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Abstract. We study tail risk dynamics in high-frequency financial markets and their connection with

trading activity and market uncertainty. We introduce a dynamic extreme value regression model ac-

commodating both stationary and local unit-root predictors to appropriately capture the time-varying

behaviour of the distribution of high-frequency extreme losses. To characterize trading activity and mar-

ket uncertainty, we consider several volatility and liquidity predictors, and propose a two-step adaptive

L1-regularized maximum likelihood estimator to select the most appropriate ones. We establish the oracle

property of the proposed estimator for selecting both stationary and local unit-root predictors, and show

its good finite sample properties in an extensive simulation study. Studying the high-frequency extreme

losses of nine large liquid U.S. stocks using 42 liquidity and volatility predictors, we find the severity of

extreme losses to be well predicted by low levels of price impact in period of high volatility of liquidity and

volatility.

Keywords: high-frequency financial data · peaks-over-threshold (POT) · time-varying generalized Pareto

distribution· L1-regularized maximum likelihood estimation · nonstationary variable selection

1 Introduction

Measuring tail risk at high-frequency has become of utmost importance to market players and regulators (Weller,

2017). While much efforts have been devoted to the measurement of tail risk at low-frequency (Nieto and Ruiz,

2016), few attempts have been made to measure risk at high-frequency, see Giot (2005), Dionne et al. (2009)

and Chavez-Demoulin and Davison (2012). Moreover, although these models can be very accurate, they explain

the tail risk evolution in a “reduced form” manner, i.e., using autoregressive terms exploiting the persistence

of the time series. They thus fail to provide a deeper structural understanding of the factors driving tail risk.

As much as understanding the macroeconomic determinants of tail risk is a relevant problem at low-frequency

(Massacci, 2017), it is important to understand how market uncertainty and trading activity impacts tail risk

at high-frequency.

From a market microstructure perspective, though the intensification of high-frequency trading has improved

trading costs and liquidity (Hendershott et al., 2011), it is also suspected to be responsible for more frequent

extreme price movements over short periods of time (Brogaard et al., 2018). Such extreme fluctuations are

often the result of an aggressive directional market making activity initiated when the market is already under

stress. Brogaard et al. (2018) find that market wide extreme shocks are likely to trigger the risk controls of

high-frequency liquidity providers that thus withdraw from the market to reduce their risk exposure. Similarly,

Kirilenko et al. (2017) find that during the market turbulence induced by the 2010 Flash Crash, many high-

frequency liquidity providers withdrew from the market, thus exacerbating the price fall. Studying how market

uncertainty and trading activity affect extreme losses can thus provide a deeper understanding of the evolution

of tail risk at high-frequency, and this paper proposes appropriate econometric techniques to do so.

We consider a dynamic extreme value regression framework (Chavez-Demoulin et al., 2016; Massacci, 2017;

Schwaab et al., 2021) where the distribution of extreme losses is assumed to be well approximated by a general-

ized Pareto distribution (GPD) with time-varying parameters driven by exogenous preditors and autoregressive
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terms. To assess the impact of market uncertainty and trading activity on extreme losses, we consider several

volatility predictors, proxing for market uncertainty, and liquidity predictors, characterizing trading activity.

Despite extreme value regression techniques have been widely applied in finance (Chavez-Demoulin et al., 2016;

Hambuckers et al., 2018; Bee et al., 2019), our investigation presents new challenges: (i) as the financial litera-

ture proposes several volatility and liquidity measures, we face a variable selection problem aimed at identifying

predictors capturing the most relevant aspects of trading activity affecting extremes as well as improving the

predictive accuracy of tail risk; (ii) volatility and liquidity measures observed at high-frequency exhibit strong

persistence and seasonalities, thus violating the classical stationary assumptions required for inference with the

maximum likelihood estimator (MLE). To overcome these issues, we develop a two-step adaptive L1-regularized

maximum likelihood estimator (ALMLE) that allows performing variable selection with both stationary and

local unit-root predictors (Lee et al., 2022), and establish its oracle property.

We investigate the impact of 42 liquidity and volatility indicators on the distribution of high-frequency

extreme losses of nine large liquid U.S. stocks observed from 2006 to 2014. We find that the severity of tail

risk, as measured by the shape parameter of the GPD, is well predicted by low price impact (Goyenko et al.,

2009) during periods of high volatility of volatility and high volatility of liquidity. This finding is coherent with

the evidence in Brogaard et al. (2018) that market markers liquidity supply is outstripped by liquidity demand

after large uncertainty shocks, and their rush to leave the market to lower their risk exposures amplify extreme

price movements. Our two-step ALMLE is necessary to reveal this pattern as the standard MLE finds almost

all predictors to be significant. To validate our estimating strategy, we provide an out-of-sample VaR forecast

analysis and find that the estimated model performs well in the out-of-sample.

