Currency Mismatches and the Exchange Rate Shock: Impact on the Bank lending channel

Palma Filep-Mosberger¹ Lorant Kaszab¹ Zhou Ren²

¹Central Bank of Hungary

²Vienna Graduate School of Finance

July 19, 2023

Background and Motivation

Exchange Rate and Emerging Economies

- Past Experiences: Mexican peso crisis, 1997 Asian financial crisis
- Previous Literature: Krugman, 1999; Cespedes et al., 2004; Kim et al., 2015
 - Currency mismatch: liabilities in foreign currency and assets in local currency
 - Borrowers: firms and households
 - Balance sheet effects
- Role of Banks in Transmitting and Amplifying Exchange Rate Shock
 - Banks often exposed to currency mismatch
 - Exchange rate shock affect banks behavior e.g., Gabaix and Maggiori, 2015
- Key Questions:
 - Do banks transmit and amplify exchange rate shocks through credit supply in emerging economy?
 - Are non-foreign currency borrowers also affected?

- How does the bank lending channel transmit exchange rate shocks to local currency borrowers?
- Do changes in credit supply affect firms' real activities?

Setting: Hungary during the Swiss currency shock.

Figure: Exchange rate around the shock

- 1. Banks transmit exchange rate shock due to two types of currency mismatches.
 - Direct mismatch: Net foreign currency asset position
 - Positive correlation between pre-shock net Swiss franc asset positions and post-shock loan growth
 - Indirect mismatch: Lending to unhedged borrowers
 - Pre-shock lending to unhedged firms negatively affects post-shock loan growth
- 2. Banks' credit supply responses to exchange rate shocks are heterogeneous.
 - Responses depend on individual bank balance sheet exposure to both mismatches
- 3. Fluctuations in bank credit supply significantly impact small firms' activities

Data

- 1. Bank Balance Sheets
- 2. Hungarian Central Credit Information System
- 3. Hungarian National Tax and Customs Administration database

Hypothesis Development and Currency Mismatch Exposure Measurement

- Swiss franc appreciation shock transmission to Hungarian economy through two on-balance sheet channels
- Channel 1: Net Swiss franc asset position
 - Banks with more CHF assets than liabilities benefit from appreciation and increases credit supply
 - Net worth positive revaluation- more free capital
 - short term interest and debt service link to asset- more liquidity
 - de jure Direct mismatch

$$DMismatch_{i}^{j} = \frac{CHF assets_{i} - CHF liabilities_{i}}{Total bank assets_{i}}$$
(1)

- Hungarian government's compulsory loan conversion program
 - Conversion of CHF household loans to HUF loans from February 2015
 - Fixed exchange rate for conversion on November 7th, 2014
 - CHF lending to households no longer counts as CHF assets before shock
 - de facto Direct mismatch

 $DMismatch_{i}^{f} = \frac{CHF \text{ assets}_{i} - CHF \text{ liabilities}_{i} - CHF \text{ lending to households}_{i}}{\text{Total bank assets}_{i}}$

(2)

Hypothesis Development and Currency Mismatch Exposure Measurement

Channel 2: Swiss franc-denominated corporate loans

- Domestic currency depreciation increases debt burden (Balance-sheet effect)
- Contractionary consequences for non-financial firms
- Borrowers' balance-sheet effect feedback on banks
 - Higher credit loss provisions and reduction in profitability
 - lower capital buffer-capital constraint
 - Worsened agency problem
 - Liquidity reduction and lending decline

Indirect mismatch: Banks with higher proportion of CHF-denominated corporate loans more likely to decrease lending

 $IDMismatch_{i} = \frac{CHF \text{ lending to unhedged firms}_{i}}{\text{Total bank assets}_{i}}$ (3)

- Credit supply variation caused by the currency mismatch could correlate with unobserved firm-specific changes in credit demand.
- In an OLS estimation, we could overestimate or underestimate the credit supply effect depend on the direction of the correlation
- Our approach in loan level analysis: restrict sample with firms with multiple forint-denominated borrowing relationships.
 - They were not directly exposed to the Swiss franc exchange rate risk.
 - Add fixed effects to absorb firm-specific changes in credit demand (Khwaja and Mian, 2008).
 - Equivalent to a within-firm difference-in-difference approach.
 - Multiple borrowing firms are larger on average.
- 44 financial institutions (23 banks, 21 saving cooperatives) and around 4600 multi-borrowing firms.

