IntroModelEmpirical StrategySelection on ResidualsSelection on Job Match QualityMechanismConclusion00000000000000000000000000000000000000

Selection of Job-to-job Migrants on Match Quality

Juho Alasalmi^{1,2}

¹University of Konstanz ²Pellervo Economic Research

EEA, Barcelona, 31.08.23

Intro	Model	Empirical Strategy	Selection on Residuals	Selection on Job Match Quality	Mechanism	Conclusion
000	00	00000	00	000	0	0

Motivation

Selection on unobservable skills

- Large fraction of selection is on unbservable skills (Borjas, Kauppinen, & Poutvaara, 2019).
- Value of unobservable skills measured by wage residuals (Borjas, Bronars, & Trejo, 1992; Abramitzky, 2009; Borjas et al., 2019)

Job match quality

• Wage residuals also reflect job match quality, randomness independent of skills (Mortensen, 2003).

Job-to-job (contracted) migration

- Labor related migration is often job-to-job, occuring after successful job search (Saben, 1964; Detang-Dessendre & Molho, 1999).
- Job-to-job migrants observe their job match qualities prior to migration choice.

\rightarrow Job-to-job migrants are selected on job match quality

- Extend Roy-Borjas migrant selection model for job-to-job migration.
 - Negative selection on match quality in the source
 - Positive selection on match quality in the destination
- Extend model with **mobility mode choice** and **heterogenous mobility costs**.
 - Chosen mobility mode can be interpreted as a proxy for mobility costs.
 - Show how **comparison of two mobile groups** with different mobility mode can **identify selection effects**.
- Compare selection of **migrants** and **commuters** on residuals.
 - Selection on job match quality explains the data better than selection on unobservable skills.

- Labor related migration is **mostly job-to-job**.
- Interpreting selection on wage residuals without taking job match quality into account
 - underestimates positive selection on unobservable skills in the source.
 - overestimates positive selection on unobservable skills in the destination.
- Results on identification of the effect of mobility costs on selection.

Intro	Model	Empirical Strategy	Selection on Residuals	Selection on Job Match Quality	Mechanism	Conclusion
000	•0	00000	00	000	0	0

Roy-Borjas Model

Let $\nu_i \sim \mathcal{N}(0, 1)$

migrant iff $c < w_{ik} - w_{ij} = \mu_k - \mu_j + (\rho_k - \rho_j)\nu_i$

Intro	Model	Empirical Strategy	Selection on Residuals	Selection on Job Match Quality	Mechanism	Conclusion
000	•0	00000	00	000	0	0

Within Skill Wage Dispersion

Let $\nu_i \sim \mathcal{N}(0, 1)$

migrant iff $c < w_{ik} - w_{ij} = \mu_k - \mu_j + (\rho_k - \rho_j)\nu_i$

Intro	Model	Empirical Strategy	Selection on Residuals	Selection on Job Match Quality	Mechanism	Conclusion
000	•0	00000	00	000	0	0

Observability of Wages

Let $\nu_i \sim \mathcal{N}(0, 1)$ $q_{ih} \sim \mathcal{N}(0, \sigma_h^2)$ for h = j, k

migrant iff $c < w_{ik} - w_{ij} = \mu_k - \mu_j + (\rho_k - \rho_j)\nu_i + q_{ik} - q_{ij}$

Exogenous selection to possibility of migration

 $= \mu_j + \rho_j \mu_{\nu} + \rho_j (\nu_i - \mu_{\nu}) + q_{ij} = \mu_k + \rho_k \mu_{\nu} + \rho_k (\nu_i - \mu_{\nu}) + q_{ik}$

 $\text{Let } \nu_i | i \in \mathcal{I} \sim \mathcal{N}(\mu_\nu, \sigma_\nu^2) \qquad q_{ih} \sim \mathcal{N}(0, \sigma_h^2) \text{ for } h = j, k$

migrant iff $c < w_{ik} - w_{ij} = \mu_k - \mu_j + (\rho_k - \rho_j)\nu_i + q_{ik} - q_{ij}$

IntroModelEmpirical Strategy
00000Selection on Residuals
000Selection on Job Match Quality
000Mechanism
0Conclusion
0

Selection of Job-to-job Migrants

(i) the expected source location wages are

$$E[w_{ij}|migrant] = \mu_j + E[
ho_j
u_i|migrant] + E[q_{ij}|migrant],$$

(ii) the expected destination location wages are

$$E[w_{ik}|migrant] = \mu_k + E[\rho_k \nu_i|migrant] + E[q_{ik}|migrant],$$

$$z_{jk}\coloneqq rac{1}{\sigma_\Delta}\left(\mu_j-\mu_k+\pi_{jk}-(
ho_k-
ho_j)\mu_
u
ight).$$