The remainder of the paper is organized as follows: Section 2 presents the time-varying GPD model accom-

modating stationary and local unit-root predictors as well as autoregressive components; Section 3 presents the

MLE and shows its asymptotic non-normality when local unit-root predictors are included in the model; Section 4

introduces the two-step ALMLE and prove the oracle property of this estimator in selecting both stationary

and local unit-root predictors; Section 5 provides an extensive simulation study comparing the performance of

the two-step ALMLE to those of the MLE, showing the superiority of the former in finite samples. Section 6

discusses the results of the empirical study whereas Section 7 concludes. Additional results and mathematical

proofs are relegated to the Appendix.

2 Extreme value regression

We denote the logarithmic loss and return time series of a financial asset by {lt}Tt=1 and {rt}Tt=1, respectively,

with lt = −rt, and denote zt a vector of exogenous predictors observed at time t.

Assumption M.1. {lt}Tt=1 and {zt}Tt=1 are on a complete probability space (Ω,F , P ). At each time t ∈
{1, 2, . . . , T}, we have an information set Ft−1 available which is the σ-algebra generated by {zt−1, lt−1, zt−2,

lt−2, . . .}.

Let assume {lt}Tt=1 is independent and identically distributed (i.i.d.) with a cumulative distribution function

(c.d.f.) F (·). Probabilistic results from extreme value theory show that if there exist real sequences aT > 0

and βT such that limT→∞ FT (aT x+ βT ) converges to a non-degenerate distribution G(·), then F (·) belongs

to the max-domain of attraction of G(·), i.e. F ∈ D(G), and G(·) must be the generalized extreme value (GEV)

distribution (see Theorem 3.1.1. of Coles (2001)).

Let {yt}Tt=1 be a censored sequence of excess losses above a high threshold u, such that the excess loss

yt = lt − u, if lt > u, and yt = 0 otherwise. Define the conditional distribution of excess losses,

F|u(y) := P {lt − u ≤ y|lt > u} = P {yt ≤ y|yt > 0} , 0 < yt ≤ LF − u,
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with LF := sup{x : F (x) < 1} the right end point of F (·). Pickands (1975) and Balkema and De Haan (1974)

show that if F (·) ∈ D(G) then the limiting distribution of F|u(y) is a GPD, i.e.

lim
u→+∞

sup
0<y<+∞

|F|u(y)−GPD(y; k, σu)| = 0, (1)

where GPD(·; k, σ) denotes the GPD with shape parameter k ∈ R and scale parameter σ > 0,

GPD(y; k, σ) = 1−
(
1 + k

y

σ

)−1/k

. (2)

Eq. (1) suggests that F|u(y) with u large enough can be approximated by a GPD(·; k, σu), where the scale

parameter σu depends on u. The peaks-over-threshold (POT) approach assumes this relationship holds exactly

above a fixed threshold u and uses the exceedances of such threshold to estimate the GPD parameters σ and k

(see section 4.3 of Coles (2001)).

2.1 Time-varying peaks-over-threshold (POT) approach

The classical POT approach assumes that {lt} is i.i.d. However, financial data typically exhibit dependence

features such as time-varying heteroscedasticity and extremal clustering that violate this assumption. To capture

these aspects, we adopt a dynamic POT approach. Let {yt}Tt=1 be a censored sequence of excess losses over a

threshold time series {ut}Tt=1, we model the excess loss distribution conditional on the information set Ft−1,

Ft|ut
(y) := P{yt ≤ y|yt > 0,Ft−1}, using a GPD with time-varying parameters kt and σt. See, e.g., Chavez-

Demoulin et al. (2014); Massacci (2017); Bee et al. (2019).

Consider the vector-valued time series of p ∈ N explanatory variables {zt := [z1,t, . . . , zp,t]
′}Tt=1. Given the

information set Ft−1, we consider the following specification for {(kt, σt)},

log

(
kt

0.5− kt

)
= β1,0 +

p∑
j=1

β1,j zj,t−1, (3)

log(σt) = β2,0 +

p∑
j=1

β2,j zj,t−1 + β2,p+1 log(σt−1). (4)

We impose that 0 < kt < 0.5 and σt > 0 (see Hosking and Wallis (1987)) to ensure a finite conditional variance

of yt and numerical stability in the estimation. As the scale parameter σt can be associated with the variance

of the underlying distribution Ft(·), we accommodate an autoregressive term in log(σt) in the spirit of GARCH

models (Engle, 2001). We allow for both stationary and unit-root explanatory variables in (3) and (4), such

that persistent predictors can be accommodated.

3 Maximum likelihood estimation

Let β := [β1,0, β1,1, . . . , β1,p, β2,0, β2,1, . . . , β2,p+1]
′ denote the vector of the model coefficients in (3)-(4), and

define the coefficient space Θ of β as a subspace of R2p+2 × (−1, 1) accomodating all permissible coefficient

vectors β. We present the MLE of the model coefficients in (3)-(4) and show it is consistent but asymptotically

non-normal when local unit-root explanatory variables are included in the model.

3.1 Maximum likelihood estimator

Assumption M.2. We assume that for a given {ut}, the conditional c.d.f. Ft(·) of lt given Ft−1 exists for

t ∈ {1, 2, . . . , T} and yt := lt − ut > 0 follows a time-varying GPD, i.e.

