(a) \Perp Z \mid U$ the common confounders U.

IV

Figure: DAG of an IV model Assumption (IV Model)

1. SUTVA: $Y=Y(A, Z)$

2a. Instrument Exogeneity:
$Y(a, z)=Y(a) \Perp Z$.
2b. Instrument Relevance:
For any $g(A) \in L_{2}(A)$,
$\mathbb{E}[g(A) \mid Z]=0$ only if $g(A)=0$.

Unobservable Confounders U

Assumption (Confounded IV)
2a. Cond. Instrument Exogeneity:

$$
Y(a, z)=Y(a) \Perp Z \mid \mathbf{U}
$$

2c. Cond. Instrument Relevance:
For any $g(A, \mathbf{U}) \in L_{2}(A, \mathbf{U})$, $\mathbb{E}[g(A, \mathbf{U}) \mid Z]=0$ only if $g(A, \mathbf{U})=0$.

Proxies W for Unobservables U

Assumption (Confounded IV with relevant proxies)

Figure: Introducing proxies W

2a. Cond. Instrument Exogeneity:

$$
Y(a, z)=Y(a) \Perp Z \mid U .
$$

2c. Cond. Instrument Relevance:
For any $g(A, U) \in L_{2}(A, U)$, $\mathbb{E}[g(A, \mathbf{U}) \mid Z]=0$ only if $g(A, \mathbf{U})=0$.
3a. Proxy Exogeneity:

$$
W(z)=W \Perp Z \mid U
$$

3b. Proxy Relevance:
For any $g(U) \in L_{2}(U)$,
$\mathbb{E}[g(U) \mid W]=0$ only if $g(U)=0$.

Index Sufficiency

Figure: Focus on Z

Assumption (Confounded IV with rel. proxies and index sufficiency)
2a. Cond. Instrument Exogeneity:

$$
Y(a, z)=Y(a) \Perp Z \mid U
$$

2b. Index sufficiency: $U \Perp Z \mid T$ for some $T=\tau(Z)$.
2c. Cond. Instrument Relevance:
For any $g(A, T) \in L_{2}(A, T)$,
$\mathbb{E}[g(A, T) \mid Z]=0$ only if $g(A, T)=0$.
3a. Proxy Exogeneity:

$$
W(z)=W \Perp Z \mid U
$$

3b. Proxy Relevance:
For any $g(U) \in L_{2}(U)$,
$\mathbb{E}[g(U) \mid W]=0$ only if $g(U)=0$.

Block Backdoor Path

Figure: Retrieving standard IV model

Assumption 1.1
2a. Cond. Instrument Exogeneity:

$$
Y(a, z)=Y(a) \Perp Z \mid U
$$

2b. Index sufficiency: $U \Perp Z \mid T$ for some $T=\tau(Z)$.
2c. Cond. Instrument Relevance:
For any $g(A, T) \in L_{2}(A, T)$,
$\mathbb{E}[g(A, T) \mid Z]=0$ only if
$g(A, T)=0$.
3a. Proxy Exogeneity:
$W(z)=W \Perp Z \mid U$.
3b. Proxy Relevance:
For any $g(U) \in L_{2}(U)$,
$\mathbb{E}[g(U) \mid W]=0$ only if $g(U)=0$..

Related literature

- Instrumental Variables
- with linear separability of unobservables in the outcome model [Newey and Powell, 2003]
- for average structural function identification with strict monotonicity in the first stage reduced form [Imbens and Newey, 2009]
- Proximal learning
- General proximal learning [Deaner, 2018, Tchetgen Tchetgen et al., 2020, Cui et al., 2020]
- Control function approach [Nagasawa, 2018]
- Index sufficiency assumption
- on unobserved heterogeneity for average effect identification in panel data [Liu et al., 2021]
- Semiparametric estimation
- with nested nuisances [Chernozhukov et al., 2022]
- with nuisances as solutions to (possibly ill-posed) inverse problems [Bennett et al., 2023]

Linear Example

Equation

$Y=A \beta+W v_{Y}+U \gamma_{Y}+\varepsilon_{Y}$,
$A=Z \zeta+W v_{A}+U \gamma_{W}+\varepsilon_{A}$,
$Z=U_{\gamma_{z}}+\varepsilon_{Z}$,
$W=U_{\gamma} w+\varepsilon_{w}$,

Exogeneity

$$
\mathbb{E}\left[\varepsilon_{Y} Z\right]=\mathbf{0},
$$

$$
\mathbb{E}\left[\varepsilon_{W}^{\top} \varepsilon_{z}\right]=\mathbf{0},
$$

Relevance

$$
\begin{array}{r}
\operatorname{rank}\left(\mathbb{E}\left[A^{\top} Z \mid T\right]\right)=d_{A} \\
\operatorname{rank}\left(\gamma_{Z}\right)=d_{U}<d_{Z}, \\
\operatorname{rank}\left(\gamma_{W}\right)=d_{u} \leq d_{W}
\end{array}
$$

3SLS procedure I

1. Reduced form (rank-restricted) regression of W on Z :
$1.1 d_{U}$ known: With appropriate normalisation of $\delta_{W U}$,

$$
\begin{aligned}
\underbrace{W}_{N \times d_{W}} & =\underset{N \times d_{Z} d_{Z} \times d_{U} d_{U} \times d_{W}}{Z} \delta_{Z U} \delta_{W}^{\top} \\
\qquad\left(\hat{\delta}_{Z U}, \hat{\delta}_{W U}\right) & =\arg \min _{\left(\delta_{Z U}, \delta_{W U}\right)} \sum_{j=1}^{d_{W}} \sum_{i=1}^{N}\left(w_{i, j}-z_{i}^{\top} \delta_{Z U} \delta_{W U, j}^{\top}\right)^{2} \\
\text { If } d_{W}=d_{U}, \hat{\delta}_{Z U} & =\left(Z^{\top} Z\right)^{-1} Z_{Z}^{\top} W(\mathrm{OLS}) .
\end{aligned}
$$

$1.2 d_{U}$ unknown:
U are the set of unobserved variables explaining all correlation between W and Z.