IntroModelEmpirical Strategy
0000Selection on Residuals
0000Selection on Job Match Quality
000Mechanism
0Conclusion
0

Selection of Job-to-job Migrants

(i) the expected source location wages are

$$E[w_{ij}|migrant] = \mu_j + \underbrace{\rho_j \mu_\nu + \frac{\sigma_\nu^2}{\sigma_\Delta}(\rho_k - \rho_j)\rho_j \lambda(z_{jk})}_{E[\rho_j \nu_i | migrant]} \underbrace{-\frac{\sigma_j^2}{\sigma_\Delta}\lambda(z_{jk})}_{E[q_{ij}| migrant]},$$

(ii) the expected destination location wages are

$$E[w_{ik}|migrant] = \mu_k + \underbrace{\rho_k \mu_\nu + \frac{\sigma_\nu^2}{\sigma_\Delta}(\rho_k - \rho_j)\rho_k \lambda(z_{jk})}_{E[\rho_k \nu_i|migrant]} + \underbrace{\frac{\sigma_k^2}{\sigma_\Delta}\lambda(z_{jk})}_{E[q_{ik}|migrant]},$$

$$z_{jk}\coloneqq rac{1}{\sigma_\Delta}\left(\mu_j-\mu_k+\pi_{jk}-(
ho_k-
ho_j)\mu_
u
ight).$$

Intro Model Empirical Strategy Selection on Residuals Selection on Job Match Quality Mechanism Conclusion o

Selection of Job-to-job Migrants

(i) the expected source location disturbances are

$$E[u_{ij}|migrant] = \underbrace{\rho_{j}\mu_{\nu} + \frac{\sigma_{\nu}^{2}}{\sigma_{\Delta}}(\rho_{k} - \rho_{j})\rho_{j}\lambda(z_{jk})}_{E[\rho_{j}\nu_{i}|migrant]} \underbrace{-\frac{\sigma_{j}^{2}}{\sigma_{\Delta}}\lambda(z_{jk})}_{E[q_{ij}|migrant]},$$

(ii) the expected destination location disturbances are

$$E[u_{ik}|migrant] = \underbrace{\rho_k \mu_\nu + \frac{\sigma_\nu^2}{\sigma_\Delta}(\rho_k - \rho_j)\rho_k \lambda(z_{jk})}_{E[\rho_k \nu_i | migrant]} + \underbrace{\frac{\sigma_k^2}{\sigma_\Delta}\lambda(z_{jk})}_{E[q_{ik}| migrant]},$$

$$z_{jk}\coloneqq rac{1}{\sigma_\Delta}\left(\mu_j-\mu_k+\pi_{jk}-(
ho_k-
ho_j)\mu_
u
ight).$$

Selection of Job-to-job Migrants

(i) the expected source location disturbances are

$$m{E}[u_{ij}|\textit{migrant}] =
ho_j \mu_
u + rac{1}{\sigma_\Delta} igl(\sigma_
u^2 (
ho_k -
ho_j)
ho_j - \sigma_j^2 igr) \lambda(z_{jk})$$

(ii) the expected destination location disturbances are

$$E[u_{ik}|migrant] = \rho_k \mu_\nu + \frac{1}{\sigma_\Delta} (\sigma_\nu^2 (\rho_k - \rho_j) \rho_k + \sigma_k^2) \lambda(z_{jk})$$

$$z_{jk}\coloneqq rac{1}{\sigma_\Delta}\left(\mu_j-\mu_k+\pi_{jk}-(
ho_k-
ho_j)\mu_
u
ight).$$

Migrants vs Stayers

(i) the expected source location disturbances are

$$E[u_{ij}|migrant] = \rho_j \mu_{\nu} + \frac{1}{\sigma_{\Delta}} (\sigma_{\nu}^2 (\rho_k - \rho_j) \rho_j - \sigma_j^2) \lambda(z_{jk})$$

(ii) the expected destination location disturbances are

$$E[u_{ik}|migrant] = \rho_k \mu_{\nu} + \frac{1}{\sigma_{\Delta}} (\sigma_{\nu}^2 (\rho_k - \rho_j) \rho_k + \sigma_k^2) \lambda(z_{jk})$$

Selection into \mathcal{I} :

- 1. Search interregionally
- 2. Receive a job offer

$$\implies \mu_{\nu} > 0.$$

- Migrant -- Stayer

(i) the expected source location disturbances are

$$E[u_{ij}|migrant] = \rho_j \mu_{\nu} + \frac{1}{\sigma_{\Delta}} (\sigma_{\nu}^2 (\rho_k - \rho_j) \rho_j - \sigma_j^2) \lambda^m$$