Ft|ut
(yt) = GPD(yt; kt, σt) = 1−

(
1 + kt

yt
σt

)− 1
kt

, (5)
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where {kt} and {σt} are specified by (3)-(4) with the true coefficient vector βo ∈ Θ ⊂ R2p+2×(−1, 1). Moreover,

{ut} returns a constant unconditional exceedance rate, i.e., P{yt > 0} = τ for all t ∈ {1, . . . , T} with a constant

τ close to zero.

Assumption M.3. Among the explanatory variables in Model (3)-(4), we assume that {zi,t, i = 1, . . . , p0} ∈
I(0) and {zj,t, j = p0 + 1, . . . , p} ∈ I(1) with ϵj,t := zj,t − zj,t−1 and {ϵj,t, j = p0 + 1, . . . , p} ∈ I(0). We denote

by I(0) and I(1) the set of stationary and unit-root predictors, respectively.

Under Assumption M.2, the conditional probability density function (p.d.f.) of yt|{yt > 0,Ft−1} is

ft(yt) =
1

σt

(
1 + kt

yt
σt

)− 1
kt

−1

, (6)

and the log-likelihood function L(·) of {yt|yt > 0,Ft−1} can be defined as (Schwaab et al., 2021),

L(β; {yt}, {zt−1}) =
T∑
t=1

1{yt > 0} log(ft(yt))

=

T∑
t=1

1{yt > 0}
(
− log(σt)−

(
1

kt
+ 1

)
log(1 + kt

yt
σt

)

)
,

(7)

where 
kt(β) = 0.5

1 + exp

−(β1,0 +

p∑
j=1

β1,j zj,t−1)

−1

,

σt(β) = exp

β2,0 + p∑
j=1

β2,j zj,t−1 + β2,p+1 log(σt−1)

 ,

(8)

for t = 1, 2, . . . , T , with 1{·} the indicator function taking value one if the input is true and zero otherwise.

We consider standardized predictors {z∗t } in the estimation to get stochastically bounded variables, i.e., for

each t ∈ {1, . . . , T}, we standardize zt as follows,

z∗t := [ z1,t, . . . , zp0,t,
zp0+1,t√

T
, . . . ,

zp,t√
T

]′. (9)

Replacing {zt} with {z∗t } into the likelihood function in (7) and maximizing we obtain

β̂mle = argmax
β∈Θ

L(β; {yt}, {z∗t−1}), (10)

where Θ ⊂ R2p+2 × (−1, 1). We denote the corresponding vector of true coefficients βo∗.

Remark. Assumption M.2 assumes a constant unconditional probability for the exceedance 1{yt > 0} for

t ∈ {1, . . . , T}, which is more general than assuming a constant conditional probability for 1{yt > 0|Ft−1}. This
causes us no extra burden to obtain the limiting behaviour of the MLE because 1{yt > 0} is bounded and not

a function of the model coefficients. Assumption M.3 allows for both stationary and unit-root predictors among

zt.

3.2 Asymptotic properties of the MLE

Smith (1985) establishes the asymptotic properties of the MLE of a GPD with constant k and σ in an i.i.d.

setting. We extend Smith (1985) establishing the consistency and limiting distribution of the MLE of the dynamic

GPD with stationary and unit-root predictors in (10). In what follows, we list the assumptions required to derive

the asymptotic behaviour of the MLE, and establish the consistency and limiting distribution of β̂.
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Assumption M.4. We assume that,
βo∗s,i := βos,i = O(1), for i = 0, 1, . . . , p0, and s = 1, 2;

βo∗s,j :=
√
Tβos,j = O(1), for j = p0 + 1, . . . , p0 + p and s = 1, 2;

βo∗2,p+1 := βo2,p+1 ∈ (−1, 1),

(11)

and βo∗ := [βo∗1,0, . . . , β
o∗
1,p, β

o∗
2,0, . . . , β

o∗
2,p+1]

′ ∈ R2p+2 × (−1, 1).

Assumption M.5. {ϵt := [z1,t, . . . , zp0,t, ϵp0+1,t, . . . , ϵp,t]
′}Tt=1 is assumed i.i.d. (0, Σ(0)) with mean 0 and posi-

tive definite covariance matrix Σ(0). With
{
z∗t := [ z1,t, . . . , zp0,t,

zp0+1,t√
T

, . . . ,
zp,t√
T

]′
}
, we assume that as T → ∞,

we have that

(1)



1√
T

T∑
t=1

z∗i,t = Op(1),
1

T

T∑
t=1

(z∗i,t)
2 = Op(1), i = 1, 2, . . . , p0;

1

T

T∑
t=1

z∗j,t = Op(1),
1

T

T∑
t=1

(z∗j,t)
2 = Op(1), j = (p0 + 1), . . . , p;

1

T

T∑
t=1

z∗t z
∗′

t is positive definite in probability one;

and there exists a positive definite matrix Σ := [Σi,j ]i,j=1,...,p such that

(2)



lim
T→∞

1

T

T∑
t=1

z∗i,t = 0, lim
T→∞

1

T

T∑
t=1

(z∗i,t)
2 = 1,

1√
T

t0∑
t=1

z∗i,t
D∼ Wi(

t0
T
), i = 1, 2, . . . , p0;