The Bank Lending Channel at Loan Level

- we collapse the quarterly amount of credit to a pre-shock average (2014:Q1–2014:Q4) and a post-shock average (2015:Q1–2015:Q4).
- Standardized growth rate: $gm(loans_{b,j}) = \frac{loans_{b,j,2015} loans_{b,j,2014}}{0.5(loans_{b,j,2015} + loans_{b,j,2014})}$.
- The first-difference estimation is as follows:

 $gm(loans_{b,j}) = \beta_0 + \beta_1 DMismatch_{b,2014Q4} + \beta_2 IMismatch_{b,2014Q4} + \Gamma X_{b,2014} + \rho_j + \epsilon_{b,j}$ (4)

	(1)	(2)
	gm(loan)	gm(loan)
DMismatch ^f	0.190***	0.115***
	(0.039)	(0.012)
IMismatch	-0.098***	-0.037***
	(0.022)	(0.007)
Bank controls	Yes	Yes
Firm FE	Yes	No
Ν	10,052	52,790
R^2	0.398	0.337
Firm sample	multi-borrowing	all firms

The Bank Lending Channel at Loan Level

- Net Swiss franc asset position:
 - Expansionary imapct on post-shock bank lending
 - Banks one standard deviation apart, higher position lender increases credit by 19%
- Lending to unhedged borrowers
 - Contractionary impact on post-shock bank lending
 - One standard deviation increase predicts 9.8% drop in credit supply
- Heterogeneity in overall impact on bank-level credit supply, depends on currency mismatch exposure structure

Figure: fitted bank-level credit supply effect

Role of net swap position - off balance sheet mismatch

- 1. We primarily focuses on the impact of two on-balance sheet mismatches on bank lending, with the net Swiss franc swap position always serving as a control for potential off-balance sheet impact.
- 2. Net swap position has similar impact as net CHF asset position, but magnitude is smaller.
- 3. Construct a simple total direct mismatch measurement, also positive significantly correlated with credit supply

$$DMismatch_{i}^{swap} = DMismatch_{i}^{f} + \frac{\text{net CHF swap}_{i}}{\text{Total bank assets}_{i}}$$

Alternative explanations

- 1. Results driven by market funding conditions (equity or bond):
 - Exclude top 10% of firms in size in each sample
- 2. Policy event coinciding with exchange rate shock
 - the Hungarian government requested that banks compensate household borrowers for the excess interest charged in the past. We Calculate a proxy for interest rate compensation amount at bank level, include it in baseline regression

Pre-existing trends driving differences in post-shock lending growth

(a) Sorting by *de facto* direct mismatch

(b) Sorting by indirect mismatch

Placebo test with data two years before the shock and exposure measured in 2014Q4. table

Alternative outcome variables

- 1. Extensive margin:
 - Exit rate of bank-firm lending relationship. Banks with higher indirect mismatch exposure more likely to terminate a credit relationship. Higher net Swiss franc asset positions reduced the exit rate
- 2. Intensive margin effects:
 - Consistent with baseline regression

Fit bank-level credit supply variation using loan-level analysis results

$$\Delta supply_b = \hat{\beta}_1 DM ismatch_b + \hat{\beta}_2 IDM ismatch_b$$
(5)

 Calculate firm-level credit supply variation using loan size-weighted average bank-level credit supply variation for each firm

$$\Delta supply_{j}^{AVE} = \sum_{b \in \mathbf{B}_{j}} wbj \times \Delta supply_{b}$$
(6)

fitted firm level credit supply

Investigate how firm-level outcomes (y_j) are affected by Swiss franc mismatch in the bank balance sheet through regression analysis

$$y_j = \alpha_0 + \alpha_1 \Delta supply_j^{AVE} + \Gamma X_j^{AVE} + \Pi V_j + \rho^{industry} \times \rho^{region} + \hat{\rho}_j + \mu_j \quad (7)$$

The Bank Lending Channel at the Firm Level

Two main questions:

