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Abstract. We study tail risk dynamics in high-frequency financial markets and their connection with
trading activity and market uncertainty. We introduce a dynamic extreme value regression model ac-
commodating both stationary and local unit-root predictors to appropriately capture the time-varying
behaviour of the distribution of high-frequency extreme losses. To characterize trading activity and mar-
ket uncertainty, we consider several volatility and liquidity predictors, and propose a two-step adaptive
Li-regularized maximum likelihood estimator to select the most appropriate ones. We establish the oracle
property of the proposed estimator for selecting both stationary and local unit-root predictors, and show
its good finite sample properties in an extensive simulation study. Studying the high-frequency extreme
losses of nine large liquid U.S. stocks using 42 liquidity and volatility predictors, we find the severity of
extreme losses to be well predicted by low levels of price impact in period of high volatility of liquidity and
volatility.
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1 Introduction

Measuring tail risk at high-frequency has become of utmost importance to market players and regulators (Weller,
2017)). While much efforts have been devoted to the measurement of tail risk at low-frequency (Nieto and Ruiz,
2016)), few attempts have been made to measure risk at high-frequency, see |Giot| (2005, Dionne et al.[ (2009)
and |Chavez-Demoulin and Davison| (2012)). Moreover, although these models can be very accurate, they explain
the tail risk evolution in a “reduced form” manner, i.e., using autoregressive terms exploiting the persistence
of the time series. They thus fail to provide a deeper structural understanding of the factors driving tail risk.
As much as understanding the macroeconomic determinants of tail risk is a relevant problem at low-frequency
(Massacci), [2017)), it is important to understand how market uncertainty and trading activity impacts tail risk
at high-frequency.

From a market microstructure perspective, though the intensification of high-frequency trading has improved
trading costs and liquidity (Hendershott et al., |2011)), it is also suspected to be responsible for more frequent
extreme price movements over short periods of time (Brogaard et al., [2018). Such extreme fluctuations are
often the result of an aggressive directional market making activity initiated when the market is already under
stress. |Brogaard et al.| (2018) find that market wide extreme shocks are likely to trigger the risk controls of
high-frequency liquidity providers that thus withdraw from the market to reduce their risk exposure. Similarly,
Kirilenko et al.| (2017) find that during the market turbulence induced by the 2010 Flash Crash, many high-
frequency liquidity providers withdrew from the market, thus exacerbating the price fall. Studying how market
uncertainty and trading activity affect extreme losses can thus provide a deeper understanding of the evolution
of tail risk at high-frequency, and this paper proposes appropriate econometric techniques to do so.

We consider a dynamic extreme value regression framework (Chavez-Demoulin et al., 2016; [Massacci, 2017}
Schwaab et al.l |2021]) where the distribution of extreme losses is assumed to be well approximated by a general-

ized Pareto distribution (GPD) with time-varying parameters driven by exogenous preditors and autoregressive
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terms. To assess the impact of market uncertainty and trading activity on extreme losses, we consider several
volatility predictors, proxing for market uncertainty, and liquidity predictors, characterizing trading activity.
Despite extreme value regression techniques have been widely applied in finance (Chavez-Demoulin et al., [2016;
Hambuckers et al} |2018} [Bee et al., 2019), our investigation presents new challenges: (i) as the financial litera-
ture proposes several volatility and liquidity measures, we face a variable selection problem aimed at identifying
predictors capturing the most relevant aspects of trading activity affecting extremes as well as improving the
predictive accuracy of tail risk; (ii) volatility and liquidity measures observed at high-frequency exhibit strong
persistence and seasonalities, thus violating the classical stationary assumptions required for inference with the
maximum likelihood estimator (MLE). To overcome these issues, we develop a two-step adaptive L;-regularized
maximum likelihood estimator (ALMLE) that allows performing variable selection with both stationary and

local unit-root predictors (Lee et al. 2022]), and establish its oracle property.

We investigate the impact of 42 liquidity and volatility indicators on the distribution of high-frequency
extreme losses of nine large liquid U.S. stocks observed from 2006 to 2014. We find that the severity of tail
risk, as measured by the shape parameter of the GPD, is well predicted by low price impact (Goyenko et al.,
2009) during periods of high volatility of volatility and high volatility of liquidity. This finding is coherent with
the evidence in Brogaard et al.| (2018) that market markers liquidity supply is outstripped by liquidity demand
after large uncertainty shocks, and their rush to leave the market to lower their risk exposures amplify extreme
price movements. Our two-step ALMLE is necessary to reveal this pattern as the standard MLE finds almost
all predictors to be significant. To validate our estimating strategy, we provide an out-of-sample VaR forecast

analysis and find that the estimated model performs well in the out-of-sample.

The remainder of the paper is organized as follows: Section [2| presents the time-varying GPD model accom-
modating stationary and local unit-root predictors as well as autoregressive components; Section [3] presents the
MLE and shows its asymptotic non-normality when local unit-root predictors are included in the model; Section 4]
introduces the two-step ALMLE and prove the oracle property of this estimator in selecting both stationary
and local unit-root predictors; Section [5| provides an extensive simulation study comparing the performance of
the two-step ALMLE to those of the MLE, showing the superiority of the former in finite samples. Section [6]
discusses the results of the empirical study whereas Section [7] concludes. Additional results and mathematical

proofs are relegated to the Appendix.

2 Extreme value regression

We denote the logarithmic loss and return time series of a financial asset by {l;}7_; and {r;}~ , respectively,

with l; = —r;, and denote z; a vector of exogenous predictors observed at time ¢.

Assumption M.1. {I;}], and {z:}}_, are on a complete probability space (2, F,P). At each time t €
{1,2,...,T}, we have an information set F;_1 available which is the o-algebra generated by {zi—1,li—1, zt—2,
li—o,...}.

Let assume {l;}~ ; is independent and identically distributed (i.i.d.) with a cumulative distribution function
(c.d.f.) F(-). Probabilistic results from extreme value theory show that if there exist real sequences ar > 0
and Br such that limy_, o FT (a7 + B7) converges to a non-degenerate distribution G(-), then F(-) belongs
to the max-domain of attraction of G(-), i.e. F' € D(G), and G(-) must be the generalized extreme value (GEV)
distribution (see Theorem 3.1.1. of |Coles| (2001))).

Let {y:}X; be a censored sequence of excess losses above a high threshold wu, such that the excess loss

vy =l — u, if [; > u, and y; = 0 otherwise. Define the conditional distribution of excess losses,

Fo(y) =P{li—u<ylly>u} =P{y, <ylyy >0}, 0<y <L" —u,



with L := sup{z : F(x) < 1} the right end point of F(-). Pickands| (1975) and Balkema and De Haan| (1974)
show that if F'(-) € D(G) then the limiting distribution of Fj,(y) is a GPD, i.e.

lim — sup |Flu(y) — GPD(y; k, 0u)] =0, (1)

u——+o00 0<y<+oo

where GPD(+; k, o) denotes the GPD with shape parameter k € R and scale parameter o > 0,
“1/k
GPD(y: ko) =1 — (1 + I#) . 2)
o

Eq. suggests that Fj,(y) with u large enough can be approximated by a GPD(-;k,0,), where the scale
parameter o, depends on u. The peaks-over-threshold (POT) approach assumes this relationship holds exactly
above a fixed threshold v and uses the exceedances of such threshold to estimate the GPD parameters o and k
(see section 4.3 of |Coles| (2001))).

2.1 Time-varying peaks-over-threshold (POT) approach

The classical POT approach assumes that {l;} is i.i.d. However, financial data typically exhibit dependence
features such as time-varying heteroscedasticity and extremal clustering that violate this assumption. To capture
these aspects, we adopt a dynamic POT approach. Let {y;}7_, be a censored sequence of excess losses over a
threshold time series {u;}Z_;, we model the excess loss distribution conditional on the information set F;_1,
Fyu, (y) = P{y: < ylys > 0, F;_1}, using a GPD with time-varying parameters k; and o;. See, e.g., Chavez-
Demoulin et al.| (2014]); Massacci (2017)); Bee et al.| (2019)).

Consider the vector-valued time series of p € N explanatory variables {2z: := [214,...,2p4]) }1—1. Given the

information set F;_1, we consider the following specification for {(k, o)},

ey -
log <O5 — kt) = 61’0 + ;ﬁl’j zjvtfl’ (3)
p
log(ot) = B0 + 262,]‘ zji—1+ B2,pt+1 log(or-1). (4)
=

We impose that 0 < k; < 0.5 and o > 0 (see [Hosking and Wallis| (1987))) to ensure a finite conditional variance
of y; and numerical stability in the estimation. As the scale parameter o; can be associated with the variance
of the underlying distribution F;(-), we accommodate an autoregressive term in log(o;) in the spirit of GARCH
models (Engle) |2001)). We allow for both stationary and unit-root explanatory variables in and , such

that persistent predictors can be accommodated.

3 Maximum likelihood estimation

Let B := [810,61,1,---+51,p, 82,0, 521, - -, B2,p+1] denote the vector of the model coefficients in -, and
define the coefficient space © of B as a subspace of R?*2 x (—1,1) accomodating all permissible coefficient
vectors 3. We present the MLE of the model coefficients in — and show it is consistent but asymptotically

non-normal when local unit-root explanatory variables are included in the model.

3.1 Maximum likelihood estimator

Assumption M.2. We assume that for a given {u;}, the conditional c.d.f. Fi(-) of l; given Fi_1 exists for
te{l,2,...,T} and yr :=1l; —ur > 0 follows a time-varying GPD, i.e.

1
Tk
Fyju, (Y1) = GPD(ys; ke, 00) = 1 — (1 + ktii) ; (5)



where {ki} and {0} are specified by (3)-(@) with the true coefficient vector B° € © C R**2x (—1,1). Moreover,
{us} returns a constant unconditional exceedance rate, i.e., P{y, > 0} =7 for allt € {1,...,T} with a constant

T close to zero.

Assumption M.3. Among the explanatory variables in Model -, we assume that {z;,i =1,...,po} €
I(0) and {zj+,j =po+1,...,p} € I(1) with €j4 := zj 4+ — zj1—1 and {€;,j =po+1,...,p} € I(0). We denote
by I(0) and I(1) the set of stationary and unit-root predictors, respectively.

Under Assumption the conditional probability density function (p.d.f.) of y;|{y; > 0, F;_1} is

) = o (1 +ky) (6)

Ot O¢
and the log-likelihood function L(-) of {y:|y: > 0, F;_1} can be defined as (Schwaab et al.| [2021]),

T

£(8:{ui} (=1} = > Lue > 0} log(fe(wr))
= ™)

= té 1{y, > 0} <log(0t) - (klt + 1> log(1 + ktff)) ;

t

where
-1
P
ke(B) =05 [ 1+exp | —(Bro+ Y Brjz-1) ;
j=1
(8)
P
o1(B) = exp | Boo+ Y Baj Zju-1+ Baps1 log(or1) |,
j=1

fort =1,2,...,T, with 1{-} the indicator function taking value one if the input is true and zero otherwise.

We consider standardized predictors {z;} in the estimation to get stochastically bounded variables, i.e., for

each t € {1,...,T}, we standardize z; as follows,

Zpo+1,t @ ]I (9)

zl =214, Zpo,ts T T

Replacing {z;} with {z;} into the likelihood function in (7)) and maximizing we obtain

/@mle = arg max L(0; {yt}v {Z;Ll})v (10)
BeoO

where © C R?P*2 x (—1,1). We denote the corresponding vector of true coefficients 3°*.