1

T

T∑
t=1

z∗j,t
D∼
∫ 1

0

Σ
1/2
j,j Wj(t) dt,

1

T

T∑
t=1

(z∗j,t)
2 D∼

∫ 1

0

Σj,jW
2
j (t) dt, j = (p0 + 1), . . . , p;

1

T

T∑
t=1

z∗t z
∗′

t
D∼
∫ 1

0

(
Σ1/2Wz∗(t)

) (
Σ1/2Wz∗(t)

)′
dt,

1

T

T∑
t=1

z∗t z
∗′

t is positive definite in probability one;

where 1 ≤ t0 ≤ T , and Wi(·),Wj(·) are independent Brownian motions. And denote ‘
D∼ ’ for convergence in

distribution and Wz∗(t) := [dW1(t)√
dt

, . . . ,
dWp0

(t)√
dt

,Wp0+1(t), . . . ,Wp(t)]
′.

Assumption M.6. Θ is a compact subspace of R2p+2 × (−1, 1) containing the true coefficient vector βo∗ such

that HL(·) is positive definite in Θ almost surely.

Assumption M.7. Given Assumptions M.3 and M.5, we further assume that as T → ∞, it holds that

1√
T

T∑
t=1

ψt(β
o∗)

D∼ Sψ, (12)

where Sψ is a non-degenerate distribution:

Sψ = Σ
1/2
ψ

∫ 1

0


dWgk(t)

Wz∗(t)dWgk(t)

dWgσ (t)

Wz∗(t)dWgσ (t)

dWar(t) dWgσ (t)

 (13)

where Σψ is a positive definite (2p + 3) × (2p + 3) matrix and {Wgk(t)}, {Wgσ (t)}, {War(t)} are Brownian

motions.
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Assumption M.8.
HL(βo∗;{lt},{z∗

t })
T at βo∗ is assumed to weakly converge to a stochastic integral ΩH , i.e.,

HL(β
o∗; {lt}, {z∗t }
T

D∼ ΩH , when T → ∞, (14)

where Ω−1
H exists upon the limiting behaviours of z∗t in Assumption M.5.

Remark. Assumption M.4 imposes the orders of magnitude of βo to ensure that the unit-root explanatory

variables zp0+1,t, . . . , zp,t have coefficients of local-to-zero rate being 1
2 , see Phillips and Lee (2013) and Lee

et al. (2022). Assumption M.5 ensures that the partial sums of {z∗t } and {z∗t z∗
′

t } converge at specific rates.

Assumption M.5 is also used by Saikkonen (1993, 1995); Lee et al. (2022), and was shown to hold for time

series with a moderate degree of temporal dependence and heteroscedasticity of {ϵt}. See, e.g.,Theorem 18.2

of Billingsley (2013), Phillips and Durlauf (1986); Phillips (1991). Assumption M.6 restricts the permissible

parameter space Θ for the ML estimation, especially maintaining the positive definiteness of HL(β) in analogy

to Assumption 9 of Smith (1985) for settling the uniqueness of the estimator. Assumption M.7 assumes the

limiting distribution of the likelihood gradient function at βo∗, see Lemma A.1.1 of Lee (2016). AssumptionM.8

assumes the existence of the limiting distribution of the likelihood Hessian matrix at βo∗, see Lemma A.1.2 of

Lee (2016).

Theorem 1 (MLE consistency).

Under Assumptions M.1, M.2, M.3, M.5(1), M.4 and M.6, and for any ϵ > 0,

lim
T→∞

P
{∥∥∥β̂mle − βo∗

∥∥∥ > ϵ
}
= 0, (15)

Proof. See Appendix A.1.

Theorem 2 (MLE asymptotics).

Under Assumptions M.1 to M.8, we have

√
T
(
β̂mle − βo∗

)
D∼ Ω−1

H Sψ, as T → ∞. (16)

Proof. See Appendix A.1.

4 Adaptive L1-regularized maximum likelihood estimation

Variable selection facilitates interpretation of a regression model and solves the trade-off issue between bias and

efficiency so as to achieve predictive accuracy, see James et al. (2013). Although variable selection performed

via inferential tests based on the asymptotic normality of the MLE might seem a viable solution, it is not

appropriate in our setting because of the following three issues: (i) the inability to control type I error for

multiple predictor selection; (ii) severe size distortion for selecting unit-root predictors because of the non-normal

limiting distribution; (iii) low power in selecting predictors for the shape parameter due to high standard errors

of coefficients, see simulations in Section 5.

To circumvent these issues, we adopt L1-regularized MLE for automatic variable selection (Tibshirani, 1996).

