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Abstract

We study the effect of maternal labor supply in the first three years of life on early childhood
cognitive skills. We pay particular attention to heterogeneous effects by the skill of the mother,
by the intensity of her labor supply, and by her pre-birth wages. We correct for selection using
a control function approach which uses the fact that many mothers are bunched at zero working
hours – skill variation in the children of these bunched mothers is informative about the effect of
unobservables on skills. We find that maternal labor supply typically has a significant, negative
effect on children’s early cognitive skills with more negative effects for higher-skill mothers. By
contrast, we do not find significant heterogeneity depending on the pre-birth wage rate of the
mother. These findings suggest that there may be more scope to mitigate short-term, unin-
tended consequences of maternal labor supply through policies that promote more flexible work
arrangements rather than through policies that increase the financial support to working moth-
ers.

JEL Codes: D13, I21, I2, J01, J22, C24. Keywords: cognitive skills, bunching, maternal labor
supply, early childhood, skill development

1 Introduction

This paper estimates the effect of mothers working longer hours during the first three years of a
child’s life on that child’s cognitive skills around age 6. We use data on maternal work histories in
the National Longitudinal Surveys of Youth 1979 (NLSY79) linked to childhood skill measures from
the Children of the National Longitudinal Surveys (CNLSY), focusing on mothers whose children
were born between 1979 and 2008. We aim to understand an important aspect of the trade-off
mothers may face when deciding how much to work. On the one hand, maternal labor supply
may be detrimental to children’s skills because time spent at work is time not spent with children.
∗We would like to thank Joseph Altonji, Andrew Goodman-Bacon, Joseph Hotz, Josh Kinsler, Luiz Renato Lima,
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Indeed, there is a wealth of evidence suggesting that an enriching environment with high-quality
parent/child interactions in early childhood is important for subsequent skill development (e.g., Todd
and Wolpin 2007, Del Boca, Flinn, and Wiswall 2014, Hsin and Felfe 2014, Bono, Francesconi, Kelly,
and Sacker 2016). On the other hand, additional work hours will bring in additional income, which
may itself have a direct, positive impact on skills (Blau 1999, Milligan and Stabile 2011, Dahl and
Lochner 2012, Løken, Mogstad, and Wiswall 2012).

The trade-off between time working and time at home has become increasingly salient as mater-
nal labor supply has increased in recent decades (Eckstein and Lifshitz 2011, Fogli and Veldkamp
2011). Understanding the sign and magnitude of the total effect of maternal labor supply on child-
hood skill development is critical both for understanding the sources of childhood skill differences
and as an input into various policy-relevant analyses. For instance, many public policies – including
child allowances and tax credits, subsidized child care, or even the progressivity of the tax code –
can alter mothers’ labor supply choices.1 Such policies may have unintended consequences on child-
hood skill development, with important implications for intergenerational mobility and inequality in
general (Blau and Currie 2006, Currie and Almond 2011, Flood, McMurry, Sojourner, and Wiswall
2022).

This paper takes a distinct approach in focusing on heterogeneous effects by the skills of mothers
and by the quantity of their labor supply. Both of these dimensions should alter the intensity of the
trade-off between maternal labor supply and time at home. More skilled mothers tend to earn higher
wages, but their time not working may also be more valuable (in terms of skill production) to their
children. It is unclear whether the additional resources (financial or otherwise) earned by skilled
working mothers can better offset any detrimental effect of working.2 Moreover, on the margin, this
trade-off is likely to change depending on whether the mother works longer hours (Ettinger, Riley,
and Price 2018). These two dimensions may interact: higher-skilled mothers tend to work longer
hours (Cortes and Tessada 2011, Adda, Dustmann, and Stevens 2017, Chen, Grove, and Hussey
2017), and this may be due in part to a higher return to working longer hours.

Estimating these effects is challenging because maternal labor supply may be correlated with
unobservables that are themselves inputs in childhood skill production. Prior research has addressed
this endogeneity using standard approaches including family fixed effects and instrumental variables
(IVs). We discuss this related work in greater detail in Section 2. Methodologically, we add to the
literature by using a novel control function approach that does not require IVs, leveraging instead

1The literature on tax credits effects on female labor supply is large; for some references, see work by Eissa and
Liebman 1996, Averett, Peters, and Waldman 1997, Meyer and Rosenbaum 2001, Grogger 2003, Bosch and Van der
Klaauw 2012, Blundell, Costa Dias, Meghir, and Shaw 2016, Bick and Fuchs-Schündeln 2017. For work on child care
effects on maternal labor supply at early ages (less than 3 years old) see Baker, Gruber, and Milligan 2008, Goux and
Maurin 2010, Givord and Marbot 2015, Carta and Rizzica 2018, Yamaguchi, Asai, and Kambayashi 2018, Gathmann
and Sass 2018, and Andresen and Havnes 2019.

2On the one hand, their spouse or others in her network might be more available to the child (Kalenkoski, Ribar,
and Stratton, 2009; Sayer and Gornick, 2012), they may be able to afford higher-quality childcare (Blau and Hagy,
1998; Flood et al., 2022), or they may be better able to substitute market-purchased goods for their own time
(Anderson and Levine, 1999). On the other hand, the time of a higher-skilled mother may be less substitutable (from
the perspective of the child) with any of these options (Ruhm, 2009; Carneiro, Meghir, and Parey, 2013; Polachek,
Das, and Thamma-Apiroam, 2015).
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the observation that there is a concentration of mothers who work exactly zero hours (Caetano,
Caetano, and Nielsen 2023). This control function approach helps us add value to this literature
because it allows us to use the full NLSY79/CNLSY sample – we do not need to restrict our analysis
to families with siblings (as in fixed effects models) or to families for whom a particular instrumental
variable is available.3 This enables us to uncover effects broken down along important dimensions
of heterogeneity, which enrich our understanding of the relationship between maternal labor supply
and child development. It also allows us to recover average treatment effects using an entirely new
source of variation relative to prior literature.

Figure 1 illustrates the source of variation in a simple context without controls. The left panel
shows hypothetically how the outcome variable (child’s skill) varies with the treatment variable
(working hours of the mother).4 The positive slope in this panel combines the treatment effect
of maternal hours on the child’s skill (what we want to identify) and the endogeneity bias, as
confounders are not held constant when the treatment variable varies in the horizontal axis. The
left panel also shows a discontinuity in the expected skill at zero: the average skill of children whose
mothers work zero hours is sharply lower than the average skill of children whose mothers work
just a few hours per year. It is not plausible that this discontinuity represents a treatment effect:
working just a few hours over the first three years of the child’s life, instead of zero, is unlikely to
generate such a sharp increase in the skill of the child at age 6.

Figure 1: Isolating the Effect of Confounders
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The right panel of Figure 1 offers an explanation for this discontinuity. It illustrates how a
hypothetical confounder varies with the treatment variable. For concreteness, we can think of the
confounder as positively correlated with the treatment variable, so that mothers with higher values
of the confounder tend to work longer hours. This confounder likely reflects a combination of many
unobserved factors that correlate to both maternal working hours and the skill of the child, such

3Another potential concern with understanding heterogeneous effects using IVs is that the “compliers” of a given
IV – who cannot be directly observed – may disproportionately have a certain skill level, making it difficult to compare
the estimates across skill levels in a meaningful way. By contrast, we demonstrate empirically that mothers of all
skill levels are well-represented in the bunched-at-zero group.

4See the left panel of Figure 5 in Section 5 for the empirical version of this figure in our setting.
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as the skill of the mother, the quality of her interactions with the child, and the overall quality of
the child’s environment. The plot shows that the average value of the confounder is comparable
for mothers that work a similar number of hours. However, there is a discontinuity at zero hours:
the average value of the confounder among the mothers who do not work is very different from
the average among the mothers who work marginally positive hours. This happens because the
mothers who do not work belong to two different groups: those with confounder values that led
them to be exactly indifferent between not working and working, and those with confounder values
that led them to be far from indifference, in favor of not working. Because the number of working
hours cannot be negative, the first group of mothers choose an “interior solution,” while the second
group is constrained to choose a “corner solution”. As the dashed line in the right plot suggests, the
existence of the corner-solution group is what generates the discontinuity.

Summarizing the ideas above, (1) the non-negativity constraint leads confounders to be discon-
tinuous at the bunching point, and (2) this discontinuity in confounders is the sole reason for the
discontinuity in the outcome at the bunching point (i.e. the treatment did not cause that discon-
tinuity). The ratio of these two discontinuities (i.e., the discontinuity in the outcome divided by
the discontinuity in the confounder) can be interpreted as the effect of confounders at the bunching
point. This effect can then be used to correct the endogeneity bias and identify the treatment effect.
As this discussion suggests, our approach is somewhat related to “fuzzy” regression discontinuity
designs, which also identify a causal effect with the ratio of two discontinuities (e.g. Hahn, Todd,
and van der Klaauw 2001). This relationship is informally discussed in Appendix A.

Besides bunching, we need two assumptions in order to identify the effect of interest. First,
because we do not directly observe the confounder, we need to make an assumption that allows us
to obtain the size of the discontinuity in the right panel of Figure 1. Intuitively, this is equivalent
to identifying how far from exact indifference between not working and working is the average
mother who does not work. Second, because we can only identify the direct effect of confounders
on the outcome at zero, we need to be able to extrapolate this effect to mothers who work positive
hours. Intuitively, this is equivalent to assuming that the confounder enters linearly in the outcome
equation. In practice, we show that both assumptions become much weaker as we add observed
controls. Section 6 presents detailed sensitivity analyses of both assumptions and demonstrates that
our key empirical conclusions do not depend on them.

We find that maternal labor supply has, on average, negative effects on children’s cognitive skills
in the short-run. Our estimates imply that an additional 10 hours of maternal labor per week during
the first three years of a child’s life lowers the child’s cognitive skills at age six by about 10% of a
standard deviation (s.d.). We also find substantial heterogeneity in these effects by the mother’s
skill, measured by the Armed Forces Qualifying Test (AFQT) score, and some heterogeneity by
the total number of hours worked. These heterogeneous results are shown in Figure 2. The hollow
circles show the average observed childhood cognitive skills and post-birth maternal work hours for
each quartile of the maternal AFQT distribution. The lines show the counterfactual skills of children
observed at each of these hollow points if their mother worked a different number of hours above
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Figure 2: Children’s Cognitive Skills – Quartiles of Maternal AFQT
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Note: Total effects based on estimates from Table 3. The hollow circles represent the average skills and working
hours of all observations in the corresponding quartile of the maternal AFQT distribution.

or below the average value in the data. First, we find evidence that the schedule is nonlinear, with
the degree of concavity/convexity changing depending on the skill level of the mother. However,
although statistically significant, this curvature is economically not very important – the linearity
assumption that is typically made in this literature seems to be a good approximation for the
range of hours and AFQT scores observed in the data. Second, we find substantial heterogeneity
depending on the skill of the mother. Labor supplied by higher-skilled mothers tends to have more
negative effects, while for lower-skilled mothers the effects are closer to zero.

Of course, maternal labor supply has many other positive effects which may justify the imple-
mentation of work-promoting policies. Specifically, the additional income the mother earns may
be beneficial to the child in the long run via several channels – better schools and social networks,
support for college admissions, reduced levels of stress, etc. Furthermore, the additional income will
generally affect all family members, including the mother herself, in various positive ways. There
are also important considerations with respect to career timing. Although a mother may have liked
to cut back her hours during her child’s early years, she might prefer to remain in the labor force
full time, even if doing so is detrimental to the child in the short-run, because of potential negative
long-term effects on her career. Better career growth, and the higher resources that come with
it, could in turn benefit all family members, including the child, in the long run. Thus, it would
be valuable to investigate further whether it is feasible to design and implement work-promoting
policies that mitigate the scope for this negative unintended consequence for higher-skilled mothers.
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With these considerations in mind, we investigate why working longer hours seems to have
particularly detrimental short-run effects on the cognitive skills of the children of higher-skilled
mothers. A natural candidate explanation is that the last hour worked may be particularly costly
for the children of mothers working longer hours, as higher-skill mothers disproportionately work
longer hours. However, this potential explanation is ruled out by our finding that the effect is
approximately linear, as shown in Figure 2. In fact, to the extent that we find some evidence
of nonlinearity, Figure 2 indicates that the last hour might be particularly costly for children of
mothers working longer hours only for mothers who have sufficiently low skills.

Another potential explanation is that the additional money earned by these higher-skilled moth-
ers may not be enough to offset their opportunity cost of working, at least in the short-run. It is
therefore valuable to consider heterogeneity of the effects by another dimension beyond maternal
skills: the mother’s wage rate. If the negative effects accrue mostly to the children of high-skilled,
low-wage mothers, then policies that provide financial support to low-wage mothers could be effec-
tive by allowing their families to pay for goods and services to offset their absence. However, if the
negative effects accrue also to the families of high-skilled, high-wage mothers, suggesting that close
substitutes for high-skilled maternal time are unavailable even for this high-earning group, then
providing financial support may be ineffective. In this case, it may make more sense to focus on
policies aimed at promoting flexible location and work schedules for mothers, thus allowing moth-
ers to maintain (or increase) their labor supply while not reducing the time they spend with their
children.