Remark. Assumption assumes a constant unconditional probability for the exceedance 1{y, > 0} for
t € {1,...,T}, which is more general than assuming a constant conditional probability for 1{y; > 0|F;_1}. This
causes us no extra burden to obtain the limiting behaviour of the MLE because 1{y; > 0} is bounded and not
a function of the model coefficients. Assumption allows for both stationary and unit-root predictors among

Zt.

3.2 Asymptotic properties of the MLE

Smith| (1985) establishes the asymptotic properties of the MLE of a GPD with constant k£ and ¢ in an i.i.d.
setting. We extend |Smith|(1985|) establishing the consistency and limiting distribution of the MLE of the dynamic
GPD with stationary and unit-root predictors in . In what follows, we list the assumptions required to derive
the asymptotic behaviour of the MLE, and establish the consistency and limiting distribution of E



Assumption M.4. We assume that,

=B, =0(), for i=0,1,...,p9, ands =1,2;

o :Z\fﬁﬁ,]:O(l), for j=po+1,....,po+pands=12; (11)

Bé):kp-&-l = ﬁg,p-&-l € (713 1)7

and B := [BY%, ..., B, B, -, B3 1] € RPPT2 % (=1,1).
Assumption M.5. {€, = [z1,4,. ., Zpg.ts Epo+i,ts-- - Ep, JYE | is assumed i.i.d. (0, X)) with mean 0 and posi-
tive definite covariance matriz X . With zf =210 Zpoits 21’07\/%“ ZT I }, we assume that as T — 00,
we have that
T 1 X
72 p 7 = - )7 7;:1727'~7PO§
VT = T2
1 & 1 &
W 722750 = 0D, > (57 =0p(1). §=(po+1)....p
t=1 t:l
T
1 v s . L . ]
T Z z;z{ s positive definite in probability one;
t=1
and there exists a positive definite matrix X = [Eiyj]ivjzl _____ p such that
1 & 1 &, p. t
. 2 0 .
TIET;O T Zzl ¢=0, lim T ;(Z:t) =1 No t_zlz’zkt ~ Wi(?)v i=1,2,...,po;

T 1 T 1
1 « D 1/2 1 w2 D .
fZ%N/O SEW(t)dt, TZ(ZM)?N/O i Witydt,  j=(po+1),...,p;
t=1 t=1

s positive definite in probability one;

T
=3 aa R /O (S W) (22 Waatt))
t=1
Zz z;
t=1

where 1 <ty < T, and W;(-), W;(-) are independent Brownian motions. And denote R "for convergence in

distribution and Wpy(t) := [d%t), ce d%ﬂ Wpet1(t), ..., Wy(t)]'.

Assumption M.6. O is a compact subspace of R?P*2 x (—1,1) containing the true coefficient vector 3°* such

that H.(+) is positive definite in © almost surely.

Assumption M.7. Given Assumptions and [M5], we further assume that as T — oo, it holds that

T
Z ((B°) ~ Sy, (12)

where Sy s a non-degenerate distribution:
Sy =5/ / AW, (t) (13)
0

where Xy, is a positive definite (2p + 3) x (2p + 3) matriz and {Wy, ()}, {Wy, (t)}, {War(t)} are Brownian
motions.



Ho (B {li} {2 })
T

Assumption M.8. at B°* is assumed to weakly converge to a stochastic integral 2y, i.e.,

He(B”: (i} (=i} p [,

T when T — oo, (14)

where le exists upon the limiting behaviours of z; in Assumption|M.5

Remark. Assumption imposes the orders of magnitude of 3° to ensure that the unit-root explanatory
variables zp,41,¢,---,%p,t have coefficients of local-to-zero rate being %, see |Phillips and Lee| (]2013[) and
. Assumption ensures that the partial sums of {2} and {z} 2} converge at specific rates.
Assumption is also used by [Saikkonen| (1993, [1995)); [Lee et al.| (2022), and was shown to hold for time
series with a moderate degree of temporal dependence and heteroscedasticity of {€;}. See, e.g.,Theorem 18.2
of Billingsley| (2013)), [Phillips and Durlauf| (1986); Phillips| (1991). Assumption restricts the permissible
parameter space © for the ML estimation, especially maintaining the positive definiteness of H.(3) in analogy
to Assumption 9 of for settling the uniqueness of the estimator. Assumption assumes the
limiting distribution of the likelihood gradient function at 3°*, see Lemma A.1.1 of . Assumption [M.8

assumes the existence of the limiting distribution of the likelihood Hessian matrix at 3°*, see Lemma A.1.2 of

Led (2016).

Theorem 1 (MLE consistency).

Under Assumptions [M.1], [M.2], [M.3], [M5|(1), [M .4 and [M.6], and for any e > 0,

tim P {|3e - g > e} =0, (15)
T— 00
Proof. See Appendix [A1] O
Theorem 2 (MLE asymptotics).
Under Assumptions to we have
VT (amle - ﬁ‘”) R Q5 Sy, as T — oo. (16)
Proof. See Appendix [A1] O

4 Adaptive L;-regularized maximum likelihood estimation

Variable selection facilitates interpretation of a regression model and solves the trade-off issue between bias and

efficiency so as to achieve predictive accuracy, see [James et al.| (2013). Although variable selection performed

via inferential tests based on the asymptotic normality of the MLE might seem a viable solution, it is not
appropriate in our setting because of the following three issues: (i) the inability to control type I error for
multiple predictor selection; (ii) severe size distortion for selecting unit-root predictors because of the non-normal
limiting distribution; (iii) low power in selecting predictors for the shape parameter due to high standard errors
of coefficients, see simulations in Section [5}

To circumvent these issues, we adopt L;-regularized MLE for automatic variable selection .
Due to the constraining nature of Li-regularization, this estimator sets some coefficients exactly to zero so as
to perform variable selection. explore the advantages of using weighted L;-regularization on model
coefficients and proposed the adaptive LASSO. With proper adaptive weights, the adaptive LASSO exhibits

the oracle property, which produces an asymptotic efficient estimator of variable selection consistency as if the

true underlying model were given from the outset. Medeiros and Mendes| (2016) prove the oracle property for

the adaptive LASSO in high-dimensional time series with non-Gaussian and heteroscedastic errors as well as
with highly correlated regressors. (2016) show that the adaptive LASSO is oracle efficient in stationary
and non-stationary autoregressions. (2022)) prove the oracle property of the adaptive LASSO with



stationary and local unit-root predictors, and propose a novel post-selection adaptive LASSO for selecting
mixed-root predictors i.e. stationary, local unit root, and cointegrated predictors.

Drawing on this literature, we extend the adaptive LASSO to the MLE in to estimate and select sta-
tionary and local unit-root predictors in —. A general form of adaptive Lq-regularized maximum likelihood
estimator (ALMLE) can be drawn directly from [Zou| (2006) and is formulated as follows:

p p+1
B = arg min LB {ye} {211 + Mo Y wralBual + Aoyr Y wo 12,51, (17)
co” i=1 =1

where L£(8; {y:},{z;}) is the log-likelihood function specified in @; Ak Ts Ao, r > 0 are tuning parameters; and
Wi, Wo,; are adaptive weights for penalizing coeflicients differently. We consider two tuning parameters instead
of one to be less restrictive on tuning parameter selection, thereby stabilizing the variable selection for both the
shape and scale models in —. To set the tuning parameters, we start off with large enough values of i r and
Ao,1 such that no predictors are selected by ,@al, and denote these two values as Ag 7 max and Ao 7 max, respec-
tively. We then search for the optimal tuning parameters using an information criterion (IC) over equally-spaced

grids of my, and nj, nodesﬂ defined on the intervals [Ag 7 max, 1079] and [Ay. 7 max, 107¢]. Formally, the grids

m . 10g( Ak, T, max) —log(1076) .
for the shape and scale parameters are defined as Sy, , = {exp(log(A,7,max) — J Tma) ] ).j =
' k
-6
0,1, (n/\"‘ - 1)} and S)‘G,T = {exp(log<)‘o,T,max) —J log(Ao,T,;;iz):llOg(lo ))a] =0,1,..., (TL)\G - 1)}, respec-

tively. We consider different information criteria, namely the Bayesian Information Criterion (BIC), the Han-
nan—Quinn information criterion (HQ) and the Akaike Information Criterion (AIC), and thus select the optimal

tuning parameters (Xk,T7/>:a,T) according to the following rules,

AIC:  (urdar)= | wgmin = 2108(L(B (et Aot )i (e {20 1) + 2 (S WA £ 01+ 55y o) LB, #0})
- (18)
HQ: (Xk,TﬁXG.T):M.TES:rTg_lginTESm = 210g(L(B" (1, Aot (e} {27 1) + 210g(108(T)) (Do, B # 01+ Xy o) 1A, #01)
- (19)
BIC: @k”mzAk;Tesirf‘?if‘Tesm — 2108(L(B" (s Aor): (b {20 D) +108(T) (S, THBE # 01 + 50 ) 1BE, #01)
o (20)

The sequential strong rules of Tibshirani et al.| (2012) is typically employed for computing LASSO-type
problems. However, when k; presents persistent dynamics the sequential strong rules for Bal fails to screen
among truly active and inactive predictors due to estimation bias when the tuning parameters are not small
enough, and, as a byproduct, favors the boundary solution k; = 0.5. To reach variable selection consistency, it is
necessary to enforce the optimizer to stay away from the boundary of the parameter space. Theorem [3]illustrates
the restriction on the permissible coefficient space @ in order to achieve the model selection consistency of ﬁal,
ie.,

: al _
TIEI;OP{A =A} =1, (21)

where A3 = A3, U A2 with A3, = {(u) > 1,0, 4 0} and A%, = {(Q,j) > 1,55 4 0}, and
A= AU As with Ay := {(1,4) 14 > 1,805 # 0} and Ay := {(2,j) : j > 1,88% #0}.

Theorem 3. Under the assumptions in Theorem@ if there is no ,@“l()\k,p Ao, 1) With Ag.1, Aor € O(T%) such

that
02L(8)
d
° (a[ﬁgk,ﬂgara[ﬁgk,ﬂu

ﬁ_,é\al()\k)Ty)\g’T)> 7é O> (22)

1 We use ny, = 50 and ny, = 30 across this paper unless stated otherwise. We also have tried n, = 100 and ny, = 100
to check the sufficiency of ny, = 50 and ny, = 30, and found that differences in the results are small.



then limy_, oo P {A%l = .A} # 1, where det(-) is the matriz determinant operator; wy,; and w,; are set using
the MLE in section@ such that \/T(ﬁ = B1%) = O,(1) and \/T(wi = B3%) = Op(1), fori =1,...,p,
j=1,...,p+1.

Proof. See Appendix O

Theorem [3| shows that if not all the truly active predictors are able to enter the regression model with
Ao Aor € O(T %), then truly inactive predictors start to be selected for compensating for the missing ones
since Mg, 1, Ao,r € O(T %) and thereby fail ,@al in the variable selection. The necessary condition in Theorem
tends to be broken when the underlying {k:(8°*)} involves local unit-root predictors. To solve this issue we

propose a two-step ALMLE and prove its oracle property.