Due to the constraining nature of L1-regularization, this estimator sets some coefficients exactly to zero so as

to perform variable selection. Zou (2006) explore the advantages of using weighted L1-regularization on model

coefficients and proposed the adaptive LASSO. With proper adaptive weights, the adaptive LASSO exhibits

the oracle property, which produces an asymptotic efficient estimator of variable selection consistency as if the

true underlying model were given from the outset. Medeiros and Mendes (2016) prove the oracle property for

the adaptive LASSO in high-dimensional time series with non-Gaussian and heteroscedastic errors as well as

with highly correlated regressors. Kock (2016) show that the adaptive LASSO is oracle efficient in stationary

and non-stationary autoregressions. Lee et al. (2022) prove the oracle property of the adaptive LASSO with
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stationary and local unit-root predictors, and propose a novel post-selection adaptive LASSO for selecting

mixed-root predictors i.e. stationary, local unit root, and cointegrated predictors.

Drawing on this literature, we extend the adaptive LASSO to the MLE in (10) to estimate and select sta-

tionary and local unit-root predictors in (3)-(4). A general form of adaptive L1-regularized maximum likelihood

estimator (ALMLE) can be drawn directly from Zou (2006) and is formulated as follows:

β̂al = argmin
β∈Θ∗

− L(β; {yt}, {z∗t }) + λk,T

p∑
i=1

wk,i|β1,i|+ λσ,T

p+1∑
j=1

wσ,j |β2,j |, (17)

where L(β; {yt}, {z∗t }) is the log-likelihood function specified in (7); λk,T , λσ,T > 0 are tuning parameters; and

wk,i, wσ,j are adaptive weights for penalizing coefficients differently. We consider two tuning parameters instead

of one to be less restrictive on tuning parameter selection, thereby stabilizing the variable selection for both the

shape and scale models in (3)-(4). To set the tuning parameters, we start off with large enough values of λk,T and

λσ,T such that no predictors are selected by β̂al, and denote these two values as λk,T,max and λσ,T,max, respec-

tively. We then search for the optimal tuning parameters using an information criterion (IC) over equally-spaced

grids of nλk
and nλσ

nodes1 defined on the intervals [λk,T,max, 10
−6] and [λσ,T,max, 10

−6]. Formally, the grids

for the shape and scale parameters are defined as Sλk,T
:= {exp(log(λk,T,max) − j

log(λk,T,max)−log(10−6)
nλk

−1 ), j =

0, 1, . . . , (nλk
− 1)} and Sλσ,T

:= {exp(log(λσ,T,max) − j
log(λσ,T,max)−log(10−6)

nλσ−1 ), j = 0, 1, . . . , (nλσ − 1)}, respec-
tively. We consider different information criteria, namely the Bayesian Information Criterion (BIC), the Han-

nan–Quinn information criterion (HQ) and the Akaike Information Criterion (AIC), and thus select the optimal

tuning parameters (λ̂k,T , λ̂σ,T ) according to the following rules,

AIC: (λ̂k,T , λ̂σ,T ) = argmin
λk,T∈Sλk,T

, λσ,T∈Sλσ,T

− 2 log(L(β̂al(λk,T , λσ,T ); {yt}, {z∗t })) + 2
(∑

i=1,...,p 1{β̂al
1,i ̸= 0}+

∑
j=1,...,(p+1) 1{β̂al

2,j ̸= 0}
)

(18)

HQ: (λ̂k,T , λ̂σ,T ) = argmin
λk,T∈Sλk,T

, λσ,T∈Sλσ,T

− 2 log(L(β̂al(λk,T , λσ,T ); {yt}, {z∗t })) + 2 log(log(T ))
(∑

i=1,...,p 1{β̂al
1,i ̸= 0}+

∑
j=1,...,(p+1) 1{β̂al

2,j ̸= 0}
)

(19)

BIC: (λ̂k,T , λ̂σ,T ) = argmin
λk,T∈Sλk,T

, λσ,T∈Sλσ,T

− 2 log(L(β̂al(λk,T , λσ,T ); {yt}, {z∗t })) + log(T )
(∑

i=1,...,p 1{β̂al
1,i ̸= 0}+

∑
j=1,...,(p+1) 1{β̂al

2,j ̸= 0}
)

(20)

The sequential strong rules of Tibshirani et al. (2012) is typically employed for computing LASSO-type

problems. However, when kt presents persistent dynamics the sequential strong rules for β̂al fails to screen

among truly active and inactive predictors due to estimation bias when the tuning parameters are not small

enough, and, as a byproduct, favors the boundary solution kt = 0.5. To reach variable selection consistency, it is

necessary to enforce the optimizer to stay away from the boundary of the parameter space. Theorem 3 illustrates

the restriction on the permissible coefficient space Θ in order to achieve the model selection consistency of β̂al,

i.e.,

lim
T→∞

P
{
Aal
T = A

}
= 1, (21)

where Aal
T := Aal

k,T ∪ Aal
σ,T with Aal

k,T :=
{
(1, i) : i ≥ 1, β̂al

1,i ̸= 0
}

and Aal
σ,T :=

{
(2, j) : j ≥ 1, β̂al

2,j ̸= 0
}
, and

A := Ak ∪ Aσ with Ak :=
{
(1, i) : i ≥ 1, βo∗1,i ̸= 0

}
and Aσ :=

{
(2, j) : j ≥ 1, βo∗2,j ̸= 0

}
.