In order to investigate these issues, we study the heterogeneity of the effects of maternal work
hours (beyond skill and number of hours) by the hourly pre-birth wage rate of the mother. Allowing
for this third dimension of heterogeneity leads to more noisy estimates, as expected. Nonetheless,
this exercise is still informative. We find some evidence that mothers with higher pre-birth wages
may be able to mitigate some of the detrimental effect of their absence, although the degree of
mitigation appears to be modest at best. It appears that current institutions and norms do not
provide sufficient scope for families with higher-skill working mothers to mitigate any detrimental
effects of the mother’s work on the child’s cognitive skills in the short-run, even if the mother is also
a high-earner.

These findings yield a number of important insights about the effects of maternal work during
the first years of the children. First, using a new identification strategy leveraging different features
of the data, we confirm what has typically been found in the prior literature (see Section 2):
maternal labor supply on average has a negative short-run effect on children’s cognitive skills.
Second, we provide new evidence that this short-run unintended consequence tends to be small
for low-skill mothers, even those who work long hours. Third, our analysis gives us a clue about
how work-promoting policies could potentially avoid short-run unintended consequences for the
children of higher-skill mothers: our results are consistent with the idea that it is safer to focus on
policies that encourage greater flexibility in work arrangements for mothers, rather than focusing
on policies that provide financial support to working mothers. Policies that increase flexibility
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in the schedule and location of jobs could allow mothers to spend more time with their children
without sacrificing their work hours. Additionally, enhancing spouses’ flexibility along the same
lines might be complementary, further mitigating any potential cost to children.5 Of course, it
is difficult to draw direct implications for policy without a better understanding of the specific
channels through which the causal effects we estimate are operating. More work is thus needed to
assess the potential benefits of different policies. It is worth remarking that remote and hybrid work
has recently expanded dramatically due to the necessity of social distancing during the COVID-19
pandemic, especially for higher skilled workers (Bartik, Cullen, Glaeser, Luca, and Stanton, 2020;
Bick, Blandin, and Mertens, 2020; Dingel and Neiman, 2020). It would be valuable to understand
the impact of these changes on the skill of the children, which could complement the findings of our
study.

The rest of this paper is organized as follows. Section 2 relates this paper to previous work in the
literature, while Section 3 presents our data. Section 4 discusses our empirical approach. Section
5 presents our main empirical findings, while Section 6 provides a detailed sensitivity analysis and
various assessments of our key identifying assumptions. Section 7 concludes. The appendix contains
additional material that helps provide further context to our study.

2 Related literature

The vast majority of studies on this topic use the NLSY79/CNLSY data and focus on estimating
the impact of maternal hours worked during the three first years of a child’s life on the child’s skills
at an early age, as we do. To overcome the endogeneity of maternal labor supply, these studies
use either (i) a considerable set of control variables (Desai, Chase-Lansdale, and Michael, 1989;
Baydar and Brooks-Gunn, 1991; Vandell and Ramanan, 1992; Parcel and Menaghan, 1994; Hill and
O’Neill, 1994; Waldfogel, Han, and Brooks-Gunn, 2002; Baum II, 2003; Ruhm, 2004, 2009), (ii)
local labor market conditions as an instrumental variable (Blau, Grossberg, et al., 1992; James-
Burdumy, 2005), (iii) family fixed effects (Waldfogel et al., 2002; James-Burdumy, 2005), or (iv)
dynamic choice models that simultaneously consider a mother’s choice to work and invest in the
child’s cognitive skill (Bernal, 2008).

The results in these studies vary widely, making it difficult to draw a clear conclusion about the
magnitude of the effect of maternal employment. Nonetheless, on balance, this literature finds that
maternal labor supply has either a null or a detrimental effect on children’s cognitive skills. Our
results support these findings. For instance, Ruhm (2004), which adopts a selection-on-observables
approach, finds that each additional twenty hours worked per week during the first three years of life
is associated with a 0.11 standard deviation decrease on the reading assessment and a 0.08 standard
deviation decrease in the mathematics assessment. Similarly, Bernal (2008) finds that working full-

5While our results pertain to the effects of maternal labor supply, similar considerations and concerns would in
principle apply to the labor supply choices of any parent or caregiver. Our focus on mothers is purely pragmatic –
data sources such as the NLSY79/CNLSY do not allow one to connect paternal labor supply to measures of childhood
skills.
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time and using childcare for one year is associated with a 0.13 standard deviation reduction in test
scores. Other papers finding negative effects include Desai et al. (1989), Baydar and Brooks-Gunn
(1991), Hill and O’Neill (1994), and Baum II (2003). Using fixed-effects models, James-Burdumy
(2005) finds null effects in some cases and negative effects in others. Parcel and Menaghan (1994)
similarly find null effects, while Blau et al. (1992) and Waldfogel et al. (2002) find negative effects
in the first year of the child’s life and offsetting, positive effects subsequently. Finally, Vandell and
Ramanan (1992) reports positive effects of early maternal employment on math achievement for
children from low-income families, which is consistent with our heterogeneous results.

Our analysis matches the context of this literature: we also focus on the impact of maternal
labor supply in the first three years of the child on the child’s early outcomes, and we also use
the NLSY79/CNLSY data. Because of the similar context, we complement the main findings in
this literature in many ways: (a) we confirm the main findings of negative effects with a different
approach to control for confounders; (b) we confirm that the linearity assumption made in this
literature is a good approximation for the range of hours and skills in the data; (c) we provide new
results about heterogeneity by skills; and (d) we investigate the direct vs. income-mediated channel
of the effect, providing further context to the findings of this literature while shedding light on the
potential impacts of different policies.

We are not the first study to investigate the direct vs. the income-mediated channel of maternal
labor supply. Two recent papers investigate such effects, but in contexts different than those in the
literature discussed above. Agostinelli and Sorrenti (2021) use the NLSY79/CNLSY to estimate
time and income effects of maternal labor supply when children are 4-16 years old on the children’s
contemporaneous outcomes, instrumenting for maternal labor supply with local labor market condi-
tions and for family income with Earned Income Tax Credit (EITC) expansions. They find negative
direct effect of maternal hours worked and positive income effect that are not fully offsetting, as we
do. Using Norwegian registry data, Nicoletti, Salvanes, and Tominey (2020) estimates the direct
and income-mediated effects of maternal labor supply during the first five years of the child on test
scores at ages 11 and 15. To handle the endogeneity of maternal work hours and family income,
the authors construct instruments for each based on the characteristics of the peers of the parental
peers. They find a negative direct effect of maternal labor supply on test scores and a positive
income effect that fully offsets the negative direct effect.

Remark 2.1. Censoring and Fixed Costs
This paper is also related to the empirical literature estimating labor supply wage elasticities (see,
e.g., Heckman, 1974; Gronau, 1974; Cogan, 1981; Mroz, 1987; Zabel, 1993). In addition to being
concerned mainly with the estimation of different quantities, these papers differ from ours in at least
two other important dimensions. First, they face a censoring problem: wages are only observed for
those who are working. By contrast, we do not face a censoring problem because we observe childhood
skills for everyone in our sample, including the children of mothers who work zero hours. Second,
these papers often explicitly model both an intensive and an extensive margin of labor supply, and
fixed costs are typically a relevant feature of the models they explore. The treatment variable used in
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our paper and the whole related literature on child development discussed above is aggregated at the
year level or higher. Following Cogan (1980) and Cogan (1981), we argue that, in this instance, a
model with only variable costs approximates the distribution of the treatment variable well.6 Indeed,
Figure 14 in Appendix C shows that we observe no “hole” around zero in the distribution of working
hours, which is what would be expected if fixed costs were empirically important. In Section 6.2.2
(Remark 6.2), we consider a sensitivity analysis that allows for fixed costs, and we confirm in an
independent way that fixed costs do not appear to be important in our context.

3 Data

We use data from two linked surveys: the NLSY79, which gives us information about mothers,
and the CNLSY, which gives us information about their children. The NLSY79 follows a cohort of
young adults aged 14-22 from 1980 through the present, while the CNLSY follows the children born
to the women in the NLSY79 sample.7 Linked together, these surveys provide a unique source of
information on children and their parents, including detailed information on maternal labor supply,
childhood cognitive development, and household characteristics. Our final sample is a cross-sectional
data set of children born from 1979 to 2008 for whom information on cognitive measures, maternal
labor supply, and family characteristics are available. Children who were reported not to be living
with their mother in the first years of life are dropped from our sample. We also drop observations
who report working exactly 40 hours per week for all 52 weeks during each of the three years, as this
lack of variation across weeks suggests that these reported hours do not reflect the actual working
hours of the mother. However, replicating our analysis using these observations yields nearly the
same results in all instances.

Following the economic literature in child development, we measure cognitive skills using the
reading recognition and math tests from the Peabody Individual Achievement Test (PIAT). The
reading recognition test is designed to measure reading comprehension based on a child’s ability to
recognize and pronounce words. The math test assesses attainment in mathematics beginning with
early skills, such as recognizing numerals, and progressing to advanced concepts in geometry and
trigonometry. The PIAT was administered to all children over the age of 5 in each CNLSY wave.
Because our focus is on early childhood skill development, we adopt as our outcome a unified score
for childhood cognitive skills constructed by applying factor analysis to the age-standardized math
and reading PIAT scores from the first time each child in the CNLSY is assessed, which happens
around age 6.8 Throughout the analysis, we measure skills in standard-deviation (s.d.) units.

We measure our primary variable of interest, maternal labor supply, using the average number
6For instance, Cogan (1980) states, “It may be argued that the major sources of the costs of work are more properly

treated as variable costs with respect to annual hours. This is true, especially if most of the variation in annual hours
worked was the result of variations in days worked per year.”

7The NLSY79 interviews are annual from 1979-1994 and biennial thereafter. The CNLSY interviews are biennial
starting in 1986.

8These age-specific scores are based on a nationally representative sample of children and are normalized to have
a mean of 100 and a standard deviation of 15.
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of hours worked annually by the mother in the first three years of the child’s life. The NLSY79
collects extensive weekly information on employment status and hours worked. This allows us to
construct a weekly work history for each mother after giving birth. Some mothers may report that
they are working shortly after giving birth when they are actually on paid maternity leave (Baum
II, 2003). We can only distinguish these two possibilities – working after birth versus paid maternity
leave – in the survey waves from 1988 onward. To avoid losing a large portion of our sample and
yet to avoid measurement error due to maternity leave, we begin to measure hours worked in the
fourth month following the month of birth.9 For instance, for a child born in July, we compute
hours worked by the mother starting in the first week of November. For this child, maternal labor
supply in the first year of life would be computed from the first week of November of the year of
birth until the last week of October in the following year. We continue this yearly computation for
the next two years in order to measure hours worked by the mother in the second and third year of
the child’s life. Finally, our treatment variable is computed by taking the average of annual number
of hours worked by the mother in these three years.10

A key explanatory variable in this study is the mother’s cognitive skill, which we measure using
the Armed Forces Qualifying Test (AFQT). The AFQT was administered to almost all NLSY79
respondents in the base year of the survey. The AFQT is a general measure of achievement in math
and reading and is a primary eligibility criterion for service and placement in the United States
Armed Forces. Because of its use in U.S. military personnel decisions, the AFQT has undergone
extensive vetting and has been used in numerous prior economic studies as a proxy for cognitive
skill or human capital (Neal and Johnson, 1996; Hirsch and Schumacher, 1998; Arcidiacono, Bayer,
and Hizmo, 2010).11

In addition to maternal AFQT, we construct a number of other control variables based on the
child, mother, and household characteristics. Unless otherwise specified, control variables such as
the mother’s education and marital status are computed at the year of birth. We opt for this
approach in order to keep our control variables pre-determined.12

Table 1 presents summary statistics of our sample. The table first shows the mean and standard
deviation of each element used to generate the children cognitive skill measure. These variables are
normalized by age and follow a nationally representative sample with a mean of 100 and standard
deviation 15. On average, children in our sample score above the national average on the PIAT
reading recognition, and marginally below the average on math.

9The findings in this paper do not change if we start counting hours in the month immediately after the month
the child is born.

10For some years, the NLSY79 reports weekly employment information over 53 weeks instead of 52 weeks. In order
to avoid this type of measurement error, we discard information about hours worked in the 53rd week of a year, if
any. In practice, this change turns out to be immaterial for the results.

11The AFQT is based on a subset of tests from the Armed Services Vocational Aptitude Battery (ASVAB).
Throughout, we use the current (post-1989 renormalization) definition of AFQT math as the sum of the arithmetic
reasoning and mathematics knowledge subscores of the ASVAB.

12For children born after 1994 in odd years, the survey was not conducted in their year of birth. In these cases,
we measure control variables in the year before birth, except family size which is measured at the year after birth in
order for the child itself to be counted as part of the family.
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Table 1: Summary Statistics

Mean Std.Dev.