4.1 Two-Step ALMLE

From the previous discussion, we know that ALMLE can be improved if we ensure the estimation to stay away
from {k(-) = 0.5} for every A r. Therefore, we propose a two-step ALMLE, denoted as Btal, to avoid the local
minimizer issue of Bal by selecting predictors for the shape at the first step and running the ALMLE in at
the second step with the selected ij in the first step. Specifically, the two-step ALMLE ﬁtal is obtained using

the following procedure:

Step 1: Select the optimal tuning parameter XhT € S, using an IC as follows,

A Ryr= argmin — 2log(CF Owr) {d {71) +2 S0 1B £0}

Ak, T €SN, 1 i=1,...,p
HQ:  Apr= argmin  — 2log(L(85" \n1); {we}, {2:})) + 2 log(log(T)) Z {3 # 0}
Ak,TeS)\kyT i=1,...,p
BIC:  Nr= argmin  — 2log(L(B“" (A1) {we} {27}) +log(T) > 1{Br #0},
Ak, TESN, 1 i=1,...,p
where B\k’al()\kj) = [Blf:gl, . ,Bf;;l, B;’gl, 0,...,0] restricts ﬁ; al ,B;’Zi_l to zero and define

(23)

—

p
K BB = wemin LB (=) + der D
B1,05--381,p,82,0 i=1

Step 2: Select the optimal tuning parameter XU,T € Sy, using the IC and Xk,T from Step 1 as follows,

AIC: Ao = argmin — 2log(L(B™ (Ao,r); {ye}, {2 }) +2 (Z =

,,,,,,,,,,

>\(7,T€S>\U7T
HQ: XU,T:AargerSnm — 21og(L(B™ (Ao 1); {1} {2 })) + 21og(log(T)) (21 o LB 20+ 5, ) LBSS #0})
BIC:  Apgp = argmin  —210g(£(B" (Anr)i {ue} {=i})) + log(T) (Cimp B £ 0} + 5y ) UBR £ 0})
o, TE€ON, 1
where B\, 7) = (B2, BS) = [Bi,..., B, BY, . BRL L), with B = B3 =0, V(1,1) ¢ AR
and
p+1
tal Atal’
il . B arg min L(B:{y:}, {z} +/\kT Wil Bril + Aoy Y Wo,j1B2,5]
“ ](1,z>e{(1,o>}uA;’ ] [Bual (LD (L0 UAL} B, ' ; ; R

(24)
where A’r}’al = {(1,2’) i >1 ﬁk ol O}.

The final two-step ALMLE ,@t‘” is obtained using the optimal tuning parameters Xk’T and XU,T.



We use two MLEs to set up wy ; and W, ; as the two-step ALMLE involves two different likelihood functions

in each step. Specifically, we set
1 1

Wk,i = Zomie Fmle” 1,...,p,
11,1 1,2 (25)
Weg,j = ﬁmle =1,...,p+1.

where B™° .= [Ble, ..., Bie, Byle, ..., Byle, ] s the full-model MLE (T0) and 4™ .= [By™®, ..., By, By,
0,...,0] is the partial-model MLE defined below

ﬁk’mle = arg min — L(B;{u}, {z})- (26)

{B€O|B2,;=0,j=1,...,p+1}

In this way, we choose wy; and W, ; such that truly active predictors are ensured to be selected efficiently
with Sy, ;. and S), ;. before the truly inactive ones in both Step 1 and Step 2. Therefore, we achieve the oracle
property of Bt as shown in Theorem

Assumption L1. There exist A\ p = O(T%’Vl) and o7 = O(T%*W) with 0 < y1 < % and 0 < y9 < %

Assumption L2. We assume that there exists 3%° = [61 0,81 1,...,61 i 2 O, 0,...,0/" € {B e R?PT3|B3, ; =
0,j=1,...,p+ 1} such that for any e >0

. kmle
Jim P {|7

}:0, 1=1,...,p; (27)

and ﬁff #0 for any (1,4) € Ag.

Theorem 4 (Oracle Property of 3'e).
Under Assumptions [L1], and the assumptions in Theorem[3, we have that

(a) Model selection consistency:

Jim P {A7! = A} =1, (28)
where At = Aj* U AL with Al = {(1,2’) gial t#0i=1,. } and AL = {(2,7) : Bml #£0,j =

1,....,p+ 1.}
(a) Limiting distribution of Btal:
a ox\ D ~H—
V(8- 87) 2 23 S
VT (B! - B%:) =0

as T — oo, where Sy, and 2y, are defined in Assumption [M7] and [M.8| under the model specification with

only the truly active predictors involved and ordered according to A.

(29)

Proof. See Appendix O

The superiority of the proposed two-step ALMLE to the ALMLE is not just in the oracle property
when local unit-root predictors are included in the regression model but also in the computing cost. The
ALMLE is computed over a two-dimensional tuning parameter grid in order to select an optimal pair of
(Mo, Aoy1) € SAk,T X S, ¢, while the two-step ALMLE is computed over two separate one-dimensional tuning
parameter grids in order to select the optimal Ay 7 € Sy, ;. first and A\, 1 € S, . after.

5 Simulation study

We assess the finite sample properties of ,@mle and ﬁml from the perspectives of their biases, mean square errors

(MSEs) and model selection using four data generating processes (DGPs). These four DGPs are designed to



reflect the characteristics of the high-frequency financial data used in Section[6] First, DGPs are heteroscedastic
and the conditional exceedance rates can change over time. Second, DGPs involve predictors which are func-
tions of lagged loss rates characterizing the serial dependence structure in {(k, 0¢)}. Third, we consider either
stationary or local unit-root predictors or both.

We simulate {l;} from the following conditional distribution,
—1 .
Ft(,%t)(Tt)’ lf TtSFt(lTlt)(u)
l; = (7'1‘, — Ft(ﬁ)(u)

l—Tt

(30)
), if Tt>Ft(k%)(u)’

where {7;} is i.i.d. standard uniform distributed, Fy,(-) and thj)() denote the distribution and quantile
functions of a Student’s t distribution with v degrees of freedom. The processes of {k:} and {0} are specified

according to the following specifications:

14
ki
log (0'5 — kt) = frio + B log(|le—1| +1 — 1) + j;ﬂLHj Zjt—1,
14
log(o¢) = Bao + P21 log(or—1) + B2z log(|ls—1]| + 1 —rum) + 262,2+j Zjt—1,
j=1

Zit = i Zit—1 + €11, 1=1,2,...,14,
¢ = [p1,. .., b14l,

{er:= €14, €144)'} S N(0, Iax14) ,
By = [Bioﬁilw-wﬁf,ls]/a

Bs3. = [55,07 Bg,lv s 753,16]/ )

B° = (67,85 .

(31)

We set u = F| tZBl) (0.8) and r,,, = 0.05, but use different ¢ and 3° to obtain different degrees of serial dependence.

DGP 1. There are five truly active stationary predictors for both {k;} and {o;}, namely log(|l;—1| + 1 — 7r.n),
214—1,---,%4¢—1. Among truly inactive predictors z5+_1,...,214+—1, two of them are local unit-root, i.e.

z13,t—1 and z14+—1, and the others are stationary.

¢ =10,0,0,0,0...,0,1,1],
B2, =[~1,0.3,-0.4,0.2,0.6,0.6,0,...,0] (32)
B2 =[~1,0,0.7,0.4,0.3,0.5,0.6,0,...,0]

DGP 2. As DGP 1 but with the difference that 55 ; is changed to nonzero, and hence log(o;—1) is now truly
active. We set 35 | = 0.7 and keep the true values of the other coefficients unchanged.

#=10,0,0,0,0...,0,1,1],
B2, =[-1,0.3,-0.4,0.2,0.6,0.6,0,...,0], (33)
B3, =[-1,0.7,0.7,0.4,0.3,0.5,0.6,0, . ..,0],

DGP 3. As DGP 1 but with the difference that ¢4 =1 and (575,85 ¢) = (%, 065,

5

#=100,0,0,1,0...,0,1,1],

ﬁ":[—103—040206%0 0]

1. y Uy '7'7~»\/T77~~~7 ) (34)
0.6

° —[-1,0,0.7,0.4,0.3,0.5, ——,0,...,0],

/62 [ \/T ]
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DGP 4. As DGP 3 but with the difference that log(c;—1) is truly active. We set 45, = 0.7 and and keep the

true values of the other coefficients unchanged.

¢ =10,0,0,1,0...,0,1,1],

B":[—103—040206%0 0]’

1. ) Ve ’a'v'a\/Ta IR ’ (35)
0.6

Bs. =[-1,0.7,0.7,0.4,0.3,0.5, ﬁ,o,..‘,O]',
In each simulation, we obtain a sample {l;}~ ; of T observations, and extract the excess time series
{y+ = max(l; — u,0)} using the true threshold u. We standardize the predictors using their empirical stan-
dard deviations. We then fit the full model specification (31f) to {y;} using standardized predictors, estimating

the model parameter by Bmle and Bt“l. Bias and mean squared error (MSE) are then computed as

. 1 r) o ) i~ o
Bias = e Z Bij — B + Z 8ij B Sig = Big (36)
i=1,2;5=0 1=1,2;5>1
1 > o )2 2 (5 = o\’
MSE = 25 Z (BM — ”) + Z S (51:,;' Sij— ﬂi,j) (37)
i=1,2;5=0 i=1,2;5>1

where #3° denotes the number of parameters in 3°, 5; ; denotes the empirical standard deviation of the (¢, j)-th
predictor, and s; ; = 1 for I(0) predictors and s; ; = /T for I(1) predictors.

Table [1] presents the average absolute bias and average MSE of the coefficient estimates obtained over
100 replications. These results show that Bmle and ﬁml have decreasing biases and MSEs when T increases,
coherently with the theoretical results presented in Sections and 4} Moreover ,@ml under BIC always has the
lowest bias and MSE across the DGPs, supporting the use of ,@ml with BIC in the empirical section. Boxplots
for the bias in Figure |l| support these conclusions.

Table |2| presents the variable selection results for both Bt“l and Bmle. Note that for the latter, we perform
variable selection based on the significance of the t-statistics associated to the candidate predictors. To measure
the ability to select the correct predictors, we assess the average selection rates of truly active and inactive
predictors for both the shape and scale parameters. Moreover, we compute the correct classification rate (CCR)
of each estimator, i.e. the proportion of selected truly active and unselected truly inactive predictors on the
total candidate predictors. Results in Table [2] show that variable selection improves as T increases for each
estimator. For ,@mle the average selection rates of truly inactive stationary predictors approach the significance
level o = 0.05, whereas the average selection rates of truly inactive local unit-root predictors are much higher
than a = 0.05, for both k£ and o, and regardless of the DGP. These results are coherent with the asymptotic
results derived in Section [3:2] and echo the size distortion concerns of using t-tests to select non-stationary
predictors discussed in Section |4l Remarkably, the average selection rates of truly active predictors for ,@mle are
much lower than those for Btal. Moreover, we see that the power of t-tests performed with Bf?le is lower than
the one for Bg}le due to the uncertainty in the estimation of ,@fﬂe. Finally, Table [2| shows that ,@t‘” with BIC
always has the highest CCR and produces the most accurate selection regardless the DGP, supporting the use
of ,@t“l with BIC for the empirical application.