- If $d_{u} \geq \min \left\{d_{w}, d_{z}\right\}$, then $\operatorname{rank}\left(\mathbb{E}\left[w_{i} z_{i}^{\top}\right]\right)=\min \left\{d_{w}, d_{z}\right\}$.
- If $d_{u}<\min \left\{d_{w}, d_{z}\right\}$, then $d_{u}=\operatorname{rank}\left(\mathbb{E}\left[w_{i} z_{i}^{\top}\right]\right)$.

3SLS procedure II

A test for a sufficient (not necessary) condition of W 's relevance for U (and necessary condition for Z 's relevance for A given T) [Chen and Fang, 2019] is

$$
\begin{aligned}
& H_{0}: \operatorname{rank}\left(\mathbb{E}\left[w_{i} z_{i}^{\top}\right]\right) \leq r_{0}<\min \left\{d_{W}, d_{z}\right\} \text { vs } \\
& H_{1}: \operatorname{rank}\left(\mathbb{E}\left[w_{i} z_{i}^{\top}\right]\right)>r_{0} .
\end{aligned}
$$

Reject H_{0} for $r_{0}=\min \left\{d_{w}, d_{z}\right\}-1$:

- If $d_{Z}<d_{W}: d_{U} \geq d_{Z}$, so Z never relevant for A given T.
- If $d_{W}<d_{Z}: d_{U} \geq d_{W}$, so either W just-relevant for $U\left(d_{W}=d_{U}\right)$, or W not relevant for $U\left(d_{W}<d_{U}\right)$. Both are observationally equivalent.
If H_{0} not rejected: Proceed with $d_{U}=r_{0}$ in step 1.1.

3SLS procedure III

2. Reduced form OLS regression of A on any subset of instruments Z_{0} of dimension $N \times\left(d_{Z}-d_{U}\right)$ and T, W.

$$
\underset{N \times d_{A}}{A}=\underset{N \times\left(d_{Z}-d_{U}\right)\left(d_{Z}-d_{U}\right) \times d_{A}}{Z_{0}}+\underset{N \times d_{U d_{U} \times d_{A}}^{T}}{\delta_{T A}}+\underset{N \times d_{W} d_{W} \times d_{A}}{W}+\epsilon_{A}
$$

Test of relevance of Z for A given T is an underidentification test [Windmeijer, 2021]:

$$
H_{0}: \operatorname{rank}\left(\delta_{Z_{0} A}\right)<d_{A} \text { vs } H_{1}: \operatorname{rank}\left(\delta_{Z_{0} A}\right)=d_{A}
$$

Reject $H_{0}: Z$ is relevant for A given T.

3SLS procedure IV

3. Outcome OLS regression of Y on exogenous variation in A $\left(Z_{0} \hat{\delta}_{Z_{0} A}\right)$, and T, W.

$$
\underset{N \times 1}{Y}=\underset{N \times d_{A}}{\left(Z_{0} \hat{\delta}_{Z_{0} A}\right)} \underset{d_{A} \times d_{1}}{\delta_{A Y}}+\underset{N \times d_{U d_{U} \times 1}^{T}}{\delta_{T Y}}+\underset{N \times d_{W} d_{W} \times 1}{W} \underset{W Y}{ }+\epsilon_{Y}
$$

Consistent estimator of $\beta: \hat{\delta}_{A Y}$. Closed form expression:

$$
\begin{aligned}
\hat{\delta}_{A Y}= & \left(Z_{0}^{\top} M_{T} Z_{0}\right)^{-1}\left(Z_{0}^{\top} M_{T} Y\right) \\
M_{T}= & I-Z\left(Z^{\top} Z\right)^{-1}\left[Z^{\top} W\right]_{\mathrm{rr}} \\
& \left(\left[W^{\top} Z\right]_{\mathrm{rr}}\left(Z^{\top} Z\right)^{-1}\left[Z^{\top} W\right]_{\mathrm{rr}}\right)^{-1}\left[W^{\top} Z\right]_{\mathrm{rr}}\left(Z^{\top} Z\right)^{-1} Z^{\top} \\
{\left[Z^{\top} W\right]_{\mathrm{rr}}:=} & Z^{\top} Z \hat{\delta}_{Z U}{ }^{\text {if }\left\{d_{W}=d U\right\}}=Z^{\top} W
\end{aligned}
$$

Intuition for relevance requirements

1. $\operatorname{rank}\left(\gamma_{W}\right)=d_{U} \leq d_{W}$ ensures that $\mathbb{E}_{\mathrm{L}}[U \mid Z]$ and $\mathbb{E}_{\mathrm{L}}[W \mid Z]$ are proportional. Keep $\mathbb{E}_{\mathrm{L}}[U \mid Z]$ fixed by keeping $\mathbb{E}_{\mathrm{L}}[W \mid Z]$ fixed (via $T)$.

Intuition for relevance requirements

1. $\operatorname{rank}\left(\gamma_{W}\right)=d_{U} \leq d_{W}$ ensures that $\mathbb{E}_{\mathrm{L}}[U \mid Z]$ and $\mathbb{E}_{\mathrm{L}}[W \mid Z]$ are proportional. Keep $\mathbb{E}_{\mathrm{L}}[U \mid Z]$ fixed by keeping $\mathbb{E}_{\mathrm{L}}[W \mid Z]$ fixed (via $T)$.
2. $\mathbb{E}\left[A^{\top} Z \mid T\right]=d_{A}$: Use remaining variation in Z to instrument for A while keeping $\mathbb{E}_{\mathrm{L}}[U \mid Z]$ fixed (via T). Requires $\left(d_{Z}-d_{U}\right) \geq d_{A}$.

Obtaining a valid control function T

Lemma 3.0.1
Assume $W \Perp Z \mid U$ (3a). Take any $\tau \in L_{2}(Z)$, where $T:=\tau(Z)$, such that $U \Perp Z \mid T$. Then, also $W \Perp Z \mid T$.

Obtaining a valid control function T

Lemma 3.0.1
Assume $W \Perp Z \mid \cup(3 a)$. Take any $\tau \in L_{2}(Z)$, where $T:=\tau(Z)$, such that $U \Perp Z \mid T$. Then, also $W \Perp Z \mid T$.