Outcome variables
PIAT Reading Recognition 105.33 14.04
PIAT Math 99.72 14.03
Treatment variable
Mother’s average hours worked in 3 first years 847.64 838.18
Bunching variables
Mother worked 0 hours in 3 first years 0.25 0.44
Control variables
Mother’s AFQT score 38.20 28.21
Mother’s wage year prior to the birth of the child 14.69 11.04
Mother’s education less than high school 0.23 0.42
Mother’s education completed high school 0.43 0.50
Mother’s education some college 0.19 0.40
Mother’s education completed college 0.10 0.30
Mother’s education more than college 0.04 0.20
Mother’s age less than 20 years old 0.11 0.32
Mother’s age 20 to 24 years old 0.33 0.47
Mother’s age 25 to 29 years old 0.28 0.45
Mother’s age 30 to 34 years old 0.18 0.39
Mother’s age 35 years old or more 0.09 0.29
Mother’s spouse present 0.60 0.49
Mother’s spouse highest grade 12.83 2.69
Child’s age at test (in months) 75.07 14.13
Sex of child (male=1, female=0) 0.51 0.50
Birth order of child 2.06 1.18
Child is Hispanic 0.21 0.40
Child is Black 0.29 0.45
Family size 3.85 1.91
Lives in north region 0.15 0.36
Lives in north-central region 0.23 0.42
Lives in south region 0.35 0.48
Lives in west region 0.19 0.39

Observations 6924

Note: Unless specified, control variables are measured at the child’s year of birth. For children born in
odd years after 1994 (years that the survey is not conducted), control variables are measured at the year
before birth, except family size which is measured at the year after birth. Among the control variables we
also include indicator variables for the year the child took the PIAT test. The mother’s wage variable is
conditional on being greater than zero and it is measured per hour in 2019 dollars.
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Next, the table reports statistics about maternal employment status and hours worked in the
three first years of the child’s life. The average annual number of hours worked in the three years
following birth is 848 hours (approximately 16 hours per week) with substantial variation across
children. One quarter of children in our sample have mothers who do not work during the three
first years following their birth.

Turning to maternal skill, on average mothers in our sample scored 38 out of 100 in the AFQT.
Since this test is set to have mean 50 and standard deviation 10 in the overall population, the mother
of the average child in the sample is about one standard deviation below the national average. We
also note that the AFQT scores vary notably across mothers. For our analysis, we standardize
AFQT within our sample, so that it has mean zero and standard deviation one.

The remainder of the table displays summary statistics for our control variables. Most children
have mothers who had completed high school and were at least 25 years old at the time of birth.
Children were on average about 75 months old (6 years old) when they took the PIAT. The sample
of children is equally balanced on gender, and is composed of 21% of Hispanic and 29% Black
children. Finally, in 60% of the cases, the mother’s spouse is present in the household at the time
of birth, and the average child is born to a family of about three other members.

List of Controls

Here we detail the baseline list of controls used in the analysis. For the mother, we use variables
meant to capture her human capital: AFQT, AFQT squared, and indicators for completed education
at birth: less than high school, high school only, some college, college, and more than college. We
also control for her age at birth by including indicators for whether her age was ≤ 19, ∈ [20, 24],
∈ [25, 29], ∈ [30, 34], or ≥ 35. As household-level controls, we include an indicator for whether the
mother’s spouse is present in the household, the spouse’s education at birth, and the natural log
of total family size. Finally, as child-level controls, we include indicators for the child’s sex, race,
birth order, Census geographic region, age in months at the time of the cognitive assessment, and
indicators for the year of cognitive assessment. In some particular specifications, we also include as
additional controls the pre-birth wage of the mother and the total pre-birth income of the mother’s
household from all sources other than her labor earnings.

4 Empirical Strategy

4.1 Bunching as a Corner Solution

Let L be our treatment variable, the average yearly working hours of the mother over the first three
years of her child’s life. Figure 3 shows L’s cumulative distribution for each quartile of the maternal
AFQT distribution. The distribution varies smoothly with L for L > 0, irrespective of the skill
level of the mother. However, there is a notable bunching point at L = 0 for mothers of all skill
levels. The degree of bunching at L = 0 tends to vary with the AFQT score of the mother, with
lower-AFQT mothers bunching at higher rates, as expected.

12



Figure 3: Evidence of Bunching by Quartile of the Maternal AFQT Distribution
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Note: This figure shows the cumulative density function (CDF) of the average yearly hours mothers have worked in
the three years following the birth of their child for each quartile of the maternal AFQT distribution.

Why is there such a concentration of mothers choosing exactly L = 0? To answer this question,
it is helpful to conceptually separate the actual, realized number of working hours L from the
desired number of working hours, which we denote L∗. The variable L∗ results from a combination
of factors, observed and unobserved, pertaining to the characteristics of the whole family which lead
the mother to want to choose a given number of working hours. Thus, while L is the treatment
variable, L∗ is an index of the confounders that affect choice L, i.e. the “type” of the mother, for
short.

The separation between L and L∗ helps us understand the bunching in Figure 3. Mothers of
type L∗ ≥ 0, choose exactly what their type leads them to choose: L = L∗. However, mothers of
type L∗ < 0 choose L = 0 because they cannot choose what their type would lead them to choose.
Thus, there are two groups of mothers at L = 0: those who are exactly indifferent between working
and not working (L∗ = 0), and those who are away from exact indifference (L∗ < 0). While mothers
of type L∗ = 0 choose L = 0 as an “interior solution”, mothers of types L∗ < 0 choose L = 0 as a
“corner solution”: the restriction that L cannot be negative is binding for them.

We can summarize the last two paragraphs with the following equation connecting L and L∗:

L = L∗ · 1(L∗ ≥ 0), with P(L∗ < 0) > 0. (1)

When L > 0, we have L = L∗. However, when L = 0, a break occurs between L and L∗ for the
observations of type L∗ < 0.13 As we show next, our identification approach uses this separation
between L and L∗ to identify the causal effect of interest.

13Figure 4 in Section 5.1 shows further evidence of the existence of mothers of type L∗ < 0. See Footnote 23.

13



4.2 Control Function Approach

We want to estimate the effect of maternal working hours (L) on her child’s skill (S). We write the
outcome equation as

S = f(L,X;β) + U, (2)

where f is the treatment effect function of interest, with causal parameters β. In its simplest form,
f(L,X;β) = βL and β is the average effect of working hours on the child’s skill across all mothers.
However, we also consider interactions with some elements of the control vector X in order to report
heterogeneous effects. U is the error representing all remaining factors that explain the outcome,
which are likely correlated with L.

The next assumption imposes some structure on the relationship between U and L∗:

Assumption 1. (Linearity in L∗) U = m(X) + δ(X)L∗ + ε, where m(X) and δ(X) are nonpara-
metric functions and E[ε|L∗, X] = 0.

Assumption 1 states that E[U |L∗, X] = m(X) + δ(X)L∗. Note that without loss of generality
L∗ is a sufficient index of all confounders of L because, by equation (1), L∗ tracks any variation in
L. Thus, Assumption 1 imposes a restriction only to the extent that it limits the functional form
of how L∗ affects the outcome. Specifically, while E[U |L∗, X] can be nonparametric in X, it must
be multiplicative in L∗. This expression, which can be viewed as a random correlated coefficients
model, is not structural; there need be no interpretation for m(X) and δ(X). All that is required
is that the nonparametric projection of U onto L∗ and X be linear in L∗. In fact, the assumption
can be stated equivalently as E[U |L∗, X] = a(X) + δ(X)(L∗−E[L∗|X]), so only the part of L∗ that
is orthogonal to X must be multiplicative. We refer to Assumption 1 as the “linearity” assumption
throughout the paper. Section 6.2 provides a detailed sensitivity analysis regarding this assumption.

Substituting the expression for U in Assumption 1 into equation (2), we obtain:

S = f(L,X;β) +m(X) + δ(X)L∗ + ε. (3)

If we could observe L∗, then Assumption 1 would be enough to identify β directly in equation
(3). We do not observe L∗ when it is negative, though, so we need to first obtain a proxy of it.
Specifically, note that we can write L∗ = L+L∗1(L = 0), and therefore E[L∗|L,X] = L+E[L∗|L =

0, X]1(L = 0). We can then write

S = f(L,X;β) +m(X) + δ(X)[L+ E[L∗|L = 0, X]1(L = 0)] + ε, (4)

where ε = ε+(L∗−E[L∗|L = 0, X])1(X = 0), so the new error is simply the original error augmented
by the proxy error. Equation (4) shows that, if we could identify E[L∗|L = 0, X], then we could
add the proxy L + E[L∗|L = 0, X]1(L = 0) to equation (3) as a control function in place of the
unobservable L∗, allowing us to identify β, as well as m(·) and δ(·).14

14Note that E[ε|L,X] = 0 by the Law of Iterated Expectations (E[ε|L,X] = E[E[ε|L∗, X]|L,X] = 0).
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The term E[L∗|L = 0, X] is the average type among mothers with observed covariates X who
do not work. Since P (L∗ < 0) > 0, we know that E[L∗|L = 0, X] < 0. However, we do not know
exactly how close to indifference (i.e., how close to L∗ = 0) is the average mother who does not
work, yet this is precisely the quantity that is needed for identification.

Substantial progress can be made by considering all possible values of E[L∗|L = 0, X] < 0 .
We can estimate β for a sequence of increasingly negative values in place of E[L∗|L = 0, X], which
gives us the full range of possible values of β that could be obtained under Assumption 1 alone.
We implement this strategy in Section 6.1 to show that we can obtain all our qualitative findings
without identifying E[L∗|L = 0, X], that is, without making assumptions beyond Assumption 1.15

However, to keep the discussion of the results more concrete, we report point estimates of β..
For this, we need to be able to pin down the value of E[L∗|L = 0, X], which can be achieved by
making assumptions about the shape of the distribution of L∗|X. Our headline results are obtained
under the following assumption.

Assumption 2. (Nonparametric Tail Symmetry) The tails of the distribution of L∗|X below the
P(L = 0|X)-th quantile and above the (1−P(L = 0|X))-th quantile are symmetric. Precisely, define
q(X) as the (1− P(L = 0|X))-th quantile of L∗|X. Then, for all l ≤ 0,

P(L∗ ≤ l|X) = 1− P(L∗ ≥ q(X)− l|X).

This assumption requires that the lower tail of the distribution of L∗|X be the mirror image of
the upper tail of the distribution of L (since L = L∗ when L > 0). We also consider nonparametric
full symmetry. While this is a stronger condition than tail symmetry, it is testable.16 We do not
reject the full symmetry assumption in our data at standard levels of significance. Tail symmetry
is weaker than full symmetry and is the weakest assumption we consider that is consistent with
the data, which is why our headline estimates are obtained under Assumption 2. Nevertheless, we
emphasize again that we focus our discussion only on findings that hold irrespective of the particular
distributional assumption made (see Section 6.1).

Throughout the paper we also report results under the following stronger but more standard
semiparametric assumptions.

Assumption 2′. (Semiparametric Uniform) L∗|X ∼ U [κ(X), θ(X)].

Assumption 2′′. (Semiparametric Normal) L∗|X ∼ N (µ(X), σ2(X)).

We consider these two alternative assumptions because they tend to yield very different estimates
of E[L∗|L = 0, X], further highlighting the robustness of the results to different distributional

15Implicit in the argument above is the rank condition that f(L,X;β), m(X) and the control function L+E[L∗|L =
0, X]1(X = 0) are not perfectly multicollinear. The perfect multicollinearity of the control function and f is ruled
out by the discontinuity of the control function at L = 0 (because P(L∗ < 0) > 0) and the specific functional form of
f(L,X;β). For example, this is guaranteed if f is continuous in L at L = 0, as in our case.

16To see how this assumption is testable, consider an example where P(L = 0|X) = 0.3, so there is bunching of
30% of the observations at L = 0. Then we can compare the empirical distribution of L|X between percentiles 30
and 50 with the mirror image of the empirical distribution between percentiles 50 and 70.
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assumptions. Intuitively, normality assumes a “long tail” of mothers who are far from indifference
between working and not working. By contrast, the uniform distribution assumes that all types
of bunched mothers are equally represented and that none have L∗’s too far from indifference.
Consequently, our estimates of E[L∗|L = 0, X] are more negative under the Semiparametric Normal
assumption than under the Semiparametric Uniform assumption.

These three distributional assumptions yield simple expressions for E[L∗|L = 0, X]. For instance,
under Assumption 2 (Nonparametric Tail Symmetry),

E[L∗|L = 0, X] = q(X)− E[L|L ≥ q(X), X]. (5)

If P(L = 0|X) ≤ 0.5, then we can easily obtain q(X), the 1 − P(L = 0|X)-th quantile of the
distribution of L|X. The control function in this case is L + E[L∗|L = 0, X]1(L = 0) where
E[L∗|L = 0, X] is described in equation (5).17

Remark 4.1. Understanding the Role of Controls in the Linearity Assumption
Although our approach can in principle be implemented without controls, their inclusion helps

weaken the linearity assumption (Assumption 1). Recall that the linearity assumption is equivalent
to E[U |L∗, X] = a(X) + δ(X)(L∗−E[L∗|X]). Therefore, when we use controls, only the component
of L∗ that is orthogonal to the controls needs to have a linear effect on the outcome S. In other
words, we still allow L∗ to have an arbitrary nonlinear effect on S, as long as it is through some
function of the controls X. Therefore, the richer the control set, the smaller the part of L∗ that is
constrained by the linear requirement.

Figure 5 in Section 5 shows direct evidence that controls weaken the linearity assumption. The
left panel, which shows how S changes with L unconditionally, is clearly more nonlinear than the
right panel, which shows how the residual of S changes with L after partialling out m(X).