6 Empirical Study

We study the high-frequency excess loss distributions of nine large liquid U.S. stocks: American Express (AXP),
Boeing (BA), General Electric (GE), Home Depot (HD), IBM, Johnson and Johnson (JNJ), JPMorgan Chase
(JPM), Coca-Cola (KO), and ExxonMobil (XOM). Our data covers all transactions observed from January
2006 to December 2014. Market uncertainty and liquidity being elusive concepts, we study their impact on the

excess loss distribution using as predictors several high-frequency volatility and liquidity indicators, and select
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Fig. 1: Boxplots of bias obtained from 100 replications with 8¢ and B3'® using the optimal tuning pa-

rameters selected by AIC, HQ and BIC criteria.
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Table 1: Average absolute bias and MSE over 100 replications obtained with ,@mle and Bt“l using the
optimal tuning parameters selected by AIC, HQ and BIC criteria.

Bias MSE
DGPs . T 25,000 50,000 100,000 25,000 50,000 100,000
Estimators
Bmle 0.031 0.015 0.008 0.105 0.031 0.016
Btet + AIC 0.014 0.007 0.004 0.036 0.014 0.007
DGP 1 45
Bt + HQ 0.010 0.006 0.004 0.030 0.012 0.006
Bt“l + BIC 0.010 0.005 0.004 0.026 0.011 0.006
ﬁmle 0.027 0.017 0.010 0.091 0.031 0.014
DGP 2 Btel 4 AIC 0.015 0.011 0.006 0.047 0.020 0.009
Bt + HQ 0.012 0.009 0.004 0.034 0.012 0.007
Btet + BIC 0.009 0.007 0.003 0.030 0.011 0.005
,@mle 0.047 0.023 0.009 0.197 0.051 0.023
DGP 3 ﬁt“l + AIC 0.021 0.015 0.005 0.082 0.024 0.013
ﬁt“l + HQ 0.018 0.013 0.003 0.067 0.021 0.011
Btel 4+ BIC 0.017 0.012 0.003 0.060 0.020 0.010
,@ml@ 0.029 0.025 0.019 0.128 0.165 0.263
DGP 4 Btet + AIC 0.018 0.017 0.006 0.071 0.099 0.013
Bt + HQ 0.015 0.014 0.006 0.065 0.093 0.012
,6“” + BIC 0.015 0.014 0.005 0.057 0.091 0.011

the most appropriate ones with the two-step ALMLE developed in Section [l We perform an in-sample analysis
providing an economic interpretation for the impact of the selected predictors on the excess loss distribution,

and an out-of-sample VaR forecast analysis to assess the goodness of fit of the predicted excess loss distribution.

6.1 Variables description

The raw intraday data of the studied stocks contain transaction timestamps in milliseconds, transaction prices
per share, and transaction volume in shares for each trade. We cleaned the raw data according to standard
procedures in [Brownlees and Gallo| (2006) and |Barndorff-Nielsen et al.| (2009). Since transaction data are
irregularly-spaced, we need to define an equally-spaced grid at a fixed frequency to analyse losses with our
model. We choose to analyse losses at the five minute frequency. Let P;; be the transaction price of the i-th
trade in the ¢-th five minute interval, and let V; ; be the corresponding quantity of traded shares, with 0 < ¢ < n;
where n; is the number of trades in the ¢-th five minute interval and 0 < t < T. We define 5-min prices, P;,
as the median transaction price in the ¢-th five minute interval, and compute 5-min losses as the negative ¢t-th
return, R; := log(P;) — log(P;—1). To obtain the time series of excess losses we consider a dynamic threshold
accounting for the time-varying behavior of losses at high-frequency. Specifically, the threshold u; at time ¢ is
defined as the 90%-quantile of the losses observed over the period (¢t — 1,¢ — h), with h > 1 the moving window
size. We consider 12 possible values of h ranging from one week to twelve weeks.

Liquidity refers to the ability to trade large volume of a financial instrument with low price impact, cost
and postponement. As liquidity can be decomposed into different dimensions (Harris et al., 1990), we consider
several liquidity indicators as possible predictors. Similarly, to characterize market uncertainty we consider
several indicators for the observed dispersion of transaction prices. Moreover, to disentangle the impact of
trading activity at different frequencies, we build our set of candidate predictors considering both information
within the #-th five minute interval and across neighbourhoods of the ¢-th five minute interval. Let P gy :=
[Pia,---sPip,) and Repu = [Rea,...,Rin,]) be the vectors of traded prices and trade returns observed
within the ¢-th five minute interval, with R;; := log(P;;) — log(P,;—1). Let T, be a neighborhood size, and

define P, 1, = [Pi,..., Pi—r,+1]" the vector of 5-min prices within a neighborhood of size T\, and R; 1, :=
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Table 2: Average selection rate across 100 replication for truly active (t.p.) and truly inactive (f.p.) stationary (I(0)) and local unit-root (I(1)) predictors in the shape
(k) and scale (o) parameters, correct classification rate (CCR), and selection rates of log(o:—1).

DGPs T  |estimators|selection criteria|t.p.(k) of I(0)s  f.p.(k) of I(0)s  t.p.(k) of I(1)s fp.(k) of I(1)s t.p.(c) of I(0)s fp.(c) of I(0)s t.p.(c) of I(1)s fp.(c) of I(1)s CCR log(os_1)
Bmie t test (o = 0.05) 0.063 - 0.110 1.000 0.110 - 0.215 0.858  0.060
AIC 0.160 - 0.465 1.000 0.156 - 0.220 0.869  0.150
25,000 Btal HQ 0.123 - 0.420 1.000 0.024 - 0.060 0.930  0.020
BIC 0.076 - 0.350 1.000 0.006 - 0.010 0.953  0.000
amie t test (a = 0.05) 0.050 - 0.085 1.000 0.112 - 0.185 0.892  0.050
AIC 0.100 - 0.450 1.000 0.147 - 0.160 0892  0.110
DGP 3 50,000 zra HQ 0.075 - 0.410 1.000 0.032 - 0.040 0.942  0.020
BIC 0.053 - 0.330 1.000 0.004 - 0.015 0.963  0.000
gmie t test (o = 0.05) 0.045 - 0.130 1.000 0.109 - 0.220 0.900  0.040
AIC 0.045 - 0.435 1.000 0.154 - 0.200 0.901  0.160
100,000| grat HQ 0.034 - 0.385 1.000 0.030 - 0.040 0.953  0.020
BIC 0.024 - 0.345 1.000 0.001 - 0.010 0.969  0.000
amie t test (a = 0.05) 0.071 - 0.100 1.000 0.101 - 0.195 0.870  1.000
AIC 0.414 - 0.665 1.000 0.176 - 0.155 0.792  1.000
25,000 Btal HQ 0.213 - 0.525 1.000 0.044 - 0.040 0.892  1.000
BIC 0.086 - 0.450 1.000 0.004 - 0.005 0.934  1.000
gmie t test (a = 0.05) 0.055 - 0.110 1.000 0.085 - 0.170 0.900  1.000
AIC 0.310 - 0.630 1.000 0.145 - 0.140 0.832  1.000
DGP 4 50,000 | 3at HQ 0.178 - 0.535 1.000 0.038 - 0.025 0.907  1.000
BIC 0.109 - 0.500 1.000 0.001 - 0.005 0.936  1.000
gmle t test (a = 0.05) 0.039 - 0.090 1.000 0.094 - 0.190 0.920  1.000
AIC 0.248 - 0.560 1.000 0.134 - 0.100 0.859  1.000
100,000 1at HQ 0.111 - 0.435 1.000 0.036 - 0.040 0.931  1.000
BIC 0.060 - 0.345 1.000 0.000 - 0.000 0.962  1.000
amie t test (a = 0.05) 0.065 0.280 0.140 1.000 0.120 1.000 0.225 0.832  0.080
AIC 0.161 0.930 0.410 1.000 0.152 1.000 0.175 0.874  0.190
25,000 | Grat HQ 0.098 0.900 0.365 1.000 0.039 1.000 0.045 0.934  0.050
BIC 0.083 0.890 0.350 1.000 0.006 1.000 0.005 0.950  0.000
g@mle t test (a = 0.05) 0.058 0.390 0.135 1.000 0.111 1.000 0.215 0.862  0.060
AIC 0.085 0.990 0.355 1.000 0.151 1.000 0.175 0.899  0.150
DGP 5 50,000 gar HQ 0.058 0.980 0.285 1.000 0.036 1.000 0.020 0.954  0.030
BIC 0.044 0.970 0.260 1.000 0.003 1.000 0.005 0.969  0.000
amle t test (o = 0.05) 0.755 0.036 0.510 0.095 1.000 0.092 1.000 0.180 0.899  0.040
AIC 0.993 0.033 1.000 0.300 1.000 0.124 1.000 0.170 0.924  0.140
100,000 3tat HQ 0.993 0.025 1.000 0.220 1.000 0.028 1.000 0.040 0.968  0.010
BIC 0.993 0.020 1.000 0.195 1.000 0.000 1.000 0.005 0.981  0.000
gmle t test (a = 0.05) 0.480 0.058 0.290 0.095 1.000 0.091 1.000 0.215 0.852  1.000
AIC 0.890 0.304 0.970 0.640 1.000 0.148 1.000 0.135 0.818  1.000
25,000 3tal HQ 0.873 0.219 0.970 0.535 1.000 0.039 1.000 0.020 0.880  1.000
BIC 0.828 0.144 0.950 0.445 1.000 0.004 1.000 0.000 0.909  1.000
amle t test (o = 0.05) 0.683 0.070 0.370 0.095 1.000 0.098 1.000 0.195 0.877  1.000
AIC 0.940 0.241 0.990 0.600 1.000 0.175 1.000 0.180 0.834  1.000
DGP 6 50,000 Bl HQ 0.930 0.140 0.990 0.500 1.000 0.034 1.000 0.045 0.911  1.000
BIC 0.903 0.076 0.990 0.425 1.000 0.011 1.000 0.015 0.936  1.000
amie t test (a = 0.05) 0.813 0.048 0.450 0.070 1.000 0.069 1.000 0.155 0.914  1.000
AIC 0.918 0.095 0.990 0.510 1.000 0.125 1.000 0.090 0.894  1.000
100,000 3tar HQ 0.918 0.036 0.990 0.385 1.000 0.033 1.000 0.025 0.945  1.000
BIC 0.913 0.023 0.990 0.340 1.000 0.001 1.000 0.005 0.960  1.000
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log(Py 1, ) — log(Pi—1,1,) the corresponding vector of returns. Let dur;; denote the execution duration of the
i-th transaction in the ¢-th five minute interval, i.e. the time difference between the order executed time and
order placed time. Table [3]lists the liquidity predictors we consider in the analysis. They are classified according
to their frequency, i.e. within or across the five minute interval, and by their nature of price impact or spread
proxies (Goyenko et al.| |2009)) or volatility of liquidity measures. Tablelists the volatility predictors we consider
in the analysis and are classified according to the frequency at which they are computed, i.e., within or across

the five minute interval.

Table 3: Liquidity measures proxying for price impact (PI), spread (S) and volatility of liquidity (Vol) computed
using information within the five minute interval (W), across (A) 5-min observations in a neighbourhood of size
T, or as a ratio (R) between the two frequencies. /A denotes the first difference operator for vectors; cov(,)
and cor(,) denote the covariance and the correlation between two input variables, respectively; var() denotes
the variance of the input variable or vector.