Lemma 3.0.2
Assume $W \Perp Z \mid U(3 a)$, and for any $g(U) \in L_{2}(U), \mathbb{E}[g(U) \mid W]=0$ only when $g(U)=0$ (3b). Take any $\tau \in L_{2}(Z)$, where $T:=\tau(Z)$, such that $W \Perp Z \mid T$. Then, also $U \Perp Z \mid T$.

Linearly separable outcome model

Assumption 3.1
There exists some function $k_{0} \in L_{2}(A)$ such that

$$
\begin{equation*}
Y=Y(A)=k_{0}(A)+\varepsilon, \quad \mathbb{E}[\varepsilon \mid Z, U]=\mathbb{E}[\varepsilon \mid U] . \tag{1}
\end{equation*}
$$

Theorem 3.1
Let assumptions (2b/2c/3a/3b) and 3.1 hold. Any $h \in \mathcal{L}_{2}(A, T)$ for which $\mathbb{E}[Y \mid Z]=\mathbb{E}[h(A, T) \mid Z]$, satisfies $h(A, T)=k_{0}(A)+\mathbb{E}[\varepsilon \mid T]$. Consequently, $\theta:=\int_{\mathcal{A}} Y(a) \pi(a) \mathrm{d} \mu_{A}(a)=\mathbb{E}_{\mathcal{T}}\left[\int_{\mathcal{A}} h(a, T) \pi(a) \mathrm{d} \mu_{A}(a)\right]$.

A simple plug-in estimator would be the empirical equivalent $\hat{\theta}=\mathbb{E}_{\mathcal{T}, n}\left[\int_{\mathcal{A}} \hat{h}(a, T) \pi(a) \mathrm{d} \mu_{A}(a)\right]$.

First stage monotonicity

Assumption 3.2 (Monotonicity)

$$
\begin{equation*}
A=h(Z, \eta) \tag{2}
\end{equation*}
$$

1. $h(Z, \eta)$ is strictly monotonic in η with probability 1 .
2. η is a continuously distributed scalar with a strictly increasing conditional CDF $F_{\eta \mid U}$ on the conditional support of η.
3. $Z \Perp \eta \mid U$.

Disturbance conditional on T

Lemma 3.1.1

$$
F_{\eta \mid T}:=\int_{\mathcal{U}} F_{A \mid Z, U}(A, Z, u) f_{U \mid T}(u, T) \mathrm{d} \mu_{U}(u)
$$

is a strictly increasing CDF on the conditional support of η, and $Z \Perp \eta \mid T$.

Conditional unconfoundedness

Theorem 3.2
Let

$$
\begin{equation*}
V:=F_{A \mid Z}(A, Z) \tag{3}
\end{equation*}
$$

Under assumption 3.2, $V=F_{\eta \mid T}(\eta)$, and

$$
\begin{equation*}
A \Perp Y(a) \mid(V, T), \text { for all } a \in \mathcal{A} \tag{4}
\end{equation*}
$$

Average structural function identification

Assumption 3.3 (Common Support)

For all a $\in \mathcal{A}$, the support of (V, T) equals the support of (V, T) conditional on A.

Theorem 3.3
Suppose (2a/2b/3a/3b) [relaxed IV model], 3.2 [monotonicity], and 3.3 [common support] hold. Then, $\theta:=\int_{\mathcal{A}} Y(a) \pi(a) \mathrm{d} \mu_{\mathcal{A}}(a)$ is identified by

$$
\theta=\mathbb{E}_{\mathcal{V}, \mathcal{T}}\left[\int_{\mathcal{A}} \mathbb{E}[Y \mid A=a,(V, T)=(v, t)] \pi(a) \mathrm{d} \mu_{A}(a)\right] .
$$

NLS97 Data

Y Household net worth at 35: continuous, in USD
A BA degree: 1 if BA degree obtained, 0 otherwise

NLS97 Data

Y Household net worth at 35: continuous, in USD
A BA degree: 1 if BA degree obtained, 0 otherwise
Z Pre-college test results: subject GPA, ASVAB percentile
W Risky behaviour dummies: dummies for whether i drank (etc) by 17

NLS97 Data

Y Household net worth at 35: continuous, in USD
A BA degree: 1 if BA degree obtained, 0 otherwise
Z Pre-college test results: subject GPA, ASVAB percentile
W Risky behaviour dummies: dummies for whether i drank (etc) by 17
U Ability: Unmeasured intellectual capacity

- Other biases: Selection on unobservables into obtaining BA degree (at least partly result of individual optimisation)

NLS97 Data

Y Household net worth at 35: continuous, in USD
A BA degree: 1 if BA degree obtained, 0 otherwise
Z Pre-college test results: subject GPA, ASVAB percentile
W Risky behaviour dummies: dummies for whether i drank (etc) by 17
U Ability: Unmeasured intellectual capacity

- Other biases: Selection on unobservables into obtaining BA degree (at least partly result of individual optimisation)
X Covariates: sex, college GPA, parental education/net worth, siblings, region, etc

Assumption 4.1

1. Linear model:

2a. Cond. Instr. Exogeneity:
2c. Cond. Instr. Relevance:

$$
\begin{aligned}
& A=\alpha_{A}+Z \zeta+U \gamma_{A}+W v_{A}+X \eta_{A}+\varepsilon_{A} \\
& \operatorname{rank}(\mathbb{E}[(Z \zeta) A \mid \mathbb{E}[W \mid Z, X], X])=d_{A} .
\end{aligned}
$$

3a. Proxy Exogeneity:

$$
W=\alpha_{W}+U \gamma_{W}+X \eta_{W}+\varepsilon_{W}, \quad \mathbb{E}\left[\varepsilon_{W}^{\top} Z\right]=0 .
$$

$$
\operatorname{rank}\left(\gamma_{w}\right)=d_{u} \leq d_{w}
$$

$$
\Longrightarrow \beta=\frac{\mathbb{E}[(Z \zeta) Y \mid \mathbb{E}[W \mid Z, X], X]}{\mathbb{E}[(Z \zeta) A \mid \mathbb{E}[W \mid Z, X], X]}
$$

1. Find T and test relevance of Z, W for $U I$

- Linear projection

$$
\begin{aligned}
\mathbb{E}[U \mid Z, X] & =Z \gamma_{Z}+X \gamma_{X} \\
\mathbb{E}[W \mid Z, X] & =\tilde{\alpha}_{W}+Z \gamma_{Z} \gamma_{W}+X \tilde{\eta}_{W}
\end{aligned}
$$

- Hypothesis test: For some $r<\min \left\{d_{Z}, d_{W}\right\}$,

$$
H_{0}: \operatorname{rank}\left(\gamma_{z} \gamma_{W}\right) \leq r, \text { vs } H_{1}: \operatorname{rank}\left(\gamma_{z} \gamma_{W}\right)>r .
$$

If H_{0} true, can hold anything correlating Z and W fixed.