Remark 4.2. Understanding the Role of Controls in the Distribution Assumption
The distributional assumption on L∗ may likewise be relaxed with the use of controls. The tail

symmetry requirement in Assumption 2, for example, is made on the conditional distribution of L∗

given X, and so L∗ can be affected by X in arbitrary ways. Indeed, the unconditional distribution of
L∗ may even be tail asymmetric provided that the residual variation in L∗, after accounting for all
variation that is explained by X, is tail symmetric. To see this, note that without loss of generality
we can write L∗ = E[L∗|X] + σ(L∗|X)η, where σ(L∗|X) is the standard deviation of L∗|X and
η = (L∗ − E[L∗|X])/σ(L∗|X). Assumption 2 therefore requires that η, which is the standardized
variation in L∗ not explained by X, is tail symmetric. This allows the unconditional distribution
of L∗ to be tail asymmetric due to any of the following reasons: (1) X has a tail asymmetric

17Under Assumption 2′, L|X is a truncated uniform distribution, and thus the expectation can be obtained as
E[L∗|L = 0, X] = −E[L|L > 0, X] · P(X = 0|X)/(1 − P(L = 0|X)). Under Assumption 2′′, L|X is a truncated
normal distribution, and thus the expectation can be obtained with a standard Tobit model as E[L∗|L = 0, X] =
µ(X)− σ(X)λ(−µ(X)/σ(X)), where λ is the inverse Mills ratio (i.e., the ratio of the standard normal PDF and the
standard normal CDF). Under both Assumptions 2′ and 2′′, the control function is L+E[L∗|L = 0, X]1(L = 0) with
the appropriate expression for E[L∗|L = 0, X] substituted.
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distribution; (2) the part of L∗ predicted by X is tail asymmetric; and (3) the conditional standard
deviation weighs observations in an unbalanced way, creating a tail asymmetry in L∗.

4.3 Estimation Details

Section 3 details our list of controls X, which contains both continuous and discrete variables. As
discussed in Caetano et al. (2023), in order to maintain the predominantly nonparametric structure
of the model, it is a good idea to “discretize” X before estimating the expectation E[L∗|L = 0, X].
Specifically, let {Ĉ1, . . . , ĈK} be a finite partition of the support of X into K sets, which we call
clusters, and let ĈK = (1(X ∈ Ĉ1), . . . ,1(X ∈ ĈK))′ be the K-th dimensional vector of cluster
indicators. In the estimation of the expectation, we substitute X with ĈK . The estimator Ê[L∗|L =

0, X] = Ê[L∗|L = 0, ĈK ] is thus constructed using a two-step procedure in whichX is first discretized
and then one of the distributional assumptions is applied separately for each cluster.

For example, in the Nonparametric Tail Symmetry case (Assumption 2), separately for each
cluster k, we estimate the probability of bunching p̂k = P̂ (L = 0|X ∈ Ĉk) by calculating the
frequency of mothers who do not work among all mothers in cluster k. Then, we calculate the
(1 − p̂k)-th quantile of L among the observations in cluster k, q̂k. Finally, Ê[L∗|L = 0, X ∈ Ĉk] =

q̂k − Ê[L|L ≥ q̂k, X ∈ Ĉk], where Ê[L|L ≥ q̂k, X ∈ Ĉk] is simply the average number of work hours
among mothers in cluster k who work q̂k hours or longer. This method is implemented for all
clusters k such that p̂k ≤ 0.5. If any cluster has p̂k > 0.5, then Assumption 2′′ is made for that
cluster, and the expectation for that cluster is calculated accordingly.18

The clusters are not arbitrary – rather, we employ a clustering algorithm in which two observa-
tions will be clustered together if they have similar Xs. As K grows, the observations in each cluster
have increasingly similar values of X as the within-cluster variation in these controls decreases.19

Thus, if E[L∗|L = 0, X] is continuous, Ê[L∗|L = 0, X ∈ Ĉk] will approximate E[L∗|L = 0, X] more
and more closely as K grows.20

Following a similar logic, we also use the same clusters to make sure our specification of the
function m(X) in equation (3) approximates a nonparametric function of X. Specifically, we specify
m(X) = X ′τ+

∑K
k=1 αk1(X ∈ Ĉk), so the cluster indicators control nonparametrically for differences

across clusters, while the within-cluster differences due to X are controlled linearly. As the number
of clusters increases, the nonparametric match improves, leaving progressively less unexplained
variation within each cluster. In Section 6.2.2, we also consider a similar specification of δ(X) with
Kδ clusters, thus allowing δ to vary nonparametrically with X.

18Estimation of the expectation under other assumptions is analogous. In the Semiparametric Uniform case
(Assumption 2′), separately for each cluster k, we use the estimator Ê[L∗|L = 0, X ∈ Ĉk] = −Ê[L|L > 0, X ∈
Ĉk]p̂k/(1− p̂k), where Ê[L|L > 0, X ∈ Ĉk] is the average number of work hours among mothers in cluster k who work
a positive amount. In the Semiparametric Normal case (Assumption 2′′), separately for each cluster k, we run a Tobit
regression of L on a constant. Letting µ̂k and σ̂k be the estimated coefficient (intercept) and standard deviation from
this Tobit model, Ê[L∗|L = 0, X ∈ Ĉk] = −µ̂k − σ̂kλ (−µ̂k/σ̂k) , where λ(·) is the inverse Mills ratio.

19We show results using hierarchical clustering (with the Gower measure of distance and Ward’s linkage) for its
simplicity, stability, and ease of interpretation as we vary the number of clusters (Hastie, Tibshirani, and Friedman
2009).

20See Caetano et al. (2023) for a more formal discussion of this approximation.
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Summarizing, our estimation approach consists of the following steps. First, we createK clusters
using our vector of pre-determined controls X. Next, we estimate E[L∗|L = 0, X ∈ Ĉk] separately
for each k = 1, . . . ,K as explained above. Then, we construct the control function (L + Ê[L∗|L =

0, ĈK ]1(L = 0)). Finally, we estimate our model of interest specifying m(X) as explained above and
including this control function as an additional control. For example, in our homogeneous model,
in which f(L,X;β) = βL and δ(X) = δ, we estimate via OLS the following regression:21

E[S|L,X] = βL+X ′τ +
K∑
k=1

αk1(X ∈ Ĉk) + δ[L+ Ê[L∗|L = 0, ĈK ]1(L = 0)]. (6)

5 Results

In this section, we present our estimates of β for different specifications of the function f(L,X;β).
In order to facilitate the interpretation of our results, we also specify δ(X) to be simple functions
of the controls X, as these functions clarify how selection varies with some key observables. We
show in Section 6.2.2 that our estimates of β are robust to specifications that allow δ(X) to depend
nonparametrically on X.

5.1 Homogeneous Treatment Effects

We start from the most parsimonious specification of f(L,X;β),

f(L,X;β) = βL. (7)

This specification of f(L,X;β) is comparable to the specifications in the prior literature.
Table 2 presents the β̂ estimates. Column (i) presents the results of simple regressions of skills

on maternal working hours with no additional controls. Cognitive skills are strongly positively
associated with maternal work hours. However, column (ii), which adds observable controls, m(X),
to the specification in column (i), shows that pre-determined observables remove most of this positive
relationship – the residual regression coefficient is close to zero and insignificant.

Columns (iii)-(v) present the estimates using our control function approach to correct for en-
dogeneity, as outlined in Section 4. Each column differs only in the assumption made on the
distribution of L∗|X. Column (iii) supposes that L∗|X is normally distributed, with mean and
variance that depend on the cluster to which X belongs (Assumption 2′′). Column (iv) supposes
that L∗|X is uniformly distributed with the upper and lower limits of the support depending on the
cluster of X (Assumption 2′). Finally, column (v) supposes that L∗|X is symmetric in the tails, so
that the unobserved portion of L∗|X below 0 is the mirror image of the corresponding tail above
0, conditional on the cluster of X (Assumption 2). As discussed in Section 4, the latter are our
preferred point estimates, as they rely on our weakest distributional assumption.

21Throughout the paper, we conduct inference via the bootstrap, which is proved in Caetano et al. (2023).
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Table 2: The Effect of Maternal Hours Worked on Early Childhood Cognitive Skills
(i) (ii) (iii) (iv) (v)

Uncorrected
No Controls

Uncorrected
w/ Controls

Semip.
Normal

Semip.
Uniform

Nonp. Tail
Symmetric

β 0.014** 0.000 -0.016** -0.019** -0.019**
(0.001) (0.001) (0.005) (0.006) (0.005)

δ 0.014** 0.017** 0.017**
(0.004) (0.005) (0.005)

Note: This table shows estimates of the effect of 100 additional hours per year working in the three years following
the child’s birth on the child’s early cognitive skills. N = 6, 924. Bootstrapped standard errors in parentheses (1, 000
bootstrap samples). This is the list of controls X: mother’s AFQT and AFQT squared, mother’s completed education
at birth (<HS, HS, some college, college, >college), mother’s age (≤ 19, ∈ [20, 24], ∈ [25, 29], ∈ [30, 34], or ≥ 35),
indicators for whether the mother’s spouse is present in the household and the spouse’s education at birth, ln(total
family size), child’s sex, race, birth order, Census geographic region, age at assessment date, and indicators for the
year of the assessment. We specify m(X) to enter both linearly and as indicators of each cluster of X, with a total of
K = 50 clusters. E[L∗|L = 0, X] is also estimated with K = 50 clusters, and δ(X) is estimated with Kδ = 1 cluster.
See Figure 12 and Table 5 for the analogous results for different values of K and Kδ, respectively. ** p<0.05, *
p<0.1.

Table 2 reveals that maternal labor supply has quantitatively large and statistically significant
negative effects on cognitive skills. Column (v) suggests that an additional 100 hours of maternal
labor supply annually over the first three years of a child’s life lowers the child’s cognitive skills
around age 6 by 0.019 standard deviations (s.d) on average. This effect is economically large given
the sample variance in maternal labor supply – a one s.d. increase in maternal labor supply over the
first three years of life (an increase in 838 hours per year, see Table 1) would translate to reductions
in cognitive skills of about 0.16 s.d. The estimates assuming normal or uniform distributions for
L∗|X are quite similar to the symmetric case.

Table 2 also shows the estimates of δ, which is the average effect of the confounder L∗ on the
outcome Y. These estimates are positive and significant: mothers who work more hours tend to be
positively selected relative to those who work fewer hours.

Selection on Observables vs. Selection on Unobservables

To provide more context to our findings, it is useful to note what happens to the estimates of β in
Table 2 as controls are sequentially added to the regression. The estimate of β, which was large
and positive without controls (column (i)), goes down to zero when the observable controls are
added (column (ii)). Our negative results in columns (iii)-(v) simply show that, when we further
add the control function (to control for unobservable confounders), the estimate of β goes down
further, indicating that selection on unobservables tends to be in the same direction as selection
on observables. In Appendix B, we formalize this idea by implementing the method developed
in Oster (2019) to show that our main estimate from column (v) is consistent with the degree of
selection on unobservables being smaller (but in the same direction) than the degree of selection on
observables, which is generally considered plausible (Altonji, Elder, and Taber 2005). Importantly,
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Oster (2019)’s method relies on completely different assumptions and does not use bunching of the
treatment variable in any way. We thus view these results as independent evidence that our findings
are plausible and not merely an artifact of our method.

Next, we present independent evidence of positive selection on both observables and unob-
servables based on Caetano (2015)’s discontinuity test, which does not rely on Assumption 1 or
Assumptions 2, 2′ or 2′′.

Figure 4 provides evidence of positive selection on observables. It shows local linear regression
fits of key covariates on L, estimated on the L > 0 sample.22 We also show the average values of
the covariates for the subsample of mothers bunched at L = 0. The left panel shows a clear positive
relationship between maternal AFQT and L away from zero, with mothers who work similar positive
hours tending to have similar AFQT scores. However, mothers who work exactly zero hours tend to
have sharply lower AFQT scores than those who work a small, positive number of hours. The right
panel shows a similar pattern for another key covariate: mothers at L = 0 are discontinuously less
likely to have a spouse present in the year the child was born than mothers with marginally positive
hours L = l > 0. We find positive discontinuities for many other observed covariates, suggesting
positive selection on observables at L = 0. That is, mothers who work a small, positive number of
hours per year tend to have discontinuously higher levels of observed covariates that are themselves
positively correlated with children’s cognitive skills, relative to those who work zero hours.23

Figure 5 provides evidence of positive selection on unobservables. The left panel is analogous
to those in Figure 4, but for the outcome variable (childhood cognitive skills S) in the vertical
axis instead of a key covariate. A significant positive discontinuity is evident, confirming the result
above that the effect of L∗ on S is positive: i.e., on balance, the variables (observed or unobserved)
that are positively correlated with L near zero tend to be positively correlated with S. The right
panel in this figure shows that even after all controls X are held fixed, the child’s skill S remains
discontinuously higher as L increases from L = 0, suggesting that there are unobservable variables
that are orthogonal to X which are themselves adding a positive bias to the results from column
(ii) of Table 2.24

22We choose a bandwidth of 400 hours because standard approaches to obtain the optimal bandwidth, such as the
rule-of-thumb (ROT), yield values that gravitate around 400. Versions of this figure with smaller bandwidths suggest
similar discontinuities. We also conduct t-tests to confirm that there are no discontinuities anywhere other than at
L = 0. For each of the covariates, we reject at 5% that the average at zero hours is equal to the average in the bin
(0,20] hours. By contrast, comparing the bins (0,20] and (20,40], we never reject equality at 10%.

23Figure 4 provides further evidence that mothers of type L∗ < 0 must exist in our sample, beyond the bunching
of observations at L = 0. To see this, note that if types L∗ < 0 did not exist, then all mothers at L = 0 would be
of type L∗ = 0, and on average this type should have plausibly similar characteristics to a type L∗ = l > 0 for small
l. That is, those exactly indifferent between working and not working (L∗ = 0) and those nearly indifferent between
working and not working (L∗ = l > 0 for small l) should be on average similar to each other. In contrast, these
discontinuities show that those at L = 0 are on average sharply different from those at L = l > 0 for small l, which
suggest that types L∗ < 0 must be also present in the sample of mothers choosing L = 0.