Frequency Proxy Liquidity Predictors Formula
w PI Transaction Volume TV, =Y PiVis
w PI Transaction Quantity TQ, =Y Vi
2
W Vol Micro Transaction Volume Volatility MTVV, = % Z;L;l (P/] Vig — % > P Vm)
2
W Vol Micro Volatility of Trading Quantity in shares MTQV, = \/ n% Z;”:l (Vt,j - % > Vt,i>
. C . A i Rye,i

w PI Amihud Illiquidity Measure AM, = % > F)‘t,:,t‘/f“p
w Pl Extended Amihud Measures (Goyenko et al.|[2009) EAM, = mextfusy) min(Pp)

. s Sott durg;
W% PI Transaction Duration dur; = %
A S Roll (Roll||1984) Roll; = cov (AP, 1, AP,—1.1,)
A s Modified Roll RollMod, = VAP LTy AP 7)

t

A S Negative Roll Roll; = Roll; 1{Roll; < 0}
A S Negative Modified Roll RollMod; = RollMod; 1{RollMod; < 0}
A S Return Autocorrelation (Grossman and Miller||1988) RAC; = cor (R¢.1,, Ri—1.1,,)
A PI Amihud Hliquidity Measure AMI, = % ZJT=0_ ! %

i g% - — p)
A Vol Transaction Volume Volatility TVV, = \/ ﬁ erzo ! (TVi; —TVir,)
A Vol Relative Transaction Volume Volatility RTVV, = ——2e

Ty 220 TViej
2
A Vol Trading Quantity Volatility TQV, = \/ S (TQH. — ATt TQH)
A Vol Relative Trading Quantity Volatility RTQV, = T%QV‘
[

R S Variance Ratio (Hasbrouck and Schwartz||1988) VR, = Lever(og(P py)=log(P1))

ng var(R,,_Tw)

6.2 In-sample estimates

We divide each time series into an in-sample period covering the first 90% of the observations and an out-of-
sample period spanning the last 10% of the sample. We model the excess losses {y:} of each stock with the
time-varying GPD regression model in —, using the variables defined in Tables and with T, € {2, 6,12},
as possible predictors in both scale and shape parameters. Coefficient estimates obtained with the two-step
ALMLE are presented in Tables [f] and [0] for the shape and scale parameters, respectively.

Results for the shape parameter in Table [5| show that estimated coefficients have almost always the same
sign across the stocks. As to liquidity predictors, we find that price impact proxies are selected for almost
all the stocks, suggesting that they better capture liquidity effects on extreme losses. In particular, TV and
TQ display positive coefficients while AM and EAM display negative coeflicients, entailing that larger extreme
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Table 4: Volatility measures computed using information within the five minute interval (W), across (A) 5-min
observations in a neighbourhood of size T,,, or as a ratio (R) between the two frequencies.

Frequency Volatility Predictors Formulas

Micro Noise Return Volatility MNRV, = \/n% St (log(Pryi) — log(P;))?

Micro Realized Volatility MRV, = \/Z?:tl (log(Py ;) — log(Pri-1))*
A Realized Volatility RVir, =/ % RE
R MNRV2RV MNRV2RV = MV
R MRV2RV MRV2RV = 2V

losses are associated with high levels of liquidity in the last five minutes. Although counter-intuitive at first, this
result is very interesting when read together with the other selected variables. As to the volatility of liquidity,
we notice that RTVV(T,, = 6) and RTQV(T,, = 6) are selected across most of the stocks and display large
and positive coefficients, indicating that extreme losses tend to be larger during periods of high volatility of
liquidity. Almost for every stock, we select the ratio MRV2RV (T, = 12), essentially capturing the impact of the
volatility of volatility or jump risk on extreme losses, and associate a positive coefficient to it, conveying the idea
that extreme losses tend to be larger during periods of high uncertainty. Altogether these results are coherent
with the findings in Brogaard et al.| (2018]), i.e. that market markers amplify extreme price movements while
withdrawing from the market after large uncertainty shocks that caused their liquidity supply to be outstripped
by liquidity demand.

Table [6] shows that more variables are selected for the scale parameter but their pattern is less stable across
stocks. In general, we notice that the autoregressive component contributes to the dynamics, and that the
realized volatility predictor computed within the five-minute interval is always selected and displays positive
coefficient. This is coherent with the fact that the scale parameter captures the time-varying heteroscedasticity
in the data.

For comparison purposes, we report estimated regression coefficients for the shape and scale parameters
obtained with MLE in Tables All of the estimated coefficients are nonzero and we cannot compute the
corresponding standard errors because the obtained Fisher information matrix of the MLE is not positive

definitive. This makes variable interpretation very difficult if not impossible.

6.3 OQut-of-sample VaR forecast

The coefficient estimates ,@ obtained on the in-sample period are used to compute a one-step ahead VaR
prediction in the out-of-sample period. Specifically, the VaR of each stock at a risk level « at time ¢ given x;_1

and E is obtained as

o ~ 2 _ -~ —Et(ﬂlt—ha)
VaRy () = M ((1 - %) - 1) + Uy (38)
t t—1,

where Fi(u;) is the probability of exceeding the threshold u; and is fixed to 90%. The coverage rate of

{@(a)}fjﬂ sTjrsl for the out-of sample period is obtained as follows,

Tis+Tos Ty
Lot 11, < VaRy(a)}
TOS '

Coverage Rate = (39)

Table |§| shows the coverage rate of {@(a)}fziﬁ le at the risk level « for various a € [90%, 100%). We resort
to the Kolmogorov—Smirnov (K-S) test to test the goodness of fit of the predicted GPD over the out-of-sample
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Table 5: Empirical estimates of the regression coefficients for the shape parameter obtained with the two-step

ALMLE.

. AXP BA GE HD IBM JNJ JPM KO XOM |selection per stock
Predictors
TV 1.105 0.676 0.581 1.912 1.205 0.660 1.109  2.014 0.89
TQ 1.314 1.101 0.501 0.874 0.813 1.130 0.756 0.0004 0.89
AM -0.345 0.719 -0.037 -0.522 -0.030 0.56
MTVV 0.067 0.11
EAM -1.637 -1.760 -0.913 -1.789 -1.681 -1.396 -1.650  -0.201 0.89
MTQV 0.200 0.166 0.009 0.177 0.44
MRV 0.328 -0.901 -0.367 -0.274 0.44
MNRV -0.794 -0.242 -0.491 0.020 0.44
dur 0.00
AMI (T, = 2) 0.00
VR (T =2) 0.00
RV (T, =2) 0.00
MNRV2RV (T, =2) -0.084 0.11
MRV2RV (T, = 2) 0.095 0.11
AMI (T, = 6) -0.003 0.11
Roll (T, = 6) 0.00
Roll™ (T, = 6) 0.00
RollMod (T3, = 6) 0.00
RollMod™ (Ty, = 6) 0.00
TVV (T, = 6) 0.00
TQV (T, =6) 0.00
RTVV (T, = 6) 0.068 0.298 0.159 0.218  0.264 0.56
RTQV (T, = 6) 0.069 0.300 0.159 0.218  0.270 0.56
RAC (T, =6) 0.00
VR (T, = 6) 0.00
RV (T, = 6) -0.203 0.11
MNRV2RV (T, = 6) -0.415 -0.185 0.22
MRV2RV (T, = 6) 0.194 -0.010 0.0003 0.33
AMI (T, = 12) 0.524 0.648 0.22
Roll (T, = 12) 0.00
Roll™ (Ty, = 12) 0.00
RollMod (T3, = 12) 0.00
RollMod™ (T, = 12) 0.00
TVV (T, = 12) -0.851 0.11
TQV (T, = 12) 0.00
RTVV (T, = 12) -0.090 0.11
RTQV (T, = 12) -0.090 0.11
RAC (T, = 12) 0.00
VR (T, = 12) 0.415 0.244 -0.00002 0.33
RV (T, = 12) -0.436 0.11
MNRV2RV (T, = 12) 0.297 0.11
MRV2RV (T, = 12) 0.994 0.608 0.287 0.554 0.548 0.487 0.544  0.766 0.89
total number of selected variables 6 7 10 8 5 7 11 17 8
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Table 6: Empirical estimates of the regression coefficients for the scale parameter obtained with the two-step

ALMLE.

. AXP BA GE HD IBM JNJ JPM KO XOM [selection per stock
Predictors
TV -0.004 -0.005 0.042 -0.044 0.212 0.095 0.67
TQ 0.039 0.110 0.015 0.042 0.047  0.092 -0.102 -0.095 0.89
AM 0.024 0.050 0.22
MTVV 0.048 -0.029 -0.137-0.260 0.44
EAM -0.040 -0.012 -0.043 0.33
MTQV -0.123 0.016 0.021 0.135 0.168 -0.003 0.67
MRV 0.049 0.032 0.057 0.33
MNRV 0.049 0.139 0.056 0.055 0.067 0.079  0.048 0.128 0.091 1.00
dur 0.00
AMI (T, = 2) -0.018 0.11
VR (T =2) 0.00
RV (T, =2) 0.017 -0.021 0.22
MNRV2RV (T}, = 2) 0.00
MRV2RV (T, = 2) 0.00
AMI (T, = 6) -0.014 -0.003 0.22
Roll (T, = 6) -0.054 0.11
Roll™ (T, =6) -0.035 -0.086 0.22
RollMod (T3, = 6) -0.061 -0.048 -0.050 0.33
RollMod™ (Ty, = 6) 0.077 0.008 0.051 0.053 0.062 0.104 0.061 0.78
TVV (T, = 6) 0.006 0.029 0.22
TQV (T, =6) -0.015 -0.048 -0.006 0.33
RTVV (T, =6) 0.015 0.11
RTQV (T, = 6) 0.0003 0.11
RAC (T, = 6) 0.00
VR (T, = 6) -0.003 0.11
RV (T, = 6) 0.017 0.038 0.22
MNRV2RV (T, = 6) -0.002 -0.056 -0.037 -0.082 0.44
MRV2RV (T,, = 6) -0.028 0.041 0.044 0.33
AMI (T, = 12) 0.039 0.11
Roll (T, = 12) -0.005 0.027 0.22
Roll™ (T, = 12) 0.006 0.11
RollMod (T3, = 12) -0.005 -0.038 -0.014 0.33
RollMod™ (Ty, = 12) 0.004 0.006 0.022 0.33
TVV (T, = 12) -0.036 -0.009 0.22
TQV (T, = 12) -0.013 -0.001 -0.010 -0.011 0.44
RTVV (T, = 12) 0.003 0.11
RTQV (T, = 12) 0.046 0.11
RAC (T, = 12) 0.00
VR (T, = 12) -0.004 -0.032 0.22
RV (T, = 12) 0.027 0.034 0.22
MNRV2RV (T, = 12) 0.014 0.007 0.032 0.037 0.061  0.023 0.103 0.78
MRV2RV (T, = 12) 0.022 0.021 -0.005 -0.00005 0.014 -0.016 0.67
log(o¢—1) 0.849 0.631 0.758 0.724 0.832 0.778  0.829 0.668 0.770 1.00

total number of selected variables

14 10 12 12 20 11

16 7 18
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Table 7: Empirical estimates of the regression coefficients for the scale parameter obtained with the MLE.