Theorem 3. Under the assumptions in Theorem 2, if there is no β̂al(λk,T , λσ,T ) with λk,T , λσ,T ∈ O(T
1
2 ) such

that

det

(
∂2L(β)

∂[β′
Ak
,β′

Aσ
]′∂[β′

Ak
,β′

Aσ
]

∣∣∣∣∣β=β̂al(λk,T ,λσ,T )

)
̸= 0, (22)

1 We use nλk = 50 and nλσ = 30 across this paper unless stated otherwise. We also have tried nλk = 100 and nλσ = 100
to check the sufficiency of nλk = 50 and nλσ = 30, and found that differences in the results are small.
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then limT→∞ P
{
Aal
T = A

}
̸= 1, where det(·) is the matrix determinant operator; wk,i and wσ,j are set using

the MLE in section 3 such that
√
T ( 1

wk,i
− β∗o

1,i) = Op(1) and
√
T ( 1

wσ,j
− β∗o

2,j) = Op(1), for i = 1, . . . , p,

j = 1, . . . , p+ 1.

Proof. See Appendix A.3.

Theorem 3 shows that if not all the truly active predictors are able to enter the regression model with

λk,T , λσ,T ∈ O(T
1
2 ), then truly inactive predictors start to be selected for compensating for the missing ones

since λk,T , λσ,T ∈ O(T
1
2 ) and thereby fail β̂al in the variable selection. The necessary condition in Theorem 3

tends to be broken when the underlying {kt(βo∗)} involves local unit-root predictors. To solve this issue we

propose a two-step ALMLE and prove its oracle property.

4.1 Two-Step ALMLE

From the previous discussion, we know that ALMLE can be improved if we ensure the estimation to stay away

from {kt(·) = 0.5} for every λk,T . Therefore, we propose a two-step ALMLE, denoted as β̂tal, to avoid the local

minimizer issue of β̂al by selecting predictors for the shape at the first step and running the ALMLE in (17) at

the second step with the selected λ̂k,T in the first step. Specifically, the two-step ALMLE β̂tal is obtained using

the following procedure:

Step 1: Select the optimal tuning parameter λ̂k,T ∈ Sλk,T
using an IC as follows,

AIC: λ̂k,T = argmin
λk,T∈Sλk,T

− 2 log(L(β̂k,al(λk,T ); {yt}, {z∗t })) + 2
∑

i=1,...,p

1{β̂k,al
1,i ̸= 0}

HQ: λ̂k,T = argmin
λk,T∈Sλk,T

− 2 log(L(β̂k,al(λk,T ); {yt}, {z∗t })) + 2 log(log(T ))
∑

i=1,...,p

1{β̂k,al
1,i ̸= 0}

BIC: λ̂k,T = argmin
λk,T∈Sλk,T

− 2 log(L(β̂k,al(λk,T ); {yt}, {z∗t })) + log(T )
∑

i=1,...,p

1{β̂k,al
1,i ̸= 0} ,

where β̂k,al(λk,T ) := [β̂k,al
1,0 , . . . , β̂

k,al
1,p , β̂

k,al
2,0 , 0, . . . , 0]

′ restricts β̂k,al
2,1 , . . . , β̂

k,al
2,p+1 to zero and define

[
β̂k,al
1,0 , . . . , β̂

k,al
1,p , β̂

k,al
2,0

]
= argmin
β1,0,...,β1,p,β2,0

− L(β; {yt}, {z∗t }) + λk,T

p∑
i=1

w̃k,i|β1,i|. (23)

Step 2: Select the optimal tuning parameter λ̂σ,T ∈ Sλσ,T
using the IC and λ̂k,T from Step 1 as follows,

AIC: λ̂σ,T = argmin
λσ,T∈Sλσ,T

− 2 log(L(β̂tal(λσ,T ); {yt}, {z∗t })) + 2
(∑

i=1,...,p 1{β̂tal
1,i ̸= 0}+

∑
j=1,...,(p+1) 1{β̂tal

2,j ̸= 0}
)

HQ: λ̂σ,T = argmin
λσ,T∈Sλσ,T

− 2 log(L(β̂tal(λσ,T ); {yt}, {z∗t })) + 2 log(log(T ))
(∑

i=1,...,p 1{β̂tal
1,i ̸= 0}+

∑
j=1,...,(p+1) 1{β̂tal

2,j ̸= 0}
)

BIC: λ̂σ,T = argmin
λσ,T∈Sλσ,T

− 2 log(L(β̂al(λσ,T ); {yt}, {z∗t })) + log(T )
(∑

i=1,...,p 1{β̂tal
1,i ̸= 0}+

∑
j=1,...,(p+1) 1{β̂tal

2,j ̸= 0}
)
,

where β̂tal(λσ,T ) := [β̂tal′

1· , β̂
tal′

2· ]′ = [β̂tal
1,0, . . . , β̂

tal
1,p, β̂

tal
2,0, . . . , β̂

tal
2,(p+1)]

′, with β̂tal
1,i = β̂al

1,i = 0, ∀(1, i) ̸∈ Ak,al
T

and

[[
β̂tal
1,i

]
(1,i)∈{(1,0)}∪Ak,al

T

, β̂tal′

2·

]
= argmin

{β1,i|(1,i)∈{(1,0)}∪Ak,al
T },β2·

− L(β; {yt}, {z∗t }) + λ̂k,T

p∑
i=1

w̃k,i|β1,i|+ λσ,T

p+1∑
j=1

w̃σ,j |β2,j |,

(24)

where Ak,al
T :=

{
(1, i) : i ≥ 1, β̂k,al1,i ̸= 0

}
.