24As shown in Caetano (2015), in order to implement these discontinuity plots and infer that the selection on
unobservables is positive, we need to make two assumptions similar to the ones made in regression discontinuity
designs (RDDs): (a) L is a continuously distributed variable for L > 0, so we can arrive arbitrarily close to L = 0
from positive values of L; and (b) treatment effects are continuous at L = 0. These two assumptions are plausible in
our context. For (a), note from Figure 3 that the slope of the CDF (which is the probability density function, PDF)
is positive for small positive values of L around zero; indeed we observe several mothers working just a few hours per

20



Figure 4: Evidence of Positive Selection on Observables at L = 0
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Note: This figure shows the local linear regression of two key observed covariates on L (average hours working per
year during the first 3 years of the child) along with the 95% confidence interval. The bandwidth is 400 hours. At
L = 0, the average along with the 95% confidence interval is also shown.

Figure 5: Evidence of Positive Selection on Unobservables at L = 0
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Note: This figure is analogous to Figure 4, but instead of covariates the variables in the vertical axis represent the
outcome variable S (children’s cognitive skills) in the left panel, and the “residualized” outcome S in the right panel.
Covariates X enter nonparametrically in the right panel, exactly as in Table 2.

Alternative Specifications

Table 7 in Appendix C shows that the results in Table 2 are robust to using alternative samples and
controls. The first panel of the table reproduces the findings from Table 2. In the second panel, we
restrict the sample to only include mothers who are married at the time of the birth. In the third
panel, we restrict the sample to only include the unmarried mothers. In the fourth panel, we restrict

year on average during the first three years of the child’s life, which can be directly seen in the histogram of Figure
14 in Appendix C, which zooms into the distribution of L near L = 0. For (b), it is plausible that mothers working
on average just a few hours per year during the first three years of the child’s life should not generate a large causal
effect on the cognitive skills of the child at age 6, relative to those working zero hours per year. Thus, discontinuities
in E[S|L = l] as l approaches 0 from the positive side cannot generate any discontinuity because of its causal effect,
so it must be because selection varies discontinuously. See Appendix A for further details.
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the sample to only include mothers who do not have a college degree. Finally, in the last panel we
add as a control the total pre-birth income of the mother’s household from all sources other than
her labor earnings. Although the estimates change slightly for these different specifications, the key
findings from Table 2 stand.

5.2 Heterogeneity by Maternal AFQT and Labor Supply

We now assess heterogeneity in the effect of maternal labor supply by the skill (AFQT score) of
the mother and the intensity of her labor supply. We specify f(L,X;β) as a quadratic function of
hours, with the slope and convexity allowed to be heterogeneous by the normalized AFQT score of
the mother, A:

f(L,X;β) = (β + βAA+ βLL+ βALAL)L. (8)

Column (v) in Table 3 presents the results under our preferred nonparametric tail symmetry
assumption. The results under alternative distributional assumptions (normality and uniformity)
are very similar.

Table 3: The Effect of Maternal Hours Worked on Early Childhood Cognitive Skills by the AFQT
Score and Labor Supply of the Mother

(i) (ii) (iii) (iv) (v)
Uncorrected
No Controls

Uncorrected
w/ Controls

Semip.
Normal

Semip.
Uniform

Nonp. Tail
Symmetric

β 0.018** 0.003 -0.023** -0.026** -0.030**
(0.004) (0.003) (0.008) (0.010) (0.009)

βA 0.047** -0.010** -0.017** -0.021** -0.026**
(0.003) (0.004) (0.008) (0.009) (0.009)

βL (×1000) -0.004** -0.001 0.002 0.001 0.002
(0.002) (0.001) (0.002) (0.002) (0.002)

βAL (×1000) -0.015** 0.003** 0.004** 0.004** 0.004**
(0.001) (0.002) (0.002) (0.002) (0.002)

δ 0.016** 0.022** 0.023**
(0.005) (0.007) (0.006)

δA 0.005 0.009 0.013**
(0.005) (0.006) (0.006)

Note: This table shows estimates of the effect of 100 additional hours per year working in the three years following
the child’s birth on the child’s early cognitive skills. N = 6, 924. Bootstrapped standard errors in parentheses (1, 000
bootstrap samples). We specify m(X) to enter both linearly and as indicators of each cluster of X, with a total of
K = 50 clusters. E[L∗|L = 0, X] is also estimated with K = 50 clusters, and δ(X) is estimated with Kδ = 1 cluster.
See Figure 15 and Table 8 in Appendix C for the analogous results for different values of K and Kδ, respectively. **
p<0.05, * p<0.1.

Table 3 reveals a few interesting patterns. First, β < 0, so the estimated effect on cognitive skills
of an additional 100 working hours for a mother with average skills (i.e. A = 0) is negative. Second,
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βA < 0, so mothers with a higher AFQT skill tend to have a more negative effect of working hours
on children skills. This effect is statistically significant and quite large: each additional standard
deviation of mother’s AFQT lowers her estimated effect by 0.026 s.d. Third, βL is positive, but small
and insignificant, so the return of working hours for the average AFQT skill mother is approximately
constant in hours.25 Fourth, βAL > 0, so there is some evidence that the return of working hours
increases with hours for mothers with higher AFQT skill, but the degree of convexity is small.
These results are illustrated in Figure 2 in the Introduction for four hypothetical children who are
representative of each quartile of the distribution of skill of their mothers. Each child’s skill and
corresponding maternal working hours is represented by a hollow circle in the figure, which together
illustrate that mothers with higher skills tend to work longer hours and also tend to have children
with higher skills. As their mothers work longer hours, the children’s skills go down, but more
quickly for the children with higher skilled mothers.26 The figure also shows that, for the range of
hours in the data, the curves are approximately linear. On average, the estimates in Table 3 imply
more negative βs than the homogeneous, linear estimate in Table 2: the average estimated effect in
the sample is -0.027 compared to -0.019 in the homogeneous case.

The estimates of δ(X) are intuitive. While we continue to find evidence of positive selection (as
in the results for the homogeneous treatment effects model), here we also find evidence that the
positive selection is more intense for mothers with higher skills (that is, δA > 0).

5.3 Further Treatment Effect Heterogeneity by Pre-Birth Wages

The results so far suggest a misalignment between the work incentives mothers face and the short-
term benefits of this work for their children’s skills. The mothers who work the most are on average
those whose work has the most negative short-term consequences for their children. Moreover,
it does not appear that working longer hours is the reason why maternal work is particularly
detrimental to the skills of the children of higher-skilled mothers. One explanation for this pattern
is that the additional money earned by these higher-skilled mothers might not be enough to offset
the higher opportunity cost of working in terms of the foregone interactions with their child. In
order to investigate this hypothesis, we expand equation (8) by including a third dimension of
heterogeneity: the pre-birth wage rate of the mother, W :27

f(L,X;β) = (β + βAA+ βWW + βLL+ βALAL+ βWLWL)L. (9)

We allow the slope and convexity of the effect of hours to depend on maternal skills and wage
25Note that L2 is part of the terms multiplying both βL and βAL. Since L2 is a very large number for most working

mothers, the estimates of these coefficients are much smaller than the other estimates. For readability, we present
these estimates multiplied by 1,000.

26For some children in our sample whose mothers have sufficiently low skills, Table 3 actually implies positive
effects. In fact, of the 6,924 children in our sample, 592 have positive estimated effects of maternal hours on skills.
These positive effects are quite small, however, with an average of just 0.002 and a maximum of 0.005.

27Specifically, W denotes a residualized wage measure in which the effect of the age of the mother at birth and
year fixed effects have been removed. We standardize this measure so that it is in standard deviation units like our
AFQT measure. The estimates of βW and βWL should thus be comparable to the estimates of βA and βAL.
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rates in a separable way.28 Intuitively, we want to separately identify the effect in skills due to the
loss of interaction between the child and the mother because she is working and any potential gains
to skills flowing from the additional money received by the mother due to this work.29 We assume
that the heterogeneous effects via A (AFQT skills) holding W (pre-birth wages) constant tend to
incorporate mostly the loss of interaction between the mother and the child, while the heterogeneous
effects via W holding A constant tend to incorporate mostly the potential for additional earnings to
offset this loss, which may happen via higher-quality child care, increased goods purchases (better
food, more books, etc.), a reduction in parental stress, or in many other ways that may be difficult to
observe. Indeed, it is plausible that the maternal skills that are valued in the job market (affecting
wages) aside from AFQT may have only a small effect on the quality of the interaction between the
mother and the child during the first three years of the life of the child.

Table 4 presents the estimates of the function f(·) as specified in equation (9). For this table,
we restrict the sample to women who were working prior to giving birth, and include the pre-
birth wage rate and its interaction with AFQT score as additional controls. The results from the
more restricted functions f(L,X;β) estimated in Tables 2 and 3 are similar when we impose this
sample restriction and add these controls. As expected, the estimates are more noisy once this third
dimension of heterogeneity is included. However, this exercise is still informative. Comparing our
preferred symmetric estimates to the analogous estimates in Table 3 reveals a number of noteworthy
results. First, as expected, the heterogeneity in the effect by the mother’s skill (βA) becomes more
intense, since now it does not incorporate the offsetting income mechanism. Second, there is some
evidence of a positive offsetting effect due to wages (βW ), although this is not significant at standard
levels. Note also that there is some evidence of stronger nonlinearity by mother’s skill (βAL), and
there is no evidence of nonlinearity by wages (βWL). Still, the linearity assumption made in the
literature continues to be a reasonable approximation for the range of hours, skills and wages in the
sample.

Because of the noisy results, it is difficult to rule out some positive value for βW . A positive
value for βW is intuitive: mothers with higher pre-birth wages are likely paid more for each hour
they work post-birth, and this additional income could be beneficial to their child’s skills through a
variety of mechanisms already discussed. Nonetheless, it seems that there is much less heterogeneity
across different values of W than across different values of A.30 To see this, compare the values of
the point estimates of βW and βA in Table 4 in the context of the joint distribution of A and W in
the sample. Note that a mother who is 1 s.d. above the average in terms of A tends to be only one

28We also experimented with allowing for further heterogeneity by also including the interaction terms AWL and
AWL2. Including these additional interaction terms barely change the main estimates, while the estimates of these
terms themselves are imprecisely estimated.

29Using other variables in the data to more directly conduct this analysis is infeasible. There are two potential
variables from the NLSY that speak more directly to whether the mother needs to distance herself from the child
when working: whether the job has flexible working hours and how many hours per week the person works from
home. Unfortunately, these variables have too many missing observations to be useful for our purposes.

30We also estimate specifications analogous to Table 3 but with pre-birth wages taking the place of AFQT, also
obtaining little evidence for heterogeneous effects by the mother’s wage even when AFQT skills are not explicitly
specified in the function f(L,X;β).
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Table 4: The Effect of Maternal Hours Worked on Early Childhood Cognitive Skills by the AFQT
Score, Pre-Birth Wages, and Labor Supply of the Mother

(i) (ii) (iii) (iv) (v)
Uncorrected
No Controls

Uncorrected
w/ Controls

Semip.
Normal

Semip.
Uniform

Nonp. Tail
Symmetric

β -0.004 -0.002 -0.009 -0.013 -0.017
(0.005) (0.004) (0.014) (0.026) (0.017)

βA 0.039** -0.016** -0.027** -0.047** -0.035**
(0.004) (0.004) (0.014) (0.023) (0.017)

βW 0.007* 0.001 0.014 0.029 0.018
(0.004) (0.005) (0.016) (0.026) (0.019)

βL (×1000) 0.002 0.001 0.001 0.001 0.001
(0.002) (0.002) (0.002) (0.002) (0.002)

βAL (×1000) -0.012** 0.005** 0.006** 0.007** 0.007**
(0.002) (0.002) (0.002) (0.002) (0.002)

βWL (×1000) -0.002 0.001 -0.000 -0.001 -0.000
(0.002) (0.002) (0.002) (0.002) (0.002)

δ 0.006 0.010 0.013
(0.010) (0.022) (0.013)

δA 0.008 0.027 0.015
(0.009) (0.020) (0.013)

δW -0.009 -0.024 -0.014
(0.010) (0.021) (0.014)

Note: This table shows estimates of the effect of 100 additional hours per year working in the three years following
the child’s birth on the child’s early cognitive skills. N = 3, 994. Bootstrapped standard errors in parentheses (1, 000
bootstrap samples). In addition to the controls mentioned in Tables 2 and 3, these models also include pre-birth
wages (W ) and the interaction of pre-birth wages and maternal AFQT (W ·A) as elements of X. We specify m(X)
to enter both linearly and as indicators of each cluster of X, with a total of K = 50 clusters. E[L∗|L = 0, X] is also
estimated with K = 50 clusters, and δ(X) is estimated with Kδ = 1 cluster. See Figure 16 and Table 9 in Appendix
C for the analogous results for different values of K and Kδ, respectively. ** p<0.05, * p<0.1.

quarter of a s.d. above the average in terms of W . While the child of such a mother is expected to
lose 0.035 s.d. in cognitive skills for each additional hour she works (relative to the average mother),
we expect that only 0.018/4 = 0.0045 s.d. would be offset by her higher earnings. In other words, a
mother who is 1 s.d. above the average in skills would have to earn roughly 8 times the salary that
she would be expected to earn given her skill to fully offset the short-run impact on the cognitive
skills of her child.