Stocks
Predictors

AXP BA GE HD IBM JNJ JPM KO XOM

selection per stock

TV

TQ

AM

TVV

EAM

TQV

MRV

MNRV

dur

AMI (,‘Tw = 2)

VR (T, = 2)

RV (T, = 2)
MNRV2RV (Tw = 2)
MRV2RV (T, = 2)

AMI (T, = 6)
Roll (T, = 6)
Roll™ (T, = 6)

RollMod (T, = 6)
RollMod ™ (T,, = 6)

TVV (T, = 6)
TQV (T, = 6)
RTVV (T, = 6)
RTQV (T, = 6)
RAC (T, = 6)
VR (T, = 6)
RV (T, =6

)
MNRV2RV (T,, = 6)
MRV2RV (T,, = 6)
AMI (T, = 12)

Roll (T, = 12)
Roll™ (T, = 12)
RollMod (T3, = 12)
RollMod™ (T, = 12)
TVV (T, = 12)
TQV (T, = 12)
RTVV (T, = 12)
RTQV (T, = 12)

RAC (T, = 12)
VR (T, = 12)
RV (T, = 12)

MNRV2RV (T, = 12)
MRV2RV (T, = 12)

0.396 0.264 0.116 0.264 0.563 0.631 0.239 0.602 0.239
0.469 0.313 0.173 0.326 0.457 0.619 0.259 0.519 0.216
-0.083 -0.167 0.303 -0.042 -0.287 -0.394 -0.067 -0.221 -0.080
0.249 0.017 0.064 0.094 0.135 0.115 0.055 0.090 0.059
-0.621 -0.406 -0.062 -0.451 -0.525 -1.095 -0.236 -0.966 -0.350
0.195 0.020 0.076 0.100 0.151 0.112 0.053 0.087 0.057
0.062 0.001 0.224-0.003 0.136 0.188 0.051 0.086 0.048
-0.055-0.081 0.072-0.140-0.021 0.028 0.009 -0.121 -0.035
-0.025 0.000-0.026 0.016 0.000 0.033 0.020 0.021 0.000
-0.130-0.048 0.036 0.129-0.386 -0.194 -0.008 0.098 -0.239
0.000 0.060 0.000 0.013 0.000 0.034-0.001 0.016 0.000
-0.047-0.048 0.036 -0.178 0.047 0.006 0.027-0.005 -0.070
0.000 0.048 0.000 0.012 0.000 0.084-0.043-0.066 0.000
0.000 0.035 0.000 0.010 0.000 0.007-0.025 0.036 0.000
0.005 -0.154 0.107 -0.059 -0.401 -0.188 0.000 0.111 0.019
0.043 0.035-0.010 0.018 0.032-0.045 -0.004 0.001 0.001
0.052 0.019-0.016 0.045 0.011-0.066 -0.011 0.001 0.010
0.026 0.024-0.022 -0.014 0.029 -0.051 -0.007 0.001 0.005
0.024 0.013-0.031 0.011 0.008 -0.076 -0.016 0.001 0.006
0.015 0.026 -0.048 0.063 0.004 0.010 0.059-0.021 0.023
0.062 0.038-0.004 0.095-0.015 0.006 0.070-0.049 0.020
0.132 0.081 0.080 0.182 0.080 0.152 0.093 0.168 0.147
0.131 0.081 0.080 0.182 0.080 0.152 0.092 0.168 0.147
-0.042 -0.063 -0.029 -0.071 -0.020 -0.013 0.053 -0.078 -0.101
0.103 0.032-0.010 0.115-0.018-0.020 0.033 -0.052 0.043
-0.116 -0.104 0.116 -0.176 -0.036 -0.099 -0.015 -0.114 -0.128
0.011 0.090-0.151 0.058 0.009 0.044 -0.004 -0.087 -0.018
0.097 0.165 0.031 0.188 0.231 0.107 0.068 0.142 0.132
-0.032-0.133 0.162 -0.036 -0.259 -0.030 -0.021 0.152 -0.015
-0.019 0.005-0.023 0.000 0.047 0.009 0.011 0.002 0.009
0.074 0.059-0.013 0.081 0.041 0.031 0.014 0.003 0.040
-0.021 0.012-0.026 -0.040 0.045 0.006 0.009 0.002 0.013
0.026 0.051-0.029 0.020 0.039 0.018 0.006 0.002 0.031
-0.125 -0.049 -0.143 -0.051 -0.132 -0.141 -0.019 -0.285 -0.069
-0.059 -0.031 -0.096 -0.021 -0.159 -0.150 -0.008 -0.308 -0.070
-0.008 0.035 0.010-0.001 0.006 0.033 0.030-0.028 0.056
-0.008 0.036 0.010-0.002 0.005 0.032 0.030-0.027 0.056
-0.097-0.007 -0.063 -0.124 0.036 0.132 0.019-0.054 0.031
0.087 0.029 0.011 0.046 0.031 0.043 0.062-0.003 0.085
-0.171-0.167 0.028 -0.241 -0.118 -0.267 -0.074 -0.227 -0.258
0.034 0.138-0.050 0.043 0.161 0.217 0.050 0.136 0.091
0.163 0.228 0.170 0.190 0.376 0.309 0.131 0.376 0.257

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.56
1.00
0.78
0.78
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

total number of selected variables

39 42 39 42 41 42 42 42 41
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Table 8: Empirical estimates of the regression coefficients for the scale parameter obtained with the MLE.

Stocks
Predictors

AXP BA GE HD IBM JNJ JPM KO XOM

selection per stock

TV

TQ

AM

TVV

EAM

TQV

MRV

MNRV

dur

AMI (T, = 2)

VR (T, = 2)

RV (T, = 2)
MNRV2RV (T, = 2)
MRV2RV (T, = 2)

AMI (T, = 6)
Roll (,Tw = 6)
Roll™ (T, = 6)

RollMod (T3, = 6)
RollMod™ (T, = 6)

TVV (T, = 6)

TQV (T, = 6)
RTVV (T, = 6)
RTQV (Tw = 6)
RAC (T, = 6)

VR (T, = 6)

RV (T, = 6)
MNRV2RV (T}, = 6)
MRV2RV (T}, = 6)
AMI (T, = 12)

Roll (T, = 12)
Roll™ (Ty, = 12)
RollMod (T3, = 12)
RollMod™ (T, = 12)
TVV (T, = 12)
TQV (T, = 12)
RTVV (T, = 12)
RTQV (T, = 12)

RAC (T, = 12)
VR (T, = 12)
RV (T, = 12)

MNRV2RV (T, = 12)
MRV2RV (T, = 12)
log(o¢—1)

-0.033-0.138 0.058 -0.064 0.114 -0.055-0.075 0.314 0.253
0.094 0.325-0.033 0.100 0.012 0.090 0.166 -0.190-0.110
-0.010 0.018 0.046 0.039 0.021 0.006 0.021 0.029 0.027
-0.045 0.157-0.127 -0.018 0.051 -0.035 -0.224 -0.378 -0.043
-0.026 -0.039 -0.007 -0.055 -0.060 -0.018 -0.029 -0.008 -0.056
0.045 -0.312 0.142 0.011-0.241 0.048 0.219 0.279 -0.148
0.028 0.024 0.021 0.018 -0.007 0.019 0.055 0.023 -0.015
0.099 0.137 0.060 0.070 0.199 0.060 0.061 0.094 0.149
-0.002-0.031 0.000 -0.005 0.046 -0.007 -0.001 -0.005 0.003
0.030 0.009-0.012 0.000 0.045 0.019 0.005-0.045 0.043
-0.005 -0.009 0.000 -0.007 0.014 0.001 0.020-0.014 -0.007
-0.037-0.050 0.011 -0.006 -0.068 -0.007 -0.071 0.031 -0.015
0.010 0.001 0.001-0.001 0.026 -0.010 -0.033 -0.015 -0.007
-0.024 0.009 0.001 0.008 0.023 0.015 0.017 0.039 -0.007
0.009 -0.016 -0.009 -0.009 -0.047 -0.032 0.006 0.002 -0.106
0.069 0.014-0.002 0.040 0.019-0.087 0.020 0.050 -0.001
-0.062 -0.013 -0.046 -0.090 -0.024 -0.022 -0.066 0.070 -0.009
-0.114 0.022-0.072 -0.027 -0.037 0.019 -0.058 0.040 -0.041
0.127-0.016 0.139 0.096 0.049 0.113 0.125 0.058 0.068
0.016 0.045-0.025 0.070-0.033 0.055-0.003 0.031 -0.011
-0.031-0.041 0.024 -0.078 0.016 -0.074 -0.010 -0.027 -0.002
-0.011 -0.010 -0.005 -0.004 0.014 0.006 -0.016 -0.003 -0.009
-0.006 0.012-0.005 0.004 0.013 0.008 0.005-0.001 0.000
0.005 -0.010 0.008 -0.013 -0.012 -0.008 -0.004 -0.011 -0.002
0.050 0.088 0.138 0.035 0.080 0.046 0.012 0.017 0.038
0.020 -0.009 0.026 0.029 0.006 0.016 0.012-0.064 0.031
-0.163 -0.190 -0.076 -0.080 -0.077 -0.114 -0.064 -0.112 -0.243
0.081 0.054 0.014 0.010-0.031 0.035 0.025 0.068 0.153
0.014 0.038 0.014 0.016 0.078 0.018 0.013 0.017 0.069
0.047-0.052 0.097 0.041-0.017 0.032 0.089 0.069 0.010
-0.063 0.033 -0.071 -0.033 0.016 0.017-0.114 0.063 -0.050
-0.068 0.041 -0.077 -0.058 -0.023 -0.041 -0.094 0.063 -0.037
0.086 -0.024 0.047 0.051 0.043-0.009 0.118 0.063 0.086
0.010-0.092 0.006 -0.037 0.032 0.100 0.008-0.029 0.001
-0.025 0.046 -0.015 0.031 -0.034 -0.095 -0.022 0.015 -0.011
0.009 0.022 0.005-0.001 0.007-0.007 -0.002 0.003 0.013
0.010 0.044 -0.001 0.008 -0.003 -0.003 0.016 0.011 0.012
0.000 0.016 -0.005 0.008 0.003 0.012 0.002 0.013 0.009
-0.072-0.205 -0.026 -0.029 -0.056 -0.063 -0.037 -0.022 -0.070
0.038 0.041 0.001 0.024 0.066 0.054 0.022 0.097 0.042
0.183 0.149 0.083 0.073-0.033 0.194 0.121 0.131 0.211
-0.045 -0.019 -0.007 0.016 0.091 -0.060 -0.028 -0.071 -0.074
0.752 0.480 0.736 0.674 0.445 0.739 0.761 0.645 0.545

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

total number of selected variables‘

43 43 43 43 43 43 43 43 43
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period, i.e., we test whether {ﬁ(yt|yt > 0) = GPD(ys; wt,l,é)} follows a standard uniform distribution. The
p-values of the K-S tests in Table [J] indicate that we reject the regression model on three stocks out of nine at

the 1% significance level.

Table 9: Out-of-sample VaR Coverage Rates and p-values for the K-S Test.