- Normalisation by singular value decomposition:

$$
\begin{aligned}
& \gamma_{Z} \gamma_{W}=\underset{d_{Z} \times d_{Z} d_{Z} \times d_{W} d_{W} \times d_{W}}{P_{0}} \prod_{0} \quad Q_{0}^{\top} \stackrel{\text { if } \left.H_{0} \text { true }\right\}}{=} \underset{\substack{P_{0,1} \Pi_{0,1} \\
d_{Z} \times r r \times r}}{ } Q_{0,1}^{\top} \\
& \Longrightarrow \underset{n \times r}{T}=\underset{n \times d_{Z}}{Z} P_{d_{Z} \times r} P_{0,1} \Pi_{0}
\end{aligned}
$$

1. Find T and test relevance of Z, W for U II

- Equivalent test: For some $r<\min \left\{d_{Z}, d_{W}\right\}$,

$$
H_{0}: \phi_{r}\left(\gamma_{z} \gamma_{w}\right)=0, \text { vs } H_{1}: \phi_{r}\left(\gamma_{z} \gamma_{w}\right)>0,
$$

where $\phi_{r}(A):=\sum_{j>r} \pi_{j}^{2}(A)$ (sum of $(r+1)$-th to smallest singular value squared).

1. Find T and test relevance of Z, W for U III

- $\operatorname{rank}\left(\gamma_{Z} \gamma_{W}\right)=1$: one-dimensional U explains correlation between Z, W.

2. Test relevance of Z for A given T

- Construct control function: $\underset{n \times 1}{T}=\underset{n \times d_{Z_{d}} \times 1}{Z} \hat{P}_{0,1} \hat{\pi}_{1}$
- Compare restricted and unrestricted R^{2} :

$$
\begin{align*}
& A=\tilde{\alpha}_{A, u r}+Z \tilde{\zeta}+X \tilde{\eta}_{A, u r}+\tilde{\varepsilon}_{A, u r} \Longrightarrow R_{u r}^{2} \tag{5}\\
& A=\tilde{\alpha}_{A, r}+T \tilde{\gamma}_{A}+X \tilde{\eta}_{A, r}+\tilde{\varepsilon}_{A, r} \Longrightarrow R_{r}^{2} \tag{6}
\end{align*}
$$

Hypothesis test:

$$
H_{0}: R_{r}^{2}=R_{u r}^{2} \text {, vs } H_{1}: R_{r}^{2}<R_{u r}^{2} .
$$

Bootstrap distribution of R_{r}^{2}

3. Exogeneity of Z conditional on U I

$$
\begin{aligned}
Y=\alpha_{Y}+A \beta+U \gamma_{Y}+ & W v_{Y}+X \eta_{Y}+\varepsilon_{Y} \\
& \mathbb{E}\left[\varepsilon_{Y}^{T}(Z, X)\right]=0
\end{aligned}
$$

- Untestable in this just-identified model
- Does T reflect the hypothesised confounder ability?

Table: Construction of $\hat{T}=Z \hat{P}_{0,1} \hat{\Pi}_{0,1}$ (normalised to $\sigma(\hat{T})=1$)

	GPA				ASVAB
	English	Math	SocSci	LifeSci	percentile
\hat{T}	0.574	0.213	0.282	0.212	-0.278

- Weighted subject-GPA describes 94.4% of \hat{T}.
- Seems to reflect overall GPA and thus general ability.

3. Exogeneity of Z conditional on U II

Table: Effect of normalised \hat{T} on W

	drink	smoke	try marijuana	run away	attack someone
\hat{T}	-0.071	-0.093	-0.101	-0.054	-0.093
Pr	0.653	0.468	0.296	0.106	0.189
		sell	destroy	steal	steal
		drugs	property	$<50 \$$	$>50 \$$
\hat{T}		-0.052	-0.051	-0.051	-0.036
Pr		0.089	0.320	0.379	0.079

- One standard-deviation increase in \hat{T} significantly reduces risky behaviour.
- Expected for confounder ability.

4. Estimation

$$
\begin{aligned}
\hat{\beta}_{\mathrm{OLS}} & =\left(A^{\top} M_{W, X} A\right)^{-1}\left(A^{\top} M_{W, X} Y\right) \\
\hat{\beta}_{\mathrm{PL}} & =\left(A^{\top} M_{\hat{\hat{}}, X} A\right)^{-1}\left(A^{\top} M_{\hat{T}, X} Y\right)
\end{aligned}
$$

where \hat{T} is constructed from the correlation of (A, Z) and W.

$$
\begin{gathered}
\hat{\beta}_{\mathrm{IV}}=\left(A^{\top} P_{Z} M_{W, X} A\right)^{-1}\left(A^{\top} P_{Z} M_{W, X} Y\right) \\
\hat{\beta}_{\mathrm{ICC}}=\left(A^{\top} P_{Z} M_{\hat{T}, X} A\right)^{-1}\left(A^{\top} P_{Z} M_{\hat{T}, X} Y\right),
\end{gathered}
$$

where \hat{T} is constructed from the correlation of Z and W.