Although more noisy, the estimates of δ(X) continue to suggest that the selection is somewhat
positive, and is disproportionately positive for higher-skilled mothers, as before. The table also
shows some evidence that the selection might be less positive for high-skill, high-wage mothers
relative to high-skill, low-wage mothers.
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6 Sensitivity and Robustness

In this section, we show that our key findings in Section 5 are robust to violations of the identifying
assumptions. Recall that we make two identifying assumptions: a linearity assumption (Assumption
1), and a distributional assumption on L∗|X (Assumption 2, 2′ or 2′′). We consider violations of
each of these assumptions in turn, and jointly.

6.1 The Distributional Assumption

Here we show that the key findings from the point estimates reported in Section 5 are robust to
the failure of the distributional assumption (i.e. Assumption 2′′, for the results in column (iii),
Assumption 2′, for the results in column (iv), and Assumption 2, for our headline results in column
(v)). We consider how our estimates of β vary when the estimator of E[L∗|L = 0, X] is biased,
which is what could happen if the distributional assumption does not hold.

We begin with the homogeneous treatment effect results from Section 5.1. Let Ẽ represent the
value of the expectation identified under a specific distributional assumption, and β̃ the correspond-
ing treatment effect identified using our control function approach. If the distributional assumption
does not hold, Ẽ may be different from E, and therefore β̃ may be different from the true treatment
effect β. Caetano et al. (2023) show that the mistake in the identification of β (Bβ = β̃ − β) can
be written as a function of the mistake in the identification of the expectation (BE = Ẽ− E), given
by31

Bβ = −BE

Ẽ
· δ. (10)

This formula reveals an asymmetry: for a given value of δ, and for a given magnitude of the mistake
in the expectation, |BE|, it is preferable to err towards a Ẽ that is larger in magnitude than E.
This means that, all else the same, it is generally less consequential for our estimator of β if we err
towards our estimator of E[L∗|L = 0, X] being too negative rather than not negative enough.

This asymmetry is confirmed in Figure 6. The thick black curve shows the estimates of β we
would have obtained using every possible mistaken value for the expectation.32 Specifically, the
horizontal line shows the value of Ẽ, and the thick black curve shows the resulting β̃ estimated
using the model Y = β̃L + m̃(X) + δ̃(L + Ẽ · 1(X = 0)) + ε. We considered also cases where the
plugin Ẽ is allowed to vary with X. These cases are more cumbersome to report, and conclusions
were similar.33 The vertical lines are added for reference, and are positioned at the value Ê[L∗|L =

0] = 1
n

∑n
i=1 Ê[L∗|L = 0, X = Xi], where Ê[L∗|L = 0, X = Xi] is estimated as described in Section

31We show here the formula in the case without controls. The formula in the general case is more cumbersome,
and can be seen in Remark 2.3 in that paper. Since the controls absorb some of the endogeneity that is leftover by
the use of a mistaken control function L+ Ẽ[L∗|L = 0, X]1(L = 0), the magnitude of β̃− β tends to be smaller when
controls are used than when controls are not used. Therefore, the formula we show represents a worst case scenario
for the failure of the distributional assumption.

32We restrict the range of Ẽ in this plot purely for formatting reasons, but we confirmed that the thick curve
behaves as one would expect based on the plot for extremely large values of Ẽ and for extremely low values of Ẽ.

33It is easy to see that this simplification should not be consequential to our conclusions, since our estimates of
β for K = 1 cluster (i.e. when no controls are used in the estimation of the expectation) are very similar to our
estimates of β for K = 50 clusters. See Figure 12 in Section 6.3.
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4.3 using 50 clusters. The estimates Ê[L∗|L = 0, X = Xi] used for the green dotted line assume
normality (Assumption 2′′), as do our estimates in column (iii). Analogously, the blue dashed line
and the solid black line correspond to the uniform (Assumption 2′) and tail symmetry (Assumption
2) assumptions, as do our estimates in columns (iv) and (v), respectively.34

Figure 6: Model from Section 5.1: β̂ for each counterfactual value of Ẽ[L∗|L = 0]
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Note: The thick black curve shows what would be β̂ obtained from regression equation (4) in the homogeneous case
of Section 5.1 for different counterfactual values of Ẽ[L∗|L = 0]. The vertical lines represent the weighted average of
the estimates of E[L∗|L = 0, X] across all K = 50 clusters, obtained from Assumptions 2 (solid black line), 2′ (dashed
blue line), and 2′′ (dotted green line). N = 6, 924.

The two main takeaways from Figure 6 are as follows. First, the qualitative finding that β < 0

does not depend on the value of Ẽ, and thus does not depend on the distributional assumption
we make. Second, there is more scope for our estimates from columns (iii)-(v) from Table 2 to be
underestimating the magnitude of β than overestimating it. Indeed, if we reported results using
more negative estimates of E[L∗|L = 0, X] than the ones we obtained under our distributional
assumptions, then the estimate of β would have changed little. However, had we used instead
less negative estimates of E[L∗|L = 0, X] than ours, then the estimate of β would have been more
negative than our reported results, and potentially substantially more so. The conclusion is therefore
that the qualitative findings from Section 5.1 would be the same for any distributional assumption
we could have made, and the quantitative value of β̂ would have gone from slightly less negative to
substantially more negative than the values we reported.

Figure 7 allows us to draw analogous conclusions for the main parameters of the heterogeneous
treatment effect model from Section 5.2. It is clear that our key qualitative conclusions that β < 0

and that βA < 0 do not depend on the estimated value of the expectation. Moreover, note that our
34The small discrepancy between the values of β̃ implied by the crossing of the thick black line with the vertical lines

and the estimates in Table 2 is due to the fact that the crossing value corresponds to the estimate using the control
function L+Ê[L∗|L = 0]1(L = 0), while our estimates in Table 2 use the control function L+Ê[L∗|L = 0, X]1(L = 0).
The difference reflects the small impact on the estimates of allowing the expectation to change with X, as discussed
in Section 6.3.
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quantitative conclusions about βA depend less on the estimated expectation than our quantitative
conclusions about β.

Figure 7: Model from Section 5.2: β̂ and β̂A for each counterfactual value of Ẽ[L∗|L = 0]
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Note: This figure is analogous to Figure 6, but for β and βA from Section 5.2 rather than β from Section 5.1. Note
that the value of Ẽ[L∗|L = 0], whatever it may be, must be the same in both panels of the figure. N = 6, 924.

Finally, Figure 8 shows analogous results for the main parameters of the heterogeneous treatment
effects model from Section 5.3.35 It is clear that our key qualitative conclusions that βW ≥ 0, βA < 0

and that |βA| > 1
4 |βW | again do not depend on the estimated value of the expectation.36 Moreover,

our estimates of βW and βA have a similar degree of sensitivity to different values of Ẽ, which is
much smaller than the degree of sensitivity of β.

Figure 8: Model from Section 5.3: β̂W and β̂A for each counterfactual value of Ẽ[L∗|L = 0]
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Note: This figure is analogous to Figure 7, but for βW and βA from Section 5.3 rather than β and βA from Section 5.2.
Note that the value of Ẽ[L∗|L = 0], whatever it may be, must be the same in both panels of the figure. N = 3, 994.

35Note that the vertical lines in Figure 8 are closer to zero, relative to the vertical lines from Figures 6 and 7.
This is intuitive, as Figure 8 restricts the sample to mothers who worked prior to the birth of the child. The full
sample of mothers used in Figures 6 and 7 include those who have never worked, and thus might be farther away
from indifference between working and not working (i.e., more negative L∗).

36Recall the discussion in Section 5.3 that a mother who is 1 s.d. above the average in A tends to have only a 1/4
s.d. above the average W .
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In summary, the four main qualitative conclusions in this paper are that (a) β < 0, (b) βA < 0,
(c) βW ≥ 0 and (d) |βA| > 1

4 |βW |, and these do not depend on the particular distributional
assumption we make. Regarding our quantitative results, the estimate of β is more sensitive to the
particular distributional assumption than the estimates of βA and βW .

Remark 6.1. Quantitative Robustness
To make further progress on understanding the robustness of our quantitative findings on β to
mistakes in the distributional assumption, one may consider restricting the range of possible values of
E[L∗|L = 0].37 Figure 9 presents a useful benchmark method for restricting the range of E[L∗|L = 0].
The right side of the figure shows as a thick black curve the cumulative density function (CDF) of
L, with bunching of 25% of mothers at L = 0. The left side of the figure shows different vertical
lines representing different estimates of the average type of these bunched mothers. Besides the
normal, tail symmetry and uniform estimates which were already shown in Figures 6-8, we also
show a long-dashed vertical red line, positioned at the expectation level E0, which we explain next.

Recall that a mother of type L∗ = 0 is exactly indifferent between working and not working.
Thus, E[L∗|L = 0] represents how far from indifference is the average mother who chooses L = 0.
Suppose that among the mothers who do not work (L∗ ≤ 0), no type is more common than those that
are indifferent between working and not working (L∗ = 0). Thus, although there could be many more
mothers of type L∗ < 0, each specific type, L∗ = l < 0, is at most as common as the type with exact
indifference, L∗ = 0. If this assumption holds, what is the largest expectation (i.e., closest to 0) that
is consistent with the data? The answer is E0, represented by the long dashed red vertical line in
Figure 9. This line is obtained by using the slope of the CDF (i.e., the PDF) of L as it approaches
L = 0, which represents the proportion of mothers at L∗ = 0. The diagonal long dashed red line is
the CDF of L∗ ≤ 0 that would be implied by assigning all mothers of type L∗ < 0 to a type that is
as close to zero as possible (intuitively, “stacking” all these mothers to a “pile” as close to zero as
possible), while making sure no type L∗ < 0 is more common than the type L∗ = 0. This means that
E0 is a conservative upper bound of the true value of E[L∗|L = 0], under this assumption.

37We abstract from controls X here for simplicity. The argument that follows could be made separately for each
cluster of X, and therefore implemented in the case with controls. Because our results are very similar when we
estimate the expectation without controls X (i.e., with K = 1 clusters) versus with controls (i.e., K = 50 clusters),
this simplification is not consequential for this discussion.
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Figure 9: A useful benchmark for E
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Note: The right side of the figure shows the CDF as a black thick curve, while the left side shows as vertical lines
the different estimates of E[L∗|L = 0] from Figures 6-8 plus a new benchmark estimate, E0 (long-dashed red vertical
line). This benchmark estimate comes from the assumption that mothers with negative types around L∗ = 0 are as
common as mothers of type L∗ = 0. The implied distribution of types of the mothers at L = 0 under this assumption
is also shown as a long-dashed red line. N = 6, 924.

Under the assumption above, we can conclude that β̂ ≥ −0.06, which substantially narrows down
the range of possible values of β̂. In Figure 8, this strategy helps to narrow down the ranges of β̂A
and β̂W as well, since it implies that β̂A ≥ −0.04 and β̂W ≤ 0.04.

6.2 The Linearity Assumption

The linearity assumption (Assumption 1) restricts the effect of the confounder L∗ on outcome S to
be the same for L > 0 as for L = 0. To gather more intuition about this assumption, it may be
helpful to think of L∗ as an index which combines the effects of several confounders. Ideally we would
want to allow for the effect of L∗ to vary with L because the relative weights of the confounders
that compose the index L∗ could change with L. For instance, some confounders may only affect S
when L = 0, while others may only affect S when L > 0. If these weights are sufficiently different
when L = 0 versus when L > 0, then the linearity assumption would not be a good approximation.

In this section, we study how our main findings would change under violations of this linearity
assumption. We consider two complementary sensitivity analyses. First, we reduce the extent of the
extrapolation of the effect of L∗ to be local only to the smaller values of L, in order to understand
whether the estimates we obtain change as we increase the degree of extrapolation towards larger
values of L. Second, we check how our main estimates change as we allow for nonlinearities by
allowing for the effect of the confounder on the outcome, δ, to change across observations with
different values of L.

30



6.2.1 Local vs. nonlocal extrapolation

In the first sensitivity analysis, we restrict the sample to L ≤ Lmax for progressively larger values of
Lmax. Under this restriction, we are making the “global” linearity assumption (Assumption 1) more
local: E[U |X,L∗] = m(X) + δ(X)L∗ for L∗ ≤ Lmax only. If our main conclusions are an artifact
of the linearity assumption, then we should expect that β̂ for lower values of Lmax would lead to
different conclusions than β̂ for higher values of Lmax.38 Intuitively, this check relies on the idea
that the linearity tends to be a weaker assumption locally versus globally.

Figure 10 plots the homogeneous estimates of β corresponding to column (v) of Table 2 for
different values of Lmax. Overall, the truncated estimates are generally indistinguishable from the
full-sample estimates (which are the ones in the far right of the plot, when the restriction L ≤ Lmax is
not binding). For local extrapolations around zero (i.e., for low values of Lmax), the point estimates
for β are generally more negative than the full-sample estimate, although they are also imprecise.
As we increase the degree of extrapolation, allowing Lmax to become larger, the estimates become
more precise and less negative, converging to the estimate shown in Table 2.

The results in Figure 10 are too noisy to allow us to assess whether going from a local to a
global linearity assumption generates any bias. Still, there is strong evidence that going from an
extrapolation in the range 0 ≤ L ≤ 1000 to a global extrapolation (i.e., full sample) does not
change the results. Thus, provided that linearity in the range 0 ≤ L ≤ 1000 is valid, nonlinearities
for values of L beyond 1000, if existent, do not seem to be consequential to our main findings.