The final two-step ALMLE β̂tal is obtained using the optimal tuning parameters λ̂k,T and λ̂σ,T .
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We use two MLEs to set up w̃k,i and w̃σ,j as the two-step ALMLE involves two different likelihood functions

in each step. Specifically, we set 
w̃k,i =

1

β̂k,mle
1,i

1

β̂mle
1,i

, i = 1, . . . , p,

w̃σ,j =
1

β̂mle
2,j

, j = 1, . . . , p+ 1.

(25)

where β̂mle := [β̂mle
1,0 , . . . , β̂

mle
1,p , β̂

mle
2,0 , . . . , β̂

mle
2,p+1] is the full-model MLE (10) and β̂k,mle := [β̂k,mle

1,0 , . . . , β̂k,mle
1,p , β̂k,mle

2,0 ,

0, . . . , 0] is the partial-model MLE defined below

β̂k,mle = argmin
{β∈Θ|β2,j=0,j=1,...,p+1}

− L(β; {yt}, {z∗t }). (26)

In this way, we choose w̃k,i and w̃σ,j such that truly active predictors are ensured to be selected efficiently

with Sλk,T
and Sλσ,T

before the truly inactive ones in both Step 1 and Step 2. Therefore, we achieve the oracle

property of β̂tal as shown in Theorem 4.

Assumption L1. There exist λk,T = O(T
1
2−γ1) and λσ,T = O(T

1
2−γ2) with 0 < γ1 <

1
2 and 0 < γ2 <

1
2 .

Assumption L2. We assume that there exists βk,o := [βk,o
1,0 , β

k,o
1,1 , . . . , β

k,o
1,p , β

k,o
2,0 , 0, . . . , 0]

′ ∈ {β ∈ R2p+3|β2,j =
0, j = 1, . . . , p+ 1} such that for any ϵ > 0

lim
T→∞

P
{∣∣∣β̂k,mle

1,i − βk,o
1,i

∣∣∣ > ϵ
}
= 0, i = 1, . . . , p; (27)

and βk,o
1,i ̸= 0 for any (1, i) ∈ Ak.

Theorem 4 (Oracle Property of β̂tal).

Under Assumptions L1, L2 and the assumptions in Theorem 2, we have that

(a) Model selection consistency:

lim
T→∞

P
{
Atal
T = A

}
= 1, (28)

where Atal
T := Atal

k,T ∪ Atal
σ,T with Atal

k,T :=
{
(1, i) : β̂tal1,i ̸= 0, i = 1, . . . , p.

}
and Atal

σ,T := {(2, j) : β̂tal2,j ̸= 0, j =

1, . . . , p+ 1.}.
(a) Limiting distribution of β̂tal:

√
T
(
β̂talA − βo∗A

)
D∼ Ω−1

HA
SψA ,

√
T
(
β̂talAc − βo∗Ac

)
→ 0,

(29)

as T → ∞, where SψA and ΩHA are defined in Assumption M.7 and M.8 under the model specification with

only the truly active predictors involved and ordered according to A.

Proof. See Appendix A.3.

The superiority of the proposed two-step ALMLE to the ALMLE (17) is not just in the oracle property

when local unit-root predictors are included in the regression model but also in the computing cost. The

ALMLE (17) is computed over a two-dimensional tuning parameter grid in order to select an optimal pair of

(λk,T , λσ,T ) ∈ Sλk,T
×Sλσ,T

, while the two-step ALMLE is computed over two separate one-dimensional tuning

parameter grids in order to select the optimal λk,T ∈ Sλk,T
first and λσ,T ∈ Sλσ,T

after.

5 Simulation study

We assess the finite sample properties of β̂mle and β̂tal from the perspectives of their biases, mean square errors

(MSEs) and model selection using four data generating processes (DGPs). These four DGPs are designed to
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reflect the characteristics of the high-frequency financial data used in Section 6. First, DGPs are heteroscedastic

and the conditional exceedance rates can change over time. Second, DGPs involve predictors which are func-

tions of lagged loss rates characterizing the serial dependence structure in {(kt, σt)}. Third, we consider either

stationary or local unit-root predictors or both.