Notation: Projection $P_{X}=X\left(X^{\top} X\right)^{-1} X^{\top}$ and annihilator $M_{X}=I-P_{X}$.
Note: $\underset{n \times r}{\hat{T}}=\underset{n \times d_{Z^{\prime}} \times{ }_{d_{Z} \times r} \times r}{Z} \hat{P}_{0,1} \hat{\Pi}_{0}$ is a dimension-reduced projection of Z on W,

$$
\text { because } \underset{d_{Z} \times d_{Z} d_{Z} \times d_{w} d_{w} \times d_{W}}{\hat{Q}_{0}} \underset{\hat{Q}_{0}^{\top}}{\hat{\Pi}_{1}^{\top}}=\left(Z^{\top} M_{X} Z\right)^{-1}\left(Z^{\top} M_{X} W\right) \text {. }
$$

Results

Table: Estimates with different estimators (NLS97 data, $n=1,890$)

	OLS	PL	IV	ICC
A	59,173	33,799	204,578	122,665
	$(9,542)$	$(10,765)$	$(34,265)$	$(49,138)$
\hat{T}		27,879		15,829
		$(5,415)$		$(7,613)$

- Positive ability bias (was ambiguous).
- Negative general selection bias (as expected).
- Standard error increases about 40% in ICC compared to IV.

Generalised setting

For all $k_{0}\left(\tau_{0}, g_{0}\right) \in \mathcal{K}_{0}\left(\tau_{0}, g_{0}\right)$, and $\tau_{0}\left(g_{0}\right) \in \mathcal{T}_{\text {valid }}\left(g_{0}\right) \subset \mathcal{T}_{\text {exog }}\left(g_{0}\right)$,

$$
\begin{aligned}
\theta_{0} & =\mathbb{E}\left[m\left(O ; k_{0}\left(\tau_{0}, g_{0}\right)\right)\right], \\
\mathcal{K}_{0}(\tau, g) & :=\{k \in \mathcal{K}: \mathbb{E}[k(A ; \tau, g) \mid Z]=g(Z)-\tau(Z)\} \\
\mathcal{T}_{\text {exog }}(g) & :=\{\tau \in \mathcal{T}: \mathbb{E}[g(Z) \mid W]=\mathbb{E}[\tau(Z) \mid W]\} \\
g_{0}(Z) & :=\mathbb{E}[Y \mid Z]
\end{aligned}
$$

Generalised setting

For all $k_{0}\left(\tau_{0}, g_{0}\right) \in \mathcal{K}_{0}\left(\tau_{0}, g_{0}\right)$, and $\tau_{0}\left(g_{0}\right) \in \mathcal{T}_{\text {valid }}\left(g_{0}\right) \subset \mathcal{T}_{\text {exog }}\left(g_{0}\right)$,

$$
\begin{aligned}
\theta_{0} & =\mathbb{E}\left[m\left(O ; k_{0}\left(\tau_{0}, g_{0}\right)\right)\right], \\
\mathcal{K}_{0}(\tau, g) & :=\{k \in \mathcal{K}: \mathbb{E}[k(A ; \tau, g) \mid Z]=g(Z)-\tau(Z)\} \\
\mathcal{T}_{\text {exog }}(g) & :=\{\tau \in \mathcal{T}: \mathbb{E}[g(Z) \mid W]=\mathbb{E}[\tau(Z) \mid W]\} \\
g_{0}(Z) & :=\mathbb{E}[Y \mid Z]
\end{aligned}
$$

Problems:

- Nested dependence of nuisance functions [Chernozhukov et al., 2022]
- Weak identification of nuisance functions: Non-uniqueness and ill-posedness [Bennett et al., 2023]

Continuous linear functionals

Assume that $k \mapsto \mathbb{E}[m(O ; k)]$ for $k \in \mathcal{K}$ is a continuous linear functional over \mathcal{K}, such that by the Riesz representation theorem

$$
\begin{equation*}
\mathbb{E}\left[m_{0}(O ; k)\right]=\mathbb{E}\left[\alpha_{k, 0}(A) k(A)\right] \forall k \in \mathcal{K} . \tag{7}
\end{equation*}
$$

Strong instrument relevance

Define the linear operator $P_{\mathcal{L}_{2}(Z)}^{A, \mathcal{K}}$ and its adjoint $P_{A, \mathcal{K}}^{\mathcal{L}_{2}(Z)}$ (where Π is the projection operator):

$$
\begin{aligned}
{\left[P_{\mathcal{L}_{2}(Z)}^{A, \mathcal{K}} k\right](Z) } & :=\mathbb{E}[k(A) \mid Z] \\
{\left[P_{A, \mathcal{K}}^{\mathcal{L}_{2}(Z)} q_{k}\right](A) } & :=\Pi_{\mathcal{K}} \mathbb{E}\left[q_{k}(Z) \mid A\right]=\Pi_{\mathcal{K}} q_{k}(Z) \mid A
\end{aligned}
$$

Assumption 5.1 (Strong instrument relevance)

$$
\alpha_{k, 0} \in \mathcal{N}^{\perp}\left(P_{A, \mathcal{K}}^{\mathcal{L}_{2}(Z)} P_{\mathcal{L}_{2}(Z)}^{A, \mathcal{K}}\right) \text {, i.e. }
$$

$$
\begin{equation*}
\Xi_{k, 0} \neq \emptyset \text {, where } \quad \Xi_{k, 0}:=\arg \min _{\xi_{k} \in \mathcal{K}}\left(\frac{1}{2} \mathbb{E}\left[\mathbb{E}\left[\xi_{k}(A) \mid Z\right]^{2}\right]-\mathbb{E}\left[m_{0}\left(O ; \xi_{k}\right)\right]\right) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
=\left\{\xi_{k} \in \mathcal{K}: P_{A, \mathcal{K}}^{\mathcal{L}_{2}(Z)} P_{\mathcal{L}_{2}(Z)}^{A, \mathcal{K}} \xi_{k}=\alpha_{k, 0}\right\} . \tag{9}
\end{equation*}
$$

Implied restrictions on the function space \mathcal{K}_{0}

Strong instrument relevance as stated in 5.1 requires the remaining variation in Z to be relevant enough with respect to outcome-relevant variation in treatment A after integrating out any of the outcome-relevant variation in A associated with the endogenous variation $\tau(Z)$.