(ii) the expected destination location disturbances are

$$\mathsf{E}[u_{ik}|\mathsf{migrant}] = \rho_k \mu_\nu + \frac{1}{\sigma_\Delta} \big(\sigma_\nu^2 (\rho_k - \rho_j) \rho_k + \sigma_k^2 \big) \lambda^m$$

They are similar:

- Search interregionally, receive a job offer, are in ${\mathcal I}$
- Have the same ρ_h

They are different:

(i) the expected source location disturbances are

$$E[u_{ij}|migrant] = \rho_j \mu_{\nu} + \frac{1}{\sigma_{\Delta}} (\sigma_{\nu}^2 (\rho_k - \rho_j) \rho_j - \sigma_j^2) \lambda^m$$

(ii) the expected destination location disturbances are

$$E[u_{ik}|migrant] = \rho_k \mu_{\nu} + \frac{1}{\sigma_{\Delta}} (\sigma_{\nu}^2 (\rho_k - \rho_j) \rho_k + \sigma_k^2) \lambda^m$$

They are similar:

- Search interregionally, receive a job offer, are in $\ensuremath{\mathcal{I}}$
- Have the same ρ_h

They are different:

(i) the expected source location disturbances are

$$E[u_{ij}|commuter] = \rho_j \mu_{\nu} + \frac{1}{\sigma_{\Delta}} (\sigma_{\nu}^2 (\rho_k - \rho_j) \rho_j - \sigma_j^2) \lambda^c$$

(ii) the expected destination location disturbances are

$$E[u_{ik}|commuter] = \rho_k \mu_\nu + \frac{1}{\sigma_\Delta} \big(\sigma_\nu^2 (\rho_k - \rho_j) \rho_k + \sigma_k^2 \big) \lambda^c$$

They are similar:

- Search interregionally, receive a job offer, are in $\ensuremath{\mathcal{I}}$
- Have the same ρ_h

They are different:

(i) the expected source location disturbances are

$$E[u_{ij}|migrant] = \rho_{j}\mu_{\nu} + \frac{1}{\sigma_{\Delta}} (\sigma_{\nu}^{2}(\rho_{k} - \rho_{j})\rho_{j} - \sigma_{j}^{2})\lambda^{m}$$

(ii) the expected destination location disturbances are

$$\mathsf{E}[u_{ik}|\mathsf{migrant}] = \rho_k \mu_\nu + \frac{1}{\sigma_\Delta} \big(\sigma_\nu^2 (\rho_k - \rho_j) \rho_k + \sigma_k^2 \big) \lambda^m$$

They are similar:

- Search interregionally, receive a job offer, are in ${\mathcal I}$
- Have the same ρ_h

They are different:

(i) the expected source location disturbances are

$$E[u_{ij}|commuter] = \rho_j \mu_{\nu} + \frac{1}{\sigma_{\Delta}} (\sigma_{\nu}^2 (\rho_k - \rho_j) \rho_j - \sigma_j^2) \lambda^c$$

(ii) the expected destination location disturbances are

$$E[u_{ik}|commuter] = \rho_k \mu_\nu + \frac{1}{\sigma_\Delta} \big(\sigma_\nu^2 (\rho_k - \rho_j) \rho_k + \sigma_k^2 \big) \lambda^c$$

They are similar:

- Search interregionally, receive a job offer, are in ${\cal I}$
- Have the same ρ_h

They are different:

(i) the expected source location disturbances are

$$E[u_{ij}|migrant] = \rho_j \mu_{\nu} + \frac{1}{\sigma_{\Delta}} (\sigma_{\nu}^2 (\rho_k - \rho_j) \rho_j - \sigma_j^2) \lambda^m$$

(ii) the expected destination location disturbances are

$$m{E}[u_{ik}|\textit{migrant}] =
ho_k \mu_
u + rac{1}{\sigma_\Delta} igl(\sigma_
u^2(
ho_k -
ho_j)
ho_k + \sigma_k^2igr) \lambda^m$$

They are similar:

- Search interregionally, receive a job offer, are in ${\cal I}$
- Have the same ρ_h

They are different:

(i) the expected source location disturbances are

$$E[u_{ij}|commuter] = \rho_j \mu_{\nu} + \frac{1}{\sigma_{\Delta}} (\sigma_{\nu}^2 (\rho_k - \rho_j) \rho_j - \sigma_j^2) \lambda^c$$