W 09 091 092 093 094 095 096 097 0.98 0.99 0.999 0.9999 K-S Test p-values
Stock Names

AXP 0.8999 0.9111 0.9224 0.9314 0.9414 0.9520 0.9631 0.9729 0.9827 0.9913 0.9986 0.9996 0.208
BA 0.9000 0.9098 0.9210 0.9309 0.9417 0.9522 0.9630 0.9738 0.9836 0.9930 0.9985 0.9996 0.0431
GE 0.8999 0.9171 0.9254 0.9376 0.9475 0.9622 0.9709 0.9811 0.9889 0.9943 0.9989 0.9999 2.68 x 10712
HD 0.9001 0.9097 0.9217 0.9339 0.9453 0.9551 0.9652 0.9756 0.9840 0.9934 0.9990 0.9998 0.0023
IBM 0.9003 0.9094 0.9204 0.9312 0.9414 0.9509 0.9614 0.9702 0.9809 0.9905 0.9980 0.9993 0.8954
JINJ 0.9000 0.9083 0.9195 0.9284 0.9382 0.9480 0.9571 0.9682 0.9786 0.9888 0.9977 0.9995 0.3322
JPM 0.9000 0.9094 0.9176 0.9294 0.9385 0.9500 0.9612 0.9711 0.9815 0.9904 0.9982 0.9997 0.3993
KO 0.8996 0.9109 0.9180 0.9273 0.9380 0.9489 0.9594 0.9709 0.9813 0.9909 0.9980 0.9994 0.3786
XOM 0.8988 0.9056 0.9136 0.9218 0.9303 0.9396 0.9502 0.9630 0.9742 0.9863 0.9972 0.9992 6.32 x 108

7 Conclusion

This paper proposes a novel extreme value regression framework to study the dynamics of high-frequency tail
risk. The proposed model allows for both stationary and local unit-root predictors to capture the persistence
of high-frequency extreme losses. We propose a two-step regularized approach to perform automatic variable
selection, and establish the oracle property of the corresponding ALMLE in selecting stationary and local
unit-root predictors. We use the proposed approach to investigate the predictive content of 42 liquidity and
volatility indicators on the distribution of extreme losses for nine large liquid U.S. stocks. Our variable selection
procedure reveals that the severity of tail risk is strongly associated to low price impact in periods of high
volatility of liquidity and volatility of volatility. These findings can contribute to timely alert high-frequency
traders of rising risk levels and facilitate improvements of their algorithmic trading practices for financial risk
management. Moreover, it provides incentives for market markers to absorb liquidity demand in periods of
instability. Finally, it suggests a set of predictors to regulators investigating trading activities that can help

defining proper regulation guidelines and safeguard financial stability.
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Appendices

A  Proofs

A.1 MLE - Gradient and Hessian matrix of the loglikelihood function L£(-)

The gradient function of £(8; {y:},{z:—1}) is given by

T

LB {ye} {z1}) _ S (), (40)
oB Pt
[91,4(8)] [ 0 |
9.+ (B) 0
t—1 i
#B) =1 > 0} | Xia |“"] g0 | erna , (41)
9o.,t(B) = B3 p121,t—1—i
9ot (B) 5§,p+12p,t—1—i
[ 90,4(8) ] >0 B iﬂé;lﬂ Zjt—1—i]

Xt = diag<wt)a
@, = (1,21, 2], log(c:(8))],

gre(B):= (ﬁ — 2) log (1 + ki (B) Uty(tﬁ)) + (kt%ﬂ) —1- th(ﬁ)) (m - 1),

) 1 1 1 1
ot = - N - R
k(8) 1+ k(B) 75 L+ ke (B) 75
/
' j ' p - gi—1
g = [0, o3 0,85 pi1s B pr121t—1—is - -+ Ba i1 Zpt—1—iy Xy 82,51 Ba pin zj,t—l—i] :
(42)
where diag(x;) denotes the square diagonal matrix with the elements of vector x; on the main diagonal. Using
the gradient information in ([42)), we give the Hessian matrix of £(8; {y:}, {z:—1}) below.

T

o) = DL ) (2] 5~ 008)
9808 2" op
bl t—1 . 9 :
Qgéfﬁ) = 1{y: > 0} (thHg + Y diag (ga.) (I(2p+3)x1 %é@) +ga,t(ﬂ)HA> ,
=0
-8gg,t§ﬁ)- (0...0 0 0 0 0 1
7 0.0 R : (43)
on o) 1000 o
H, := ’ Hy =27 P2ptl
g a(]gégﬁ) ) A Zz:O 0...0 0 0 o 0 ’]zﬁ;,_p{*_lzl,tilii
: 0...0 : :
995.:(B) 0...0 ,01 _ ? SR 10 iﬁ%;ilzpi—_l;i
- 0B - 0. 088501 1 P5 a1 20 -+ 55 pr1 Zpt 22:1 Ba,j (i = 1) By p31 % t—i—i
991, (B) 99.+(B) 990 (B) 991.:(B)  09e:B)] 13
o3 {mg;it(kt) 8122&(1%) ai’fg(m) ai’ig(m)] diag(X;—1) w
44
aga,t(ﬁ) _ |:aga,t(:3) 895.+(B) 09o.t(B) agm(g)] diag(X, 1)
8ﬂ/ Ologit(k) ~° " Ologit(k:) Olog(o:) " Olog(ot) t—1
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090 0) . _ (5 — L log(1L+ ke 2) + (1 4+ ke 271 (1 — 2k0)? — (o — 2he) (1 2ky)

310g1t(k‘t) kt Ot Ot kt
Yey—2Yt 5,2 _

+(1 +kt0t) p (2k; + Kkt — 1)
3gkt(5) Yt 1 Yoy, L Yty -2
Blog(or) ktat((l kt)(1+ktat) + (kt 1 2kt>(1+kt0t) ) (45)
995:6B) (4 4 1, Y9250 (1 1)1 = 2k) 4 (14 B 21— 1)(1 — 2k &
Alogit (k) o’ oy ot t
8got(/6)

__Jt JtN-2
alog(at) o Ot (1+kt ) (1+kt)7

where Q) denotes the Kronecker product operator, and we suppress the coefficients in k; := ki(3), oy := o¢(83)
and the conditional variables in ¢;(3) := ¥(8;Li—1,Zi—1,Li—2,Z;_o,...) for ease of the notations. We also
denote specifically that k? := k:(8°) and o := 0¢(8°) to ease the notation.

A.2 MLE - Proofs

Proposition 1. Under Assumptions |M1|, |M2L |M3|, |M5|(1) and for any € > 0 and any interior ,5 n
O, it holds that there exists an § > 0 such that

swp wi(8) — (B <, (46)
lo—ll<s

where ||-|| is the FEuclidean norm.

Proof. This proposition claims that ¥ (-) is uniformly continuous in 3 € . To prove this proposition, we show
that 4:(+) is continuous and tight in B3 € © below.

First, viewing the formula of ¥ (-) in Appendix we know that 4,(+) is a composition of continuous functions
in 3 and hence is continuous in 8. Secondly, by Assumptions 1) and we know that B and
zi—1 are bounded in probability and thereby k:(-) and o4(-) are bounded and their lower bounds are above
zero in probability. It follows that we get that g, () and ga;.(-) are also bounded in probability. Additionally,
under Assumption we know that |y;| is bounded in probability. By Jensen’s inequality, we obtain that
gk,¢(+) is bounded in probability. Therefore, we obtain that 1, (-) is bounded in probability in 8 € © and thereby
accomplish this proof. O

Proposition 2. Under Assumptions [M.1] [M.2], [M.3] [M.5|(1) and [M.6] it holds that {E[4p(B)],3 € O} has
unique zero at 3 = B°" and for any € > 0,
e} =0, (47)

T
1
1' P . O*
Jim {HT ; P (B7)
Proof. First, the equality claims that % Zthl 1 (3°*) converges to zero in probability. Let us prove the
equality using the conditions in Theorem 1 of |Csorgd| (1968).
Under Assumptions and we take the expectation with respect to the true conditional probability

function of y; and obtain that

E [ (B°")|Fi=1] =0,  fort=1,...,T. (48)

We also have that

~

G o 1
; t*QE [ (B77)] < ; §M12p+3 (19)

< o0,
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where M € R is a large finite number and 1g,,3 denotes a vector of (2p + 3) ones; the second last inequality is
obtained by the tightness of 4, () in Proposition (1} the last inequality is obtained by 23:1 t% < 00. Therefore,
by applying Theorem 1 of |Csérgd| (1968) we conclude that % ZtT:l 1 (8°*) converges to zero in probability.
Secondly, we are going to show the uniqueness of 3°* in © such that E[;(8°%)] = 0 by contradiction. Suppose
there is a B € © and 8 # 3°* such that

Ef:(8)] = 0. (50)
On the other hand, by the mean value theorem it holds that
Pi(B) — ¥ (B°") = Hc(B) (B - ), (51)

where 3 is between 3 and 3°*. Since H.(-) is positive definite in © almost surely by Assumption and
B # B°*, we obtain that v (3) # 1:(8°*) almost surely and contradict . Hence, we conclude the uniqueness
of B8°F in O. O

Proof of Theorem [1]

Proof. First, let us prove that 8™ is in ©. By Proposition [2| we can get that for any € € R?+3 and € > 0 ,
there exists T such that for T' > T we have

(52)

T
Z ﬂo*

Under Assumptions [M.4] and [M.6] we know that 3°* is an interior point in ©. Since 3°* is an interior point in
O and 7 ZtT:1 1;(+) is uniformly continuous in @ by Proposition there exists 6 > 0 and a ball B(3°%,¢) :=
{B € O]||B°* — B|| < d} such that

T L I
2} (B7) = Y wiB)| < 5 (53)
t=1 t=1
Moreover, there exist 31,32 € B(3°*,§) such that if % Ethl P (8°%)| # 0, then
_L d oy 1 a 11 & o
Z%ﬁ—TZw@m§T2ww> (54)
=1 =1 t=1
11 & | < 1 4 1 &
§f2¢tﬂ Tzw(ﬂ )—Tz¢t(52)<0 (55)
t=1 t=1 t=1

which results in

1 & 11 & 1 <& 1 <&
72 W87 = 5|7 D w87 < 5 X wilBr) < 7 Y (B (56)
t=1 t=1 t=1 t=1
1 <& 1 <& 1 <& 11 &
T2 (B < 5 D w(Be) < 5 Y i(B7) + 5 | D (B (57)
t=1 t=1 t=1 t=1
Hence we find ’% Zthl ’l/)t(ﬁl)‘ < ‘% Zthl wt(,@"*)) < eor |7 Ethl 1/Jt(ﬂ2)‘ < ’% Zthl P (8°%)| < e.

Continue this process, and we can find a sequence of points in © has decreasing values of ‘% Zthl wt(-)’.

There exists a subsequence of the resulted point sequence and the limit of the subsequence is ﬁmlc in @ with
% 2321 Py (,@mle) = 0. Since lim7_, o % Z;‘ll 1 (8°*) = 0, then we obtain limr_, amle = (3°* and conclude

this proof.

O

26



Proof of Theorem [2]

Proof. Apply the Taylor expansion of Zle ¢t(§m1e) at 3°* and the mean value theorem, we obtain

1 T

T
= B = 2= 3 (87 + pHe(B) VT (B - ). (59)

where 3 is between E“‘le and (3°*. Since Zle ¢t(§m1e) = 0, the above expansion results in

(1 N Qs o Smle 0%
THg(B)) 77 2 lB”) = VT (B~ ). (59)

%H £ (+) is uniformly continuous in ©, which can be proved analogously to the proof of Propositionwith knowing
y7 € Op(1) thanks to 0 < k¢(8°*) < 0.5. By the continuous mapping theorem and knowing limrp_, Bmle = gox
from Theorem [I], we obtain that

Jim (;HAﬂ))_l - <;Ha(ﬁ°*)>_l .