$$
\begin{aligned}
& \mathcal{K} \times \mathcal{T}=\{(k, \tau):(\mathbb{E}[k(A) \mid Z]=g(Z)-\tau(Z)) \\
&\wedge(\mathbb{E}[g(Z) \mid W]=\mathbb{E}[\tau(Z) \mid W]) \forall g \in \mathcal{G}\} \\
& \mathcal{K}_{0} \times \mathcal{T}_{\text {exog }}=\left\{(k, \tau):\left(\mathbb{E}[k(A) \mid Z]=g_{0}(Z)-\tau(Z)\right)\right. \\
&\left.\wedge\left(\mathbb{E}\left[g_{0}(Z) \mid W\right]=\mathbb{E}[\tau(Z) \mid W]\right)\right\}
\end{aligned}
$$

Debiasing step 1

Debiased moment wrt k :

$$
\begin{aligned}
& m_{1}\left(O ; k, \tau, g, q_{k}\right)=m_{0}(O ; k)+q_{k}(Z)(g(Z)-\tau(Z)-k(A ; \tau, g)) \\
& \mathcal{Q}_{k}:=\left\{q_{k} \in \mathcal{L}_{2}(Z): q_{k}(Z)=\mathbb{E}\left[\xi_{k}(A) \mid Z\right] \forall \xi_{k} \in \mathcal{K}\right\} \\
& \mathcal{Q}_{k, 0}:=\left\{q_{k} \in \mathcal{L}_{2}(Z): q_{k}(Z)=\mathbb{E}\left[\xi_{k, 0}(A) \mid Z\right] \forall \xi_{k, 0} \in \Xi_{k, 0}\right\}
\end{aligned}
$$

Debiasing step 2

Debiased moment wrt k and τ :

$$
\begin{aligned}
& m_{2}\left(O ; k, \tau, g, q_{k}, q_{\tau}\right)=m_{1}\left(O ; k, \tau, g, q_{k}\right)+q_{\tau}\left(W ; q_{k}\right)(\tau(Z)-g(Z)) \\
& \mathcal{Q}_{\tau}\left(q_{k}\right):=\left\{q_{\tau} \in \mathcal{L}_{2}(W): q_{\tau}=\mathbb{E}\left[\xi_{\tau}\left(Z ; q_{k}\right) \mid W\right], \forall \xi_{\tau}\left(q_{k}\right) \in \mathcal{T}, q_{k} \in \mathcal{Q}_{k}\right\} \\
& \mathcal{Q}_{\tau, 0}\left(q_{k}\right):=\left\{q_{\tau} \in \mathcal{L}_{2}(W): q_{\tau}=\mathbb{E}\left[\xi_{\tau, 0}\left(Z ; q_{k}\right) \mid W\right], \forall \xi_{\tau, 0}\left(q_{k, 0}\right) \in \Xi_{\tau, 0}\left(q_{k}\right), q_{k} \in \mathcal{Q}_{k}\right\} \\
& \Xi_{\tau, 0}\left(q_{k}\right):=\arg \min _{\xi_{\tau}\left(q_{k}\right) \in \mathcal{T}}\left(\frac{1}{2} \mathbb{E}\left[\mathbb{E}\left[\xi_{\tau}\left(Z ; q_{k}\right) \mid W\right]^{2}\right]-\mathbb{E}\left[q_{k}(Z) \xi_{\tau}\left(Z ; q_{k}\right)\right]\right) .
\end{aligned}
$$

For this step, use that a continuous linear functional in τ is always strongly identified in this setting (see paper on arxiv Theorem 4).

Debiasing step 3

Debiased moment wrt k, τ, and g :

$$
\begin{aligned}
& m_{3}\left(O ; k, \tau, g, q_{k}, q_{\tau}, \alpha_{g}\right)=m_{2}\left(O ; k, \tau, g, q_{k}, q_{\tau}\right)+\alpha_{g}\left(Z ; q_{k}, q_{\tau}\right)(Y-g(Z)) \\
& \Xi_{g, 0}\left(q_{k}, q_{\tau}\right):=\arg \min _{\xi_{g}\left(q_{k}, q_{\tau}\right) \in \mathcal{L}_{2}(Z)}(\left(\frac{1}{2} \mathbb{E}\left[\xi_{g}\left(Z ; q_{k}, \boldsymbol{q}_{\tau}\right)^{2}\right]\right. \\
&\left.-\mathbb{E}\left[\left(q_{k}(Z)-q_{\tau}\left(W ; q_{k}\right)\right) \xi_{g}\left(Z ; q_{k}, \boldsymbol{q}_{\tau}\right)\right]\right) .
\end{aligned}
$$

Each debiased moment identifies θ

Lemma 5.0.1

Assume $\theta_{0}=\mathbb{E}\left[m_{0}\left(O ; k_{0}\left(\tau_{0}, g_{0}\right)\right)\right]$ and 5.1. Then,

$$
\begin{aligned}
\theta_{0}=\mathbb{E}\left[m_{0}\left(O ; k_{0}\right)\right] & =\mathbb{E}\left[m_{1}\left(O ; k_{0}, \tau_{0}, g_{0}, q_{k, 0}\right)\right] \\
& =\mathbb{E}\left[m_{2}\left(O ; k_{0}, \tau_{0}, g_{0}, q_{k, 0}, q_{\tau, 0}\right)\right] \\
& =\mathbb{E}\left[m_{3}\left(O ; k_{0}, \tau_{0}, g_{0}, q_{k, 0}, q_{\tau, 0}, \alpha_{g, 0}\right)\right] .
\end{aligned}
$$

Each of m_{j} for $j \in\{1,2,3\}$ identify θ_{0} because in each consecutive debiasing step a conditionally mean-zero term is added to the previous moment.

Robustness of final debiased moment

Theorem 5.1 (Robust error decomposition)
Suppose $\theta_{0}=\mathbb{E}\left[m_{0}\left(O ; k_{0}\left(\tau_{0}, g_{0}\right)\right)\right]$, assumption 5.1, and the conditions for theorem ?? hold for $q=q_{\tau}$. Then,

$$
\begin{aligned}
\mathbb{E} & {\left[m_{3}\left(O ; k, \tau, g, q_{k}, q_{\tau}, \alpha_{g}\right)\right]-\theta_{0} } \\
= & \mathbb{E}\left[\left(q_{k, 0}(Z)-q_{k}(Z)\right)\left(k(A ; \tau, g)-k_{0}\left(A ; \tau_{0}, g_{0}\right)\right)\right] \\
& +\mathbb{E}\left[\left(q_{\tau, 0}\left(W ; q_{k}\right)-q_{\tau}\left(W ; q_{k}\right)\right)\left(\tau_{0}\left(Z ; g_{0}\right)-\tau(Z ; g)\right)\right] \\
& +\mathbb{E}\left[\left(\alpha_{g, 0}\left(Z ; q_{k}, q_{\tau}\right)-\alpha_{g}\left(Z ; q_{k}, q_{\tau}\right)\right)\left(g(Z)-g_{0}(Z)\right)\right] .
\end{aligned}
$$

Double robustness, Neyman orthogonality, and an error decomposition in terms of projections on more favourable subspaces (circumventing ill-posedness problems) follow.