Figure 10: Model from Section 5.1: Does the nonlocal linear extrapolation matter?
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Note: Figure plots as a solid line estimates of β for restricted samples with L ≤ Lmax. Bootstrapped 95% confidence
intervals based on 250 iterations shown in gray. Estimates shown for Lmax ≥ 70.

Figures 17 and 18 in Appendix C show analogous results for the main estimates from Sections
38We keep the expectation the same as we vary Lmax, so any change in β̂ as Lmax varies can only be attributed to

nonlinearities as we go from a local to a nonlocal linearity assumption.
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5.2 and 5.3, respectively. Although the estimates are very noisy for small values of Lmax, by
Lmax ≈ 1000, confidence intervals become narrower and a signal emerges. As in the homogeneous
case, nonlinearities for values of L beyond 1000, if existent, do not seem to be consequential to our
main findings about βA and βW either. However, we have not ruled out the possibility that there
are nonlinearities for L ≤ 1000 which might be biasing our results, so we turn next to a different
analysis to consider this case.

6.2.2 Allowing for nonlinearities

Ideally, we would like to allow the projection in Assumption 1 to vary freely with L∗ (i.e. E[U |X,L∗] =

ϕ(X,L∗) for an arbitrary function ϕ), but we cannot. However, instead of assuming E[U |X,L∗] =

m(X) + δL∗ as we did in the results from Section 5, we can allow for the projection E[U |X,L∗] =

m(X) + δ(X)L∗, which may partially absorb the nonlinear variation of ϕ(X,L∗) in L∗, if indeed
there is such nonlinearity. To clarify, becauseX can partially predict L∗, the variation of δ(X) across
values of X may pick some of the variation in L∗, thus δ(X)L∗ may fit some of the nonlinearity in
L∗, if existent.

Specifically, we consider Kδ clusters of X, and specify δ(X) =
∑Kδ

k=1 δk1(X ∈ Ĉk), where
1(X ∈ Ĉk) is the indicator of whether X belongs to cluster k (See Section 4.3 for details). Figure
11 shows that the cluster indicators can indeed predict some of the variation in L (and therefore in
L∗). The figure shows the median value of L within each of the Kδ = 50 clusters, sorted from the
lowest to the highest median. The interquartile ranges for a few selected clusters are also shown,
to provide a sense of the distribution of L (and thus of L∗) within each cluster. The median L

varies a great deal across clusters, from zero to over 1,500 hours. The bunching rates vary a lot too,
from 57% (for the first cluster) to 11% (for the last cluster). Because of this variation, we can fit
some of the nonlinearity in L∗ when we allow δ(X) to vary across clusters. For instance, δ1 is the
coefficient of the first cluster, and is a weighted average of the effects of the confounder for mothers
that disproportionately work few or no hours. Conversely, δ50 is the coefficient of the 50th cluster,
and is a weighted average of the effects of the confounder for mothers who disproportionately work
long hours.
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Figure 11: Heterogeneity in the Distribution of L across Clusters
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Note: This plot shows the median within cluster for each of the clusters when Kδ = 50. Clusters are sorted from left
to right based on the median of L within cluster. The interquartile ranges within cluster for selected clusters are also
shown.

Thus, we assess whether nonlinearities are important in our context by comparing the results
with Kδ = 50, which assumes E[U |X,L∗] = m(X) + δ(X)L∗, with the results with Kδ = 1 from
Section 5, which assume E[U |X,L∗] = m(X) + δL∗. If the results are similar, then the linearity
assumption with E[U |X,L∗] = m(X) + δL∗ might already be a good approximation.

Table 5 below shows that this is indeed the case. The table shows the estimates of β when
Kδ = 50, which are remarkably similar to the estimates of β when Kδ = 1, shown in Table 2. This
suggests that the linearity assumption is a reasonable approximation in the homogeneous model
from Section 5.1.

Table 5: Model from Section 5.1: Allowing for δ(X) to vary by cluster

(i) (ii) (iii) (iv) (v)
Uncorrected
No Controls

Uncorrected
w/ Controls

Semip.
Normal

Semip.
Uniform

Nonp. Tail
Symmetric

β 0.014** 0.000 -0.014** -0.019** -0.017**
(0.001) (0.001) (0.005) (0.007) (0.006)

Note: This table shows estimates analogous to the estimate from column (v) from Table 2, but allowing the coef-
ficient of the control function, δ(X), to vary with each of the 50 clusters (Kδ = 50 instead of Kδ = 1). N=6,924.
Bootstrapped standard errors in parentheses (1,000 bootstrap samples). ** p<0.05, * p<0.1.

Tables 8 and 9 in Appendix C show the analogous results for the heterogeneous analyses from
Sections 5.2 and 5.3. The main estimates when we allow δ to vary across Kδ = 50 clusters are very
similar to the estimates when Kδ = 1 (Table 3 and Table 4, respectively). These results suggest
that the linearity assumption is also a reasonable approximation in the heterogeneous models.
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Remark 6.2. Fixed Costs and Nonlinearities
The results above provide independent evidence in favor of the claim in Remark 2.1 that fixed

costs in the decision of mothers to work should not bias our results. Specifically, we argue below that,
if fixed costs were to bias our results, then this would manifest through a nonlinearity of E[U |L∗, X]

in L∗ that would lead the estimates of β to vary with Kδ. As the results above show, this does not
seem to be the case.

To see this, note that under fixed costs, equation (1) is replaced by L = L∗1 · 1(L∗1 ≥ FC), where
L∗1 can be understood as desired working hours, as before, and FC ≥ 0 can be understood as the
minimum number of hours each mother must desire to work in order for her to work at all. FC may
be positive because of fixed costs. In general, different mothers may have different values of both L∗1
and FC.

In this scenario, for L > 0, we have L∗ = L∗1, so L
∗ continues to be a sufficient index of all

confounders, since L∗ tracks any variation in L, as before. However, for L = 0, L∗ must now reflect
the influence of two “primitive” confounders, L∗1 and FC.39 If fixed costs matter, and the effects
of the “primitive” confounders L∗1 and FC are sufficiently different, then the effect of L∗ at L = 0

should be sufficiently different from the effect of L∗ for L > 0. If this nonlinearity is not absorbed
by controls (either by m(X) or δ(X)), then Assumption 1 would be violated.

When K = 50, the proportion of observations at L = 0 for each of the 50 clusters changes
substantially, from 57% in cluster 1 down to 11% in cluster 50 (Figure 11). This means that
effectively much of this potential nonlinearity is captured by m(X), since this term absorbs any
average difference in the effect of confounder L∗ across clusters. To the extent that controlling for
different intercepts might not be enough to handle all the nonlinearity, in this section we considered
Kδ = 50 instead of Kδ = 1, thus allowing for δ(X) to capture further nonlinearity with different
slopes across clusters. We do not find evidence that this last relaxation of the nonlinearity assumption
is important for our results, suggesting that if fixed effects are important at all in our context, controls
seem sufficient to handle any nonlinearity generated by their presence. The next section confirms
this result by relaxing the linearity assumption in another way – via the function m(X) instead –
and showing that the estimates of β do not change from K = 50 all the way to K = 100.

6.3 Controlling for X flexibly

In this section, we examine whether the number of clusters (K = 50) we use in the results from
Section 5 is appropriate. Specifically, the role of the clusters is twofold (see Section 4.3 for details):
(1) to add nonparametric flexibility to the m(X) expression. For K = 1, the specification of m(X)

would have been simply X ′τ, but for K = 50, we add 50 cluster indicators to the linear specification
to allow for additional nonparametric variation at the cluster level; (2) to allow for heterogeneity
in Ê[L∗|L = 0, X] in X at the cluster level, i.e. the expectation is the same for every observation
in the same cluster, but can vary freely across clusters. As the number of clusters K grows, we

39For instance, L∗ might be interpreted as a weighted average between two unobservables, L∗1 and L∗2 = L∗1 − FC,
with weights that relate to the proportion of mothers of type L∗1 inside the intervals (−∞, 0] and (0, FC], respectively.
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are better able to nonparametrically approximate m(X) and E[L∗|L = 0, X]. Moreover, if our
results stabilize beyond a certain number of clusters K̄, this suggests that the variation across K̄
clusters approximately captures the necessary nonparametric flexibility needed to estimate our main
coefficients. In this case, using a number of clusters K > K̄ is unnecessary.

In Figure 12, we replicate the analysis in column (v) of Table 2 for K = 1, . . . , 100. We notice
that the results are very stable as we increase the number of clusters from K = 1 to K = 100. This
shows that 50 (the number we use in the tables) is a sufficiently large number of clusters in order to
guarantee all the nonparametric flexibility our method requires. In fact, K = 50 clusters is a very
conservative choice, since it is far beyond the amount of flexibility the method seems to require in
our context.

Figure 12: Model from Section 5.1: Different Cluster Numbers (K)
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Note: Estimates correspond to the estimate in column (v) from Table 2 (based on Assumption 2), but with different
numbers of clusters used in the analysis. 95% confidence intervals based on 1,000 bootstrap iterations. N = 6, 924.

The analogous findings for our results from Tables 3 and 4 are shown, respectively, in Figures
15 and 16 in Appendix C. There too it is clear that the estimates of β stabilize at very low values
of K.

These findings help allay further concerns about both the linearity and the distributional assump-
tions. As discussed in Remark 4.1, a nonparametric m(X) guarantees that the linearity assumption
is only made with respect to L∗−E[L∗|X], that is, the part of the confounder that is not predicted
by controls. The stability of the estimates from low values of K all the way to K = 100 shows that
allowing for X to enter more nonlinearly does not seem to affect the estimate of β. Moreover, as
discussed in Remark 4.2, the relative stability of our main estimate (β̂) when K grows (i.e., as we
effectively change Ê[L∗|L = 0, X]) provides further evidence that our main conclusions do not seem
to be dependent on the distributional assumption.
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7 Conclusion

In this paper, we estimate the effect of maternal hours worked in the first three years of life on early
childhood cognitive skills. We correct for the endogeneity of labor supply using a control function
approach that leverages the bunching of some mothers at zero hours worked. We use this novel
identification strategy to estimate the average treatment effect of maternal labor supply for our
entire sample. We also allow for heterogeneity in these effects by maternal skill, hours worked, and
maternal pre-birth wages, which together improve our understanding of the trade-offs mothers and
their families face when deciding whether and how many hours to work.

We find that working longer hours has a negative effect on the cognitive skills of the child,
particularly for higher-skill mothers. Our results suggest that the presence of high-skill mothers in
the home is especially valuable for childhood skill accumulation, at least in the short run.

Our findings provide some useful insights for policies aimed at incentivizing mothers to work in
the first years of their children’s lives. We confirm the typical finding from the previous literature
that there is some scope for such policies to generate short-run, negative effects on children’s skills.
Our main contribution lies in providing a detailed analysis of the heterogeneity in these effects along
several dimensions, allowing us to assess for whom these unintended consequences are more likely
to be important. We find that there is little scope for such unintended consequences among low-
skilled mothers, even for those who work long hours. We do find clear evidence of such unintended
consequence among high-skilled mothers, even for those that are high earners, suggesting that
additional earnings are not enough to compensate for their absence. On the one hand, our finding
that these unintended consequences tend to be concentrated in families with higher skilled mothers
may be reassuring, since these are the families who are likely to have more resources to mitigate
any potential downsides as the child grows. On the other hand, skill development is a dynamic
process, and skill losses early in life may be particularly consequential. Understanding the long-run
consequences of maternal labor supply and their implications for intergenerational inequality is an
important research topic left for future work.

We conclude that, based on our results, work-promoting policies aimed at increasing the flex-
ibility of work arrangements seem the best bet to avoid the unintended negative consequences of
maternal labor supply in early childhood. Such policies might allow mothers to maintain their work
hours and career development while also allowing them to spend valuable time with their children.
Flexible work schedules may also allow partners to be a better substitute for the mother’s absence.
The need for social distancing during the Covid-19 pandemic has led to marked increases in the
share of workers operating under flexible work arrangements (e.g., work from home). In future work,
it would be interesting to study the childhood development consequences of these recent changes,
particularly if they prove persistent.

Additional research is also needed to understand the exact mechanisms through which the effects
we uncover operate. For instance, maternal labor supply may affect the child’s short-run skills not
only through the amount of time the mother interacts with her child, but also through the average
quality of the interaction. In turn, the average quality of the interaction may change in either
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direction with increased maternal labor supply, either because of increased work stress or because of
reduced money stress. There are also two distinct but complementary channels worth disentangling.
First, the hours worked by the mother in the first three years of the child’s life may have a direct
effect on the child’s skills measured around age 6. Second, the mother’s labor supply in these early
years might have a causal effect on her subsequent labor supply in years 4-6, which in turn might
have a direct effect on the child’s skills around age 6. Separately identifying these effects would
add value to this literature by improving our understanding of the specific times in early childhood
when longer hours of mother-child interaction are particularly valuable.
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A Relationship to Regression Discontinuity Designs

In this Appendix, we clarify the relationship between our method and regression discontinuity
designs (RDDs), as suggested in the Introduction. To streamline the discussion, we consider the
homogeneous case without controls X. In that case, equation (3) simplifies to

S = m0 + βL+ δL∗ + ε, (11)

where m0 is a constant. Using this model, Figure 13 provides a graphical representation of the
parallel between the two methods, where the arrows represent causal relationships. We are interested
in the effect of L on S, denoted β, and if δ 6= 0, we have an endogeneity problem, since L∗ is an
index of all potential confounders.