From Assumptions [A7.7] and we know that

T
= > (B R s,

(60)
1
THe(B7) % 2
and thus by Slutsky’s theorem, we obtain that
VT (87 = B™) 2 25 Sy (61)
O

A.3 ALMLE - Proofs
Proof of Theorem [3]

Proof. We prove this theorem by contradiction. In the proof below, we show that truly inactive predictors have
a non-zero probability to get selected since Ay 1, Ao, € O(T%) if there is no ﬁal(AkJ", Aor) With A 7, Ao €
O(T2) such that the condition is met.

We set wy ;, Wo,j, €.g. using the MLE in section such that \/T(ﬁ —B1%) = Op(1) and \/T(ﬁ —B5%) =
0,(1),fori=1,...,p,j=1,...,p+ 1

Let us go over the tuning parameter grid {(Ax, 7, Xo,7) : A7 € Sx s AoyT € Sx, s b+ Ak, Tomax a0d Ao T max
are chosen large enough such that ,@al()\k,T,max, Ao, Tmax) = 0, i.e., no predictors get selected. By the Karush-

Kuhn-Tucker (KKT) optimality condition and with (Ag 7 max, Ae,T.max), We have

oL
‘ 8Ba1 < Ak,T,max W i, (1; 7’) € Ak U Ai;a
b (62)
oL
= < /\a,T,max We,j, (25]) € As U Aga
0B

where we denote Ay := {(1,7) : i > L,B15 # 0}, A¢ .= {(1,9) :i > L, p15 = 0}, Ar :=={(2,4) :j > 1,335 # 0},
and AS = {(2,j) 1J > 1,855 = 0}. We rewrite oL

= using the mean value theorem because
0B ( Ak, T, maxs Ao, T, max) &
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L5 {ye},{zf}) is twice continuously differentiable, and substitute this rewriting into the above KKT condition

and get
oL P 82 —(2nx, nx bl 62 —(2nx, nxr,)
o ———0, " - ————08 ;i F 77| <A\, T,max Wi
OB ;Z;)aﬁfgaﬁal ’ ;Z;)aﬁ§gaﬁal e ’
(1,4) € Ax U A5, (63)
oL P 62 —(2nx, na, —1) ptl 82 —(2nx, na, —1)
/ ﬁl K R - o1 aoa M2, ke SAO',T,H’I&X We,j,
3520 zZ:O aﬂgljaﬂal g jZ:O 8ﬁ§1]8,6"1 Jg
(2,7) € Ay UAS,
2ny,. n 2ny, nx, — 2ny, n —(2n), na,—1
WheI‘e ,6( A A )7/65 1g>\k re |:181 lg7ﬁ€f}ig (Ak,T,maxa)\a,T,max)}a and /8( Ak Aa)a g’jgxk re ) [ﬁQ Jg?

/62,jg (/\k7T7max, Ao, T,max)]- In fact, we can find a pair of (Ak, 7 max, Ao, 7,max) i O(T)~

Lower the tuning parameters from (Mg 7.max; Ao, 7 max), and aal is able to screen variables. Truly inactively
predictors always meet the inequality of the KKT condition with ’\\;f f — 00, thereby not being
selected. Coming to A\g.1, Ao € O(T%), we get that A\g o wy,; = OP(TZ) for (1,¢) € Ag; g, wi,; = Op(T) for
(1,7) € AL Ao Wo j = Op(T%) for (2,j) € Ag; A7 Wo,i = Op(T) for (2,i) € AS. If with any Ay € O(T?)
and Ag 1 € O(T%)7 there is no ,@al()\k,T, As1) such that the condition is met, then there exists (1,i,) € Apg
or (2,jq) € A, such that

(?\E S )\k,T Wi i, (64)
B,
or
8£ < )\O',T wo,ja (65)
aﬂ27]a

but B\flla =0or B;lja = 0 correspondingly for any A1, g7 € O(T2).

Under the condition is broken, if < Mg, 1 W i, With B\?}ia =0 and any Ay 1, Ao,7 € O(T%), we

aﬁ1 sia
get that \g o wy,; = OP(TE) for (1,7) € A and Mg wi,; = O,(T) for (1,47) € Af. Then each truly inactively

predictor but correlated with the i,-th predictor of the shape model gains a non-zero probability to get selected

|

The above probability is obtained easily by rewrltlng

due to

oL

=

B,

32

. c| Ral
> Ak, T Wiyt € AR BT,

()MTGO(M,UT60@3}¢Q (66)

using the mean value theorem as done in (63) and

al
1,i

obtaining that

86 1 € O,(T). For each 3?11 #0,i € A§ with A\, 7 € O(T'2), the bias of Eflz is O,(1). Lowering

Ak, T, it follows that 51,12‘ = Op(T~7) meets the equality of the KKT condition with A\xr € O(T2~7) and remains
selected for v € [0, 3].
oL

B3,

each truly inactively predictor but correlated with the j,-th predictor of the scale model then gains a non-zero

The same reasoning applies if < Ao, T Wo,j, With B%,lja =0 and any Mg 7, Ao € O(T%), we get that

probability to get selected, i.e.,

oL

ap3,;
Therefore, the model selection consistency cannot be achieved if the condition is not met, and we finish
the proof. O

Z )\G',T wo,jaj € A:}

@hzoMjeowh,%jeoq%}¢o (67)

Proof of Theorem [

28



Proof. In this proof, we first prove the selection consistency of ,@k’“l on truly active predictors of the shape

model, i.e.,

TIEI;OP{ Bl 40, (1, Z)E.Ak} (68)

which is also equivalent to limp_, o, P {Az%l 2 .Ak} = 1 with Aic}l = {(1,9) : k al £ 0}. Tt follows that this
over-selection possibility for the shape model due to ,@k’al is proved to be curbed to zero by ,Bt“l, and the oracle

property of ,@t“l is obtained lastly.

Firstly, we rewrite the objective function to obtain /@k’“l as follows: according to Assumption there exists
Bk° and

P (k)
v k) = ¢ <ﬂ’“° {y} {z; >+A” Wi |BY + == |, (69)
where v (%) = [I/(ko), cees Vikg, éko), 0,...,0] € RF*2x 0, 1). We obtain that o = argmin ~ V® (k)
y(k)e]Rp+2><0(p+l)
V*)(0) such that equivalently
(k)
3k,al ko  V
ol = gho y L 70
B B T (70)
Specifically,
V(k)(,,(k)) _ V(k)(g)
L@+ Lo c(p"
- ?+ = ) L1 — ’O; ) :
( (B4 + Lo ) (50D~ £ 6% ) (D)) -
(k
k,o 1,

- |ake

1,2

)

According to Assumption [L2| and Theorem ' we have that \F( Br mle ﬂff) = 0,(1) and VT (B} Ble _ 1) =
0O,(1). Considering that

(k
k,o 1,
1,1

- sk

v sen(BLY), itBLYY A0,
lim VT = . .
T— o0 ’ ( , ifﬁl:io — 07

Vlz

and under Assumption [L1] we obtain that

Op (T ) i) sgn(Br7), i 5 #0,

o)
Ak 0 — oy 0
\%wm\/T( o4 ’5 ) — 0,z ) sgn(ﬂii), i85S =0but BY #0,  (73)

Op(T ) ||, 815 =0 and 57 =0,
Also, we know that
o V(k) * o *
- (ﬁ(ﬁ’“’ ol (=) — £(8 s e (= })) = Op(1) max{(11})°} (74)

by Taylor’s expansion and the tightness of %H ~(+) in © as shown in the proof of Theorem Substitute Eq.
back into Eq. , and by Slutsky’s theorem we obtain that
(k)

Op(T), it Ll = 0,(1),¥(1,0) € Ap™ and 1) = 0,(1),¥(1,0) ¢ A
T

Op(T2), if ¥ = 0,(T377),¥(1,i) € AP with 0 < 2y < m and (") = 0,(1),%(1,4) ¢ A"

) (1, (F) . — 1
V() = V(o) = O, (T M), if Vlk) = 0,(T*7),V(1,i) € AF* with 2 A/l <y< = 5 LIldV(k> 0,(1),¥(1,1) ¢ AP (75)

0,(T' =), it vt =0,(T777),9(1,i) € A al with 0 < v < m and ") = 0,v(1,4) ¢ AP

O, (T 7=, if l/(k) =0, (Tf_'y) V(1,i) € AP with v <y < 2 md 1/( ) = 0,v(1,4) ¢ AP,
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where AP = {(1,4) : fzo # 0}. Therefore, we have that

oY) = 0,(1),Y(1,0) € AP™ and ") = 0,%(1,1) ¢ AP, (76)
minimizing V®) (v*)) — V(*#)(0), and hence that
Skl _ ok ﬂk‘) k,al E k,al
a ,0 Tl . N _ ;0 . ,a _
Jim P{ =B+ A0V € A4 } P{aly #0,9(1,) € AL} = 1. (77)
Thus we obtain limg o, P {ijl £0,¥(1,4) € Ak} — 1.
Secondly, we show the asymptotic behaviour of Bt“l. Write 3 = ,80*+% for B € O with v := [v19,...,11,p, 12,0,
vapi1) € R2P+3 and rewrite the objective function to obtain ,@t“l as follows
v N p p+1
V) = ~£ (87 4 o (50 ) 4 Dur D 8T+ 4 dor 3 ’ 8
)=~ (87 a0 ) + e 3o S
We obtain v := argmin V(v) — V(0) such that
vER2p+3
Jtal *0 v
=B34 . )
g =p Nii (79)
Specifically,
V(v)—=V(0)
v
- (187 + i (a1 — £ ) (20)))
( VT R (80)
>\k T 1% las 1%
1 , 2
Zw’“ < p |B ) Zwﬂ < 2J+7J |ﬁ >
Analogously to , we can also get that
Op(].), lf V14 = O (1)7 1/27]' = Op(].), fOI‘ V(].,’L) c Ak,V(Q,‘]) S Ag,
Th_I)n V(v)-V(0) = andvy; = 0,15 =0, for V(1,7) ¢ A, V(2,)) ¢ Ao, (81)
(oo}
00, otherwise of v = 0,(1).

Therefore, minimizing V (v)—V(0) is equivalent to minimizing — ( £(8°* + ik {ne}, {z}) — L(B°*; {y:}, {zf}))
with 14 ; = 0,15 ; =0 for any (1,7) ¢ Ay, (2,) ¢ Ay, which leads to

VT (Bml - 50*) —D= arg min V(v) - V(0) (82)

vER2PH3N {1 1 =0.13,;=0,(1,i) €A, (2,7) €As }

as T — oo and thereby we obtain the asymptotic behavior of ¥ by Theorem [2] with the restriction of

limr o0 15 = 0,limp_,00 o ; = 0 for any (1,7) ¢ Ay, (2,7) ¢ A,. Moreover,

Jim P { AR = A}
= lim P{{/)’t‘” =B ijlf #0, 4t = l\’? #0,Y(1,i) € A, V(2,5) € A,y N {B1% = 0,557 = 0,¥(1,1) ¢ Ay, ¥(2,]) ¢ Aﬂ}}
= P{{Bi5 # 0,855 # 0,¥(1,0) € A, ¥(2,5) € A} N {B75 = 0,855 = 0,¥(1,4) ¢ A, V(2,5) ¢ As}} =1

(83)

which concludes that ,@ml is model selection consistent. Together with the limiting distribution of VT (ﬁt“l ,30*)
O

we conclude that Btal has the oracle property.
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