Conclusion

- Identification approach between IV and proximal learning
- Allows some endogeneity in instruments, as long as relevant proxies exist for the unobserved causes of instrument endogeneity
- Motivated by traditional economic identification problems with self-selection into treatment (returns to education)
- Semiparametric estimation with \sqrt{n}-rates possible under assumptions on nuisance convergence rates in terms of more favourable projected errors (circumvents potential ill-posedness of inverse problems)

THANK YOU

ARXIV 2301.02052
ct493@cam.AC.UK

Appendix

Proximal Learning [Tchetgen Tchetgen et al., 2020]

Figure: Proximal learning

Assumption (Proximal learning)
2. Cond. Exogeneity of action and its aligned proxy:
$Y(a, z)=Y(a) \Perp(A, Z) \mid U$.
3. Relevance of both proxies:

For any $g(U) \in L_{2}(U)$,
$\mathbb{E}[g(U) \mid Z]=0$ only if $g(U)=0$,
$\mathbb{E}[g(U) \mid W]=0$ only if $g(U)=0$.
4. Exogeneity of outcome-aligned proxies:

$$
W(a, z)=W \Perp(A, Z) \mid U
$$

Relaxations compared to proximal learning

Assumption

Figure: Proximal learning
2a. Cond. Exogeneity of action-aligned proxy:

$$
Y(a, z)=Y(a) \Perp Z \mid U .
$$

3a. Proxy Exogeneity: $W(z)=W \Perp Z \mid U$.
3b. Relevance of outcome-aligned proxy:
For any $g(U) \in L_{2}(U)$,
$\mathbb{E}[g(U) \mid W]=0$ only if $g(U)=0$.

Additional assumptions compared to proximal learning

Assumption

2a. Cond. Instrument Exogeneity:
$Y(a, z)=Y(a) \Perp Z \mid U$.
2b. Index sufficiency: $U \Perp Z \mid T$ for some $T=\tau(Z)$.
2c. Cond. Instrument Relevance:
For any $g(A, T) \in L_{2}(A, T)$,
$\mathbb{E}[g(A, T) \mid Z]=0$ only if $g(A, T)=0$.
3a. Proxy Exogeneity:
$W(z)=W \Perp Z \mid U$.
3b. Relevance of outcome-aligned proxy:
For any $g(U) \in L_{2}(U)$,
$\mathbb{E}[g(U) \mid W]=0$ only if $g(U)=0$.

The obvious

Lemma 8.0.1

Assume $W \Perp Z \mid U(3 a)$. Take any $\tau \in L_{2}(Z)$, where $T:=\tau(Z)$, such that $U \Perp Z \mid T$. Then, also $W \Perp Z \mid T$.

The obvious

Lemma 8.0.1
Assume $W \Perp Z \mid \cup$ (3a). Take any $\tau \in L_{2}(Z)$, where $T:=\tau(Z)$, such that $U \Perp Z \mid T$. Then, also $W \Perp Z \mid T$.

$$
\begin{aligned}
f_{W, Z \mid T} & (W, Z \mid T) \\
& =\int_{U} \underbrace{f_{W \mid Z, U, T}(W \mid Z, u, T)}_{=f_{W \mid U}(W \mid u)} \underbrace{f_{Z \mid U, T}(Z \mid u, T)}_{=f_{\mid I T}(Z \mid T)} f_{U \mid T}(u, T) \mathrm{d} \mu_{U}(u) \\
& =f_{Z \mid T}(Z \mid T) \underbrace{\int_{U} f_{W \mid U}(W \mid u) f_{U \mid T}(u, T) \mathrm{d} \mu_{U}(u)}_{f_{W \mid T}(W \mid T)} \Longrightarrow W \Perp Z \mid T
\end{aligned}
$$

The slightly less obvious I

Lemma 8.0.2
Assume $W \Perp Z \mid U(3 a)$, and for any $g(U) \in L_{2}(U), \mathbb{E}[g(U) \mid W]=0$ only when $g(U)=0$ (3b). Take any $\tau \in L_{2}(Z)$, where $T:=\tau(Z)$, such that $W \Perp Z \mid T$. Then, also $U \Perp Z \mid T$.

The slightly less obvious II

Write $f_{W \mid Z}(W, Z)$ in two separate ways using T and relate them.

1. $f_{W \mid Z}(W, Z)=\int_{\mathcal{U}} f_{W \mid U}(W \mid u) f_{U \mid Z}(u \mid Z) \mathrm{d} \mu_{U}(u)$ by $W \Perp Z \mid U$
2. $f_{W \mid Z}(W, Z)=f_{W \mid T}(W, T)=\int_{\mathcal{U}} f_{W \mid U}(W, u) f_{U \mid T}(u, T) \mathrm{d} \mu_{U}(u)$ by construction of $T=\tau(Z)$ such that $W \Perp Z \mid T$.

$$
\begin{aligned}
\int_{\mathcal{U}} f_{W \mid U}(W, u)\left(f_{U \mid Z}(u \mid Z)-f_{U \mid T}(u \mid T)\right) \mathrm{d} \mu_{U}(u) & =0 \\
\int_{U}\left(f_{U \mid Z}(u \mid Z)-f_{U \mid T}(u \mid T)\right) \frac{f_{W}(W)}{f_{U}(u)} f_{U \mid W}(u, W) \mathrm{d} \mu_{U}(u) & =0 \\
\mathbb{E}_{U}\left[\left.\frac{\left(f_{U \mid Z}(u \mid Z)-f_{U \mid T}(u \mid T)\right)}{f_{U}(u)} \right\rvert\, W\right] f_{W}(W) & =0
\end{aligned}
$$

The slightly less obvious III

Then, for any Z, let $g_{Z}(U):=\frac{\left(f_{U \mid Z}(u \mid Z)-f_{U \mid T}(u \mid T)\right)}{f_{U}(u)}$.

$$
\mathbb{E}_{U}\left[g_{Z}(u) \mid W\right] f_{W}(W)=0
$$

Completeness of W for $U(3 \mathrm{~b})$ implies $g_{z}(U)=0$, and thus $f_{U \mid Z}(U \mid Z)=f_{U \mid T}(U \mid T)$, meaning $U \Perp Z \mid T$.