Figure 13: Relationship between RDD and Our Approach
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The left panel of this figure shows the standard “fuzzy” RDD case, e.g. Hahn et al. (2001).
Typically, in a fuzzy RDD there is a “running variable” R such that the treatment variable L is
discontinuous in R at a known threshold, while the confounder L∗ is continuous in R at the same
threshold. Thus, whenever the outcome variable S is discontinuous in R at the threshold, we can
infer that this discontinuity happened through the L channel and not through the L∗ channel.
We can identify β by simply dividing the intention-to-treat (reduced-form) effect, which is the
discontinuity of S in R at the threshold, by the first stage, which is the discontinuity of L in R at
the threshold.

In contrast, our approach is shown in the right panel of the figure. It can be seen as an
“upside down” fuzzy RDD that aims to identify the effect of L∗, rather than the effect of L. To
see this, consider that in our case L is both the treatment and the “running variable”, using the
language of RDD. The treatment L is continuous in the running variable L, as they are the same
variable. However, as discussed in Figure 1 in the Introduction, L∗ is discontinuous in the running
variable L at the threshold L = 0. Thus, any discontinuity in the outcome S at L = 0 can be
attributed solely to the L∗ channel. Using the language of RDD, we can identify δ as the ratio
of two discontinuities: the “intention-to-treat” or “reduced-form” discontinuity of E[S|L] at L = 0

and the “first stage” discontinuity of E[L∗|L] at L = 0. More formally, the “intention-to-treat” or
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“reduced-form” discontinuity is40

ITT := lim
l↓0

E[S|L = l]− E[S|L = 0]

= lim
l↓0

E[m0 + βL+ δL∗|L = l]− E[m0 + βL+ δL∗|L = 0] = −δE[L∗|L = 0],

which holds because liml↓0 E[βL + δL∗|L = l] = liml↓0 E[βL + δL|L = l] = 0. Moreover, the “first
stage” discontinuity in this case is

FS := lim
l↓0

E[L∗|L = l]− E[L∗|L = 0] = −E[L∗|L = 0].

Figure 1 in the Introduction illustrates this interpretation of the method: the left panel is
analogous to the reduced form RDD plot, while the right panel is analogous to the first stage RDD
plot. Unlike an actual RDD, our approach cannot directly identify the “first stage” discontinuity,
since L∗ is not observed. This is why we need to first guarantee that there is a “first stage” with
the assumption P(L∗ < 0) > 0 (which implies E[L∗|L = 0] < 0), and then make a distributional
assumption to identify the size of the discontinuity, E[L∗|L = 0]. Once this “first stage” is obtained,
we can identify δ simply by dividing the “intention-to-treat” effect by the “first stage” effect, as
in an RDD. Once the confounder effect is identified, we can easily obtain the treatment effect
by subtracting the endogeneity bias from the observed naive difference in outcomes. Our control
function approach implements this idea by identifying β and δ in the same step, rather than in
two steps as discussed above, and by using the data from the full range of L, not only a local
neighborhood of L = 0 as in this analogy. See Remark A.1 for further details.

Remark A.1. Why do we need to make the Linearity Assumption?
The parallels between our method and the RDD also clarify why we need the linearity assumption
(Assumption 1). In the calculation of the ITT above, we only used the linearity assumption locally
(i.e., the assumption that E[U |L∗] is linear in L∗ − E[L∗|X] in a neighborhood of L = 0). We can
therefore forego the global linearity assumption in favor of a local linearity assumption only around
L = 0. In this case, our RDD-like strategy of dividing the intention to treat by the first stage
discontinuities identifies a meaningful treatment effect: the average treatment effect of L for those
at L∗ = 0. The reason we make the global linearity assumption in the paper is that we want to
identify the average treatment effect among all mothers, not only among those at L∗ = 0. Thus, we
need to make an extrapolation by assuming that the effect of L∗ we identify at L = 0 is the same
as the effect of L∗ for L > 0. This extrapolation is where the parallel with the standard RDD ends:
RDD studies most often focus on identifying the effect only at the threshold. There is still a parallel
with less standard RDD studies that attempt to extrapolate in order to identify nonlocal effects, as
they typically make similar assumptions to our global linearity assumption. For instance, Angrist
and Rokkanen (2015) identify effects away from the threshold by using an assumption of ignorability
of the running variable conditional on other predictors of the outcome. This ignorability assumption

40Unlike in the RDD, the threshold is at the extreme of the support of the distribution of the running variable, at
L = 0, so we do not need to take the limit from the other side.
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is closely related to the global linearity assumption we make: for L > 0, L∗ has no effect on the
outcome except through m(X) or the control function δ(X)[L+E[L∗|L = 0, X]1(L = 0)]. For more
context, Section 6.2.1 shows the estimates of β when we only make a linearity assumption locally
(with different bandwidths, as done in local linear estimation for RDDs) in order to estimate the
effect around the bunching point.

Remark A.2. Role of Covariates
Another important difference between RDDs and our approach is the use of covariates. Typically,
covariates are added in RDDs only for efficiency purposes (e.g. Calonico, Cattaneo, Farrell, and
Titiunik 2019). In contrast, as discussed in Remarks 4.1 and 4.2, covariates are useful in our
approach to weaken or test both the linearity and the distributional assumptions. Covariates are
also useful in both methods to provide supporting evidence in favor of the identification strategy.
In RDDs, one typically indirectly argues that unobservables are continuous in the running variable
at the cutoff by showing that observables are continuous at the cutoff. Analogously, in Figure 4
we indirectly argued that unobservables are discontinuously at the bunching point by showing that
observables are discontinuous at the bunching point.

B Sensitivity Analysis Based on Oster (2019)

In this appendix, we provide additional evidence that the degree of selection implied by our estimates
is plausible. We do this by implementing the method proposed in Oster (2019), which itself builds
on Altonji et al. (2005). The method requires as inputs the estimates of β and the R2 from the
regressions we ran in columns (i) and (ii) from Table 2. Given these inputs, under the assumptions
from Oster (2019), we can infer the amount of selection on unobservables relative to selection on
observables that are implied by the true value of β being identical to the estimate of β from column
(v) in Table 2.

We report this implied ratio of selection on unobservables by selection on observables, which we
denote δOster, in Table 6. Following Oster (2019), we show these results for different potential values
of Rmax, which is the R-squared of a hypothetical regression of S on L, our observable controls,
and all unobservable confounders (including some that we may have not controlled for with our
control function approach). For all possible values of Rmax, our conclusions from Table 2 imply
that selection on unobservables would be less pronounced than selection on observables, sometimes
substantially less. For instance, if Rmax is 0.70, then δOster implies that our main estimates from
Table 2 are compatible with selection on unobservables being about two-thirds as intense as selection
on observables. If Rmax = 1, which corresponds to the value of Rmax suggested in Altonji et al.
(2005), selection on unobservables need to be only about 40% as intense as selection on observables.

These results suggest that one does not need particularly strong selection on unobservables to
rationalize our results. Importantly, Oster (2019)’s method relies on completely different assump-
tions than ours. In particular, it does not use bunching in L and it does not make the distributional
assumption we make. Thus, we view the results in Table 6 as providing independent confirmation
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of the plausibility of our main estimates.

Table 6: Proportional selection of observables and unobservables, Oster (2019).

True β = −0.019

Rmax 0.50 0.60 0.70 0.80 0.90 1.00
δOster 1.12 0.82 0.65 0.54 0.46 0.40

Note: The table shows the values of δOster as in Oster (2019) for different values of Rmax when the true effect
is β = −0.019, our estimate from column (v) of Table 2. δOster can be interpreted as the degree of selection on
unobservables relative to observables.

C Other Tables and Figures

Figure 14: Distribution of L near L = 0
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Note: This Figure shows the histogram of 0 < L ≤ 100 for the full sample, using a bandwidth equals to 2 hours.
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Figure 15: Model from Section 5.2: Different Cluster Numbers (K)
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Note: Estimates correspond to the estimate in column (v) from Table 3 (based on Assumption 2), but with different
numbers of clusters used in the analysis. 95% confidence intervals based on 1,000 bootstrap iterations. N = 6, 924.

Figure 16: Model from Section 5.3: Different Cluster Numbers (K)
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Note: Estimates correspond to the estimate in column (v) from Table 4 (based on Assumption 2), but with different
numbers of clusters used in the analysis. 95% confidence intervals based on 1,000 bootstrap iterations. N = 3, 994.
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Figure 17: Model from Section 5.2: Does the nonlocal linear extrapolation matter?
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Note: Figure plots as a solid line estimates of β (left panel) and βA (right panel) for restricted samples with L ≤ Lmax.
Bootstrapped 95% confidence intervals based on 250 iterations shown in gray. Estimates shown for Lmax ≥ 70.

Figure 18: Model from Section 5.3: Does the nonlocal linear extrapolation matter?
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Note: Figure plots as a solid line estimates of βW (left panel) and βA (right panel) for restricted samples with
L ≤ Lmax. Bootstrapped 95% confidence intervals based on 250 iterations shown in gray. Estimates shown for
Lmax ≥ 70.
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Table 7: Model from Section 5.1 – Alternative Samples and Specifications

(i) (ii) (iii) (iv) (v)
Uncorrected
No Controls

Uncorrected
w/ Controls

Semip.
Normal

Semip.
Uniform

Nonp. Tail
Symmetric

From Table 2 β 0.014** 0.000 -0.016** -0.019** -0.019**
(N = 6, 924) (0.001) (0.001) (0.005) (0.006) (0.005)

δ 0.014** 0.017** 0.017**
(0.004) (0.005) (0.005)

Married β 0.007** -0.002 -0.011* -0.014* -0.012*
(N = 4, 203) (0.002) (0.001) (0.006) (0.008) (0.007)

δ 0.008 0.011 0.009
(0.005) (0.007) (0.006)

Not Married β 0.021** 0.005** -0.012 -0.010 -0.021**
(N = 2, 721) (0.002) (0.002) (0.008) (0.008) (0.009)

δ 0.014** 0.012* 0.022**
(0.006) (0.007) (0.008)

Not College β 0.012** 0.001 -0.015** -0.019** -0.018**
(N = 5, 944) (0.001) (0.001) (0.005) (0.006) (0.006)

δ 0.014** 0.018** 0.017**
(0.004) (0.005) (0.005)

Other Income β 0.013** -0.000 -0.017** -0.023** -0.017**
(N = 5, 176) (0.001) (0.001) (0.006) (0.007) (0.007)

δ 0.014** 0.020** 0.014**
(0.005) (0.006) (0.006)

Note: This table repeats the specification from Table 2 using different samples and/or controls. The first panel
reproduces the results from Table 2. The “Married” results use the sub-sample of women who report being married at
the birth of their child, while the “Not Married” results use the complementary sub-sample. The “Not College” results
re-run the analysis using the sub-sample of women who report not having a college degree. The “Other Income”
results use the total pre-birth income of the mother’s household from all sources other than her labor earnings as an
additional control. ** p<0.05, * p<0.1.
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Table 8: Model from Section 5.2: Allowing for δ(X) to vary by cluster
(i) (ii) (iii) (iv) (v)

Uncorrected
No Controls

Uncorrected
w/ Controls

Semip.
Normal

Semip.
Uniform

Nonp. Tail
Symmetric

β 0.018** 0.003 -0.023** -0.031** -0.030**
(0.004) (0.003) (0.009) (0.011) (0.010)

βA 0.047** -0.010** -0.019** -0.024** -0.026**
(0.003) (0.004) (0.009) (0.010) (0.010)

βL (×1000) -0.004** -0.001 0.002 0.002 0.002
(0.002) (0.001) (0.002) (0.002) (0.002)

βAL (×1000) -0.015** 0.003** 0.004** 0.004** 0.004**
(0.001) (0.002) (0.002) (0.002) (0.002)

δA 0.008 0.013* 0.014**
(0.005) (0.007) (0.006)

Note: This table shows estimates analogous to the estimate from column (v) from Table 3, but with Kδ = 50 instead
of Kδ = 1. N=6,924. Bootstrapped standard errors in parentheses (1,000 bootstrap samples). ** p<0.05, * p<0.1.

Table 9: Model from Section 5.3: Allowing for δ(X) to vary by cluster
(i) (ii) (iii) (iv) (v)

Uncorrected
No Controls

Uncorrected
w/ Controls

Semip.
Normal

Semip.
Uniform

Nonp. Tail
Symmetric

β -0.004 -0.002 -0.010 -0.021 -0.020
(0.005) (0.004) (0.014) (0.027) (0.019)

βA 0.039** -0.016** -0.024* -0.040 -0.026
(0.004) (0.004) (0.014) (0.025) (0.017)

βW 0.007* 0.001 0.016 0.029 0.024
(0.004) (0.005) (0.016) (0.026) (0.019)

βL 0.002 0.001 0.001 0.001 0.002
(0.002) (0.002) (0.002) (0.002) (0.002)

βAL (×1000) -0.012** 0.005** 0.006** 0.006** 0.006**
(0.002) (0.002) (0.002) (0.002) (0.002)

βWL (×1000) -0.002 0.001 -0.001 -0.001 -0.001
(0.002) (0.002) (0.003) (0.002) (0.002)

δA 0.006 0.021 0.009
(0.010) (0.022) (0.014)

δW -0.010 -0.024 -0.018
(0.010) (0.021) (0.014)

Note: This table shows estimates analogous to the estimate from column (v) from Table 4, but with Kδ = 50 instead
of Kδ = 1. N=3,994. Bootstrapped standard errors in parentheses (1,000 bootstrap samples). ** p<0.05, * p<0.1.
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