- Can firms offset bank-specific loan supply variation by borrowing from other banks with lower pre-shock Swiss franc mismatch exposures?
- How do changes in loan supply affect firm operations?
- A one standard deviation decrease in firm-level credit supply before the Swiss franc shock corresponds to a 18.2% decline in total bank borrowing growth for multibank firms credit effect results
- Firms cannot fully offset credit supply variation by adjusting borrowing from less affected banks
- Bank lending channel significantly impacts real activities of small firms:
 - Positive effect on investment
 - Negative effect on liquidation likelihood
- No economically significant effect of credit supply variation on large firms' real activities

Real effect results

- Exchange rate shocks significantly impact economic volatility and both foreign and local currency borrowers
- Bank balance sheet exposure to currency mismatches dictates post-shock lending behavior
- Diverse bank responses influenced by balance sheet composition
- Policy implications:
 - Advocates macro-prudential policies to reduce exchange rate risk exposure
 - Highlights the need to account for local currency borrowers when assessing foreign exchange risk

Fitted firm level credit supply

Figure: fitted firm-level credit supply effect

The Bank Lending Channel at the Firm Level

	(1)	(2)	(3)	(4)
	OLS	OLS	OLS	OLS
	gm(total loan)	gm(total loan)	gm(total loan)	gm(total loan)
$\Delta supply_{i}^{AVE}$	0.181***	0.129*	0.153***	0.252***
1	(0.076)	(0.055)	(0.006)	(0.027)
$\Delta supply_i^{AVE} \times \log revenue$		0.004		-0.009***
,		(0.006)		(0.002)
Bank controls	Yes	Yes	Yes	Yes
Firm controls	Yes	Yes	Yes	Yes
Fitted FE	Yes	Yes	No	No
R-squared	0.599	0.598	0.524	0.538
Number of observations	4,510	4,459	44,356	43,246
Region × Industry	Yes	Yes	Yes	Yes

Table: firm level impact: total bank credit

The Bank Lending Channel at the Firm Level

	(1)	(2)	(3)	(4)
	OLS	OLS	Probit	Probit
	g(capital 2y)	g(capital 2y)	Liquidation 1y	Liquidation 1y
Panel A: Multi-borrowing firms				
$\Delta supply_{i}^{AVE}$	0.023	0.194	-0.031	-0.362
	(0.026)	(0.145)	(0.055)	(0.261)
$\Delta supply_{i}^{AVE} \times \log revenue$		-0.014		0.029
		(0.011)		(0.021)
Fitted FE	Yes	Yes	Yes	Yes
R-squared	0.032	0.039	0.0564	0.0617
Number of observations	4,049	4,021	4,378	4,339
Panel B: Multi and Single-borrowing firms				
$\Delta supply_i^{AVE}$	0.044***	0.225***	-0.041***	-0.115*
5	(0.007)	(0.038)	(0.015)	(0.050)
$\Delta supply_i^{AVE} \times \log revenue$		-0.017***		0.007
1		(0.003)		(0.006)
Fitted FE	No	No	No	No
R-squared	0.060	0.061	0.0271	0.0241
Number of observations	39,455	38,786	43,021	42,146
Bank controls	Yes	Yes	Yes	Yes
Firm controls	Yes	Yes	Yes	Yes
Region × Industry	Yes	Yes	Yes	Yes

Table: The firm-level total capital growth rate

	(1)	(2)
	FE	OLS
	gm(loan)	gm(loan)
DMismatch	-0.027	-0.001
	(0.039)	(0.031)
IDMismatch	-0.017	0.004
	(0.041)	(0.029)
Bank Controls	Yes	Yes
R ²	0.429	0.015
Number of observations	9,154	9,154
Firm fixed effect	Yes	No
Bank type	Bank	Bank
Firm borrowing type	Multiple	Multiple

Table: Placebo test

Net swap position

	(1)	(2)
	FE	FE
	gm(loan)	gm(loan)
DMismatch	0.189***	
	(0.042)	
DMismatch ^{SWap}		0.064***
Division		(0.017)
IDMismatch	-0.084***	-0.081***
	(0.021)	(0.029)
Net Swap position	0.083***	
	(0.022)	
Bank Controls	Yes	Yes
R ²	0.398	0.396
Number of observations	10,052	10,052
Firm fixed effect	Yes	No
Bank type	Bank	Bank
Firm borrowing type	Multiple	Multiple

Table: Swap