Valid control functions

Valid control functions $\tau \in L_{2}(Z)$ satisfy two conditions:

1. Conditional independence of W and Z :

$$
W \Perp Z \mid \tau(Z)
$$

2. Conditional relevance of Z for A :

$$
\mathbb{E}[g(A, \tau(Z) \mid Z]=0 \text { only if } g(A, \tau(Z))=0
$$

Optimal control functions

- Optimal: minimum complexity $\tau(Z)$ subject to validity, e.g. $f(W \mid Z)$

Specification test

- Standard specification test for sufficient complexity of τ_{1} vs τ_{2}.

$$
H_{0}: Z \Perp Y(a) \mid \tau_{1}(Z), \text { vs } H_{1}: Z \not \Perp Y(a) \mid \tau_{1}(Z) .
$$

- Test whether $\tau_{1}($.$) valid, if \tau_{2}($.$) valid.$
- Under H_{0} :
- $\operatorname{plim}\left(\hat{\theta}\left(\tau_{1}\right)\right)=\operatorname{plim}\left(\hat{\theta}\left(\tau_{2}\right)\right)$,
- $\operatorname{avar}\left(\hat{\theta}\left(\tau_{1}\right)\right)<\operatorname{avar}\left(\hat{\theta}\left(\tau_{2}\right)\right)$.
- Under H_{1} :
- $\operatorname{plim}\left(\hat{\theta}\left(\tau_{1}\right)\right) \neq \operatorname{plim}\left(\hat{\theta}\left(\tau_{2}\right)\right)$.

Simple linear model

$U_{\gamma Y}$ Probably positive effect of ability U on net worth Y, by salary and non-salary mediation [Griliches, 1977].
ε_{Y} All variation in Y, which is jointly unexplained by (A, U, W, X). Individual-specific, heterogeneous characteristics.

Expected bias I

- i chooses whether to obtain a BA degree by maximising expected utility subject to information set \mathcal{I} :

$$
A=\underset{a \in\{0,1\}}{\arg \max }(\mathbb{E}[u(Y(a))-c(a) \mid A=a, \mathcal{I}]),
$$

$u: \mathcal{Y} \rightarrow \mathbb{R}$ is a diminishing returns utility function
$c:\{0,1\} \rightarrow \mathbb{R}$ is a cost function for obtaining a BA degree.

- Optimal decision rule assuming full information:

$$
\begin{aligned}
A & =\underset{a \in\{0,1\}}{\arg \max }(u(Y(a))-c(a)), \\
& =\mathbb{1}(u(Y(1))-u(Y(0))>c(1)-c(0)) .
\end{aligned}
$$

Expected bias II

$U \Uparrow$ Ambiguous bias direction

$$
\mathbb{1}(\underbrace{u(a) \Uparrow \text { and } \Delta(Y(1)-Y(0))=0}_{\Downarrow \text { as }} \gg \underbrace{c(1)-c(0)}_{\Downarrow \text { when ability higher }})
$$

$\varepsilon_{Y} \Uparrow$ Positive bias direction

$$
\mathbb{1}(\underbrace{\underbrace{u(Y(1))-u(Y(0))}_{Y(a) \Uparrow \text { and } \Delta(Y(1)-Y(0))=0}>c(1)-c(0)), ~(1)}_{\Downarrow \text { as }}>c
$$

- Byproduct: Separate ability bias from other biases.
- Theoretical models can produce differing bias directions.
- Empirical validation would be useful.

Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, and Masatoshi Uehara. Inference on strongly identified functionals of weakly identified functions. In The Thirty Sixth Annual Conference on Learning Theory, pages 2265-2265. PMLR, 2023.

Qihui Chen and Zheng Fang. Improved inference on the rank of a matrix.
Quantitative Economics, 10(4):1787-1824, 2019.
Victor Chernozhukov, Whitney Newey, Rahul Singh, and Vasilis Syrgkanis. Automatic debiased machine learning for dynamic treatment effects and general nested functionals. arXiv preprint arXiv:2203.13887, 2022.

Yifan Cui, Hongming Pu, Xu Shi, Wang Miao, and Eric Tchetgen Tchetgen. Semiparametric proximal causal inference. arXiv preprint arXiv:2011.08411, 2020.

Ben Deaner. Proxy controls and panel data. arXiv preprint arXiv:1810.00283, 2018.
Zvi Griliches. Estimating the returns to schooling: Some econometric problems. Econometrica: Journal of the Econometric Society, pages 1-22, 1977.

Guido W Imbens and Whitney K Newey. Identification and estimation of triangular simultaneous equations models without additivity. Econometrica, 77(5):1481-1512, 2009.

Laura Liu, Alexandre Poirier, and Ji-Liang Shiu. Identification and estimation of average partial effects in semiparametric binary response panel models. arXiv preprint arXiv:2105.12891, 2021.

Kenichi Nagasawa. Treatment effect estimation with noisy conditioning variables. arXiv preprint arXiv:1811.00667, 2018.

Whitney K Newey and James L Powell. Instrumental variable estimation of nonparametric models. Econometrica, 71(5):1565-1578, 2003.

Eric J Tchetgen Tchetgen, Andrew Ying, Yifan Cui, Xu Shi, and Wang Miao. An introduction to proximal causal learning. arXiv preprint arXiv:2009.10982, 2020.

Frank Windmeijer. Testing underidentification in linear models, with applications to dynamic panel and asset pricing models. Journal of Econometrics, 2021.