(ii) the expected destination location disturbances are

$$E[u_{ik}|commuter] = \rho_k \mu_\nu + \frac{1}{\sigma_\Delta} \big(\sigma_\nu^2 (\rho_k - \rho_j) \rho_k + \sigma_k^2 \big) \lambda^c$$

They are similar:

- Search interregionally, receive a job offer, are in ${\mathcal I}$
- Have the same ρ_h

They are different:

Intro Model Empirical Strategy

rategy Selecti

esiduals Selection

Selection on Job Match Qual 000 Mechanism O

Conclusion 0

Model of Mobility Mode Choice

- Each *i* in \mathcal{I} has a cost type $(\pi_{ijk}^m, \pi_{ijk}^c)$
- Each *i* chooses the least costly mobility mode

 $\bar{\pi}_{jk}^{m} > \bar{\pi}_{jk}^{c} \iff \left\{ \pi_{ijk}^{m} | \pi_{ijk}^{m} < \pi_{ijk}^{c} \quad FOSD \quad \pi_{ijk}^{c} | \pi_{ijk}^{c} < \pi_{ijk}^{m} \right\}$ $\iff \lambda^{m} := E \left[\lambda(z_{iik}(\pi_{iik}^{m})) | \pi_{iik}^{m} < \pi_{iik}^{c} \right] > E \left[\lambda(z_{iik}(\pi_{iik}^{c})) | \pi_{iik}^{m} > \pi_{iik}^{c} \right] =: \lambda^{c}$

Intro	Model	Empirical Strategy	Selection on Residuals	Selection on Job Match Quality	Mechanism	Conclusion
000	00	00000	•0	000	0	0

Selection on Source Location Residuals

Model

Dependent variable:			\hat{u}_{ij}			
Migrant (ref: Commuter)	-0.0223*** (0.0035)	-0.0217*** (0.0052)	-0.0209*** (0.0053)	-0.0134^{***} (0.0051)		
Cost controls						
Distance to new job	No	No	Yes	Yes		
Commuting distance	No	No	Yes	Yes		
j - k - l triad FE	No	Yes	Yes	Yes		
$\hat{E}_{ik}[w], \ \hat{E}_{ij}[w]$	No	No	No	Yes		
Year FE	No	Yes	Yes	Yes		
Constant term	Yes	No	No	No		
Observations	101,254	101,254	101,254	101,254		
Migrants	29,181	29,181	29,181	29,181		
Commuters	72,073	72,073	72,073	72,073		
R^2 , \hat{u}_{ij}	0.0005	0.0090	0.0011	0.0317		

 Table: Selection on source location residuals. Notes: *p<0.05; **p<0.01;

 *** p<0.001. Columns 3 and 4 additionally control for all the main and interaction effects of indicators of employed industry or occupation changes. White heteroskedasticity robust standard errors clustered at residence-source-destination municipality level in parenthesis.

Intro	Model	Empirical Strategy	Selection on Residuals	Selection on Job Match Quality	Mechanism	Conclusion
000	00	00000	0•	000	0	0

Selection on Destination Location Residuals

Model

Dependent variable:		\hat{u}_{ik}			
Migrant (ref: Commuter)	0.0356*** (0.0035	0.0310*** (0.0047)	0.0311*** (0.0047)	0.0276*** (0.0047)	
Cost controls					
Distance to new job	No	No	Yes	Yes	
Commuting distance	No	No	Yes	Yes	
j - k - l triad FE	No	Yes	Yes	Yes	
$\hat{E}_{ik}[w], \hat{E}_{ij}[w]$	No	No	No	Yes	
Year FE	No	Yes	Yes	Yes	
Constant term	Yes	No	No	No	
Observations	101,254	101,254	101,254	101,254	
Migrants	29,181	29,181	29,181	29,181	
Commuters	72,073	72,073	72,073	72,073	
R^2 , \hat{u}_{ik}	0.0012	0.0016	0.0019	0.0249	

 Table: Selection on destination location residuals.
 Notes: * p < 0.05; ** p < 0.01;

 **** p < 0.001.
 Columns 3 and 4 additionally control for all the main and interaction effects of indicators of employed industry or occupation changes.
 White heteroskedasticity robust standard errors clustered at residence-source-destination municipality level in parenthesis.

$$\tau_j = \frac{1}{\sigma_{\Delta}} \big(\sigma_{\nu}^2 (\rho_k - \rho_j) \rho_j - \frac{\sigma_j^2}{\sigma_j^2} \big) [\lambda(z_{ijk}^m) - \lambda(z_{ijk}^c)].$$

ho measure:	$sd(\hat{u}_{ih})$	sd(w _{ih})	$sd(\hat{u}_{ih})$	sd(w _{ih})
Sample:	$ ho_k$ -	- $ ho_j > 0$	$\rho_k - \rho_k$	$o_j < 0$
Dependent variable:		û	ij	
Migrant (ref: Commuter)	-0.0123 (0.0066)	-0.0134 (0.0069)	-0.0107 (0.0076)	-0.0087 (0.0078)
Observations Migrants Commuters R ²	44,487 13,953 30,534 0.0403	44,523 13,945 30,578 0,0444	37,144 13,370 23,774 0.0475	37,108 13,378 23,730 0.0386

 Table:
 Notes: * p < 0.05; ** p < 0.01; *** p < 0.001. Controls as in column 4 above. White heteroskedasticity robust standard errors clustered at residence-source-destination municipality level in parenthesis.

Selection on Destination Job Match Quality

$$\tau_k = \frac{1}{\sigma_\Delta} \big(\sigma_\nu^2 (\rho_k - \rho_j) \rho_k + \sigma_k^2 \big) [\lambda(z_{ijk}^m) - \lambda(z_{ijk}^c)].$$

	, , ,
	$\rho_k - \rho_j < 0$
û _{ik}	
463*** 0.0 65) (0.00	161 ^{**} 0.0134 74) (0.0074)
23 37,14 5 13,37 78 23,77 60 0.025	4 37,108 0 13,378 4 23,730
())	$\begin{array}{c c} \hat{u}_{ik} \\ \hline 463^{***} & 0.03 \\ \hline 65) & (0.00) \\ \hline 3 & 37,14 \\ 5 & 13,37 \\ 8 & 23,77 \\ 0 & 0.025 \end{array}$

 Table:
 Notes: * p < 0.05; ** p < 0.01; *** p < 0.001. Controls as in column 4 above. White heteroskedasticity robust standard errors clustered at residence-source-destination municipality level in parenthesis.

Intro	Model	Empirical Strategy	Selection on Residuals	Selection on Job Match Quality	Mechanism	Conclusion
000	00	00000	00	000	•	0

Mechanisms: costs

Dependent variable:			$\hat{u}_{ik} - \hat{u}_{ij}$		
Cost proxy, $t - 1$:	Lives	Spouse	Lives	Owns	Owns
	alone	working	rental	house	a car
Migrant * Cost proxy (ref: Commuter * Cost proxy)	-0.0284** (0.0094)	0.0275** (0.0091)	-0.0084 (0.0106)	0.0066 (0.0098)	0.0258** (0.0096)
Observations	101,254	101,254	101,254	101,254	101,254
Migrants	29,181	29,181	29,181	29,181	29,181
Commuters	72,073	72,073	72,073	72,073	72,073
R ²	0.0831	0.0831	0.0829	0.0829	0.0833

Table: Selection on post-mobility residuals. Notes: *p<0.05; **p<0.01; ***p<0.01. Controls as in column 4 above. White heteroskedasticity robust standard errors clustered at residence-source-destination municipality level in parenthesis.

Summary

- Extend Roy-Borjas migrant selection model for job-to-job migration.
 - Negative selection on match quality in the source
 - Positive selection on match quality in the destination
- Extend model with **mobility mode choice** and **heterogenous mobility costs**.
 - Chosen mobility mode can be interpreted as a proxy for mobility costs.
 - Show how **comparison of two mobile groups** with different mobility mode can **identify selection effects**.
- Compare selection of migrants and commuters on residuals.
 - Selection on job match quality explains the data better than selection on unobservable skills.

Thank you!

juho.alasalmi@uni-konstanz.de

References I

Abramitzky, R. (2009). The effect of redistribution on migration: Evidence from the Israeli kibbutz. *Journal of Public Economics*, *93*(3-4), 498–511.

Borjas, G. J., Bronars, S. G., & Trejo, S. J. (1992). Self-selection and internal migration in the United States. *Journal of Urban Economics*, 32(2), 159–185.

Borjas, G. J., Kauppinen, I., & Poutvaara, P. (2019). Self-selection of emigrants: Theory and evidence on stochastic dominance in observable and unobservable characteristics. *The Economic Journal*, *129*(617), 143–171.

Detang-Dessendre, C., & Molho, I. (1999). Migration and changing employment status: a hazard function analysis. *Journal of Regional Science*, 39(1), 103–123.
Mortensen, D. (2003). Wage dispersion: why are similar workers

paid differently? Cambridge: MIT press.

References II

Saben, S. (1964). Geographic mobility and employment status, March 1962-March 1963. *Monthly Lab. Rev.*, *87*, 873.