We simulate {lt} from the following conditional distribution,

lt =


F−1

t( 1
kt
)
(τt), if τt ≤ Ft( 1

kt
)(u)

u+ F−1
GPD(kt,σt)

(
τt − Ft( 1

kt
)(u)

1− τt

)
, if τt > Ft( 1

kt
)(u),

(30)

where {τt} is i.i.d. standard uniform distributed, Ft(ν)(·) and F−1
t(ν)(·) denote the distribution and quantile

functions of a Student’s t distribution with ν degrees of freedom. The processes of {kt} and {σt} are specified

according to the following specifications:

log

(
kt

0.5− kt

)
= β10 + β11 log(|lt−1|+ 1− rm) +

14∑
j=1

β1,1+j zj,t−1 ,

log(σt) = β20 + β21 log(σt−1) + β22 log(|lt−1|+ 1− rm) +

14∑
j=1

β2,2+j zj,t−1 ,

zi,t = ϕi zi,t−1 + ϵi,t−1, i = 1, 2, . . . , 14,

ϕ := [ϕ1, . . . , ϕ14],

{ϵt := [ϵ1,t, . . . , ϵ14,t]
′} i.i.d.∼ N (0, I14×14) ,

βo
1· := [βo1,0, β

o
1,1, . . . , β

o
1,15]

′ ,

βo
2· := [βo2,0, β

o
2,1, . . . , β

o
2,16]

′ ,

βo := [βo
′

1· ,β
o′

2· ]
′ .

(31)

We set u = F−1
t(3)(0.8) and rm = 0.05, but use different ϕ and βo to obtain different degrees of serial dependence.

DGP 1. There are five truly active stationary predictors for both {kt} and {σt}, namely log(|lt−1|+ 1− rm),

z1,t−1, . . . , z4,t−1. Among truly inactive predictors z5,t−1, . . . , z14,t−1, two of them are local unit-root, i.e.

z13,t−1 and z14,t−1, and the others are stationary.
ϕ = [0, 0, 0, 0, 0 . . . , 0, 1, 1],

βo
1· = [−1, 0.3,−0.4, 0.2, 0.6, 0.6, 0, . . . , 0]′ ,

βo
2· = [−1, 0, 0.7, 0.4, 0.3, 0.5, 0.6, 0, . . . , 0]′ ,

(32)

DGP 2. As DGP 1 but with the difference that βo2,1 is changed to nonzero, and hence log(σt−1) is now truly

active. We set βo2,1 = 0.7 and keep the true values of the other coefficients unchanged.
ϕ = [0, 0, 0, 0, 0 . . . , 0, 1, 1],

βo
1· = [−1, 0.3,−0.4, 0.2, 0.6, 0.6, 0, . . . , 0]′ ,

βo
2· = [−1, 0.7, 0.7, 0.4, 0.3, 0.5, 0.6, 0, . . . , 0]′ ,

(33)

DGP 3. As DGP 1 but with the difference that ϕ4 = 1 and (βo1,5, β
o
2,6) = ( 0.6√

T
, 0.6√

T
).

ϕ = [0, 0, 0, 1, 0 . . . , 0, 1, 1],

βo
1· = [−1, 0.3,−0.4, 0.2, 0.6,

0.6√
T
, 0, . . . , 0]′ ,

βo
2· = [−1, 0, 0.7, 0.4, 0.3, 0.5,

0.6√
T
, 0, . . . , 0]′ ,

(34)
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DGP 4. As DGP 3 but with the difference that log(σt−1) is truly active. We set βo2,1 = 0.7 and and keep the

true values of the other coefficients unchanged.

ϕ = [0, 0, 0, 1, 0 . . . , 0, 1, 1],

βo
1· = [−1, 0.3,−0.4, 0.2, 0.6,

0.6√
T
, 0, . . . , 0]′ ,

βo
2· = [−1, 0.7, 0.7, 0.4, 0.3, 0.5,

0.6√
T
, 0, . . . , 0]′ ,

(35)

In each simulation, we obtain a sample {lt}Tt=1 of T observations, and extract the excess time series

{yt = max(lt − u, 0)} using the true threshold u. We standardize the predictors using their empirical stan-

dard deviations. We then fit the full model specification (31) to {yt} using standardized predictors, estimating

the model parameter by β̂mle and β̂tal. Bias and mean squared error (MSE) are then computed as

Bias =
1

#βo

 ∑
i=1,2;j=0

∣∣∣β̂i,j − βoi,j

∣∣∣+ ∑
i=1,2;j≥1

si,j

∣∣∣β̂i,j ŝi,j − βoi,j

∣∣∣
 (36)

MSE =
1

#βo

 ∑
i=1,2;j=0

(
β̂i,j − βoi,j

)2
+

∑
i=1,2;j≥1

s2i,j

(
β̂i,j ŝi,j − βoi,j

)2 (37)

where #βo denotes the number of parameters in βo, ŝi,j denotes the empirical standard deviation of the (i, j)-th

predictor, and si,j = 1 for I(0) predictors and si,j =
√
T for I(1) predictors.

Table 1 presents the average absolute bias and average MSE of the coefficient estimates obtained over

100 replications. These results show that β̂mle and β̂tal have decreasing biases and MSEs when T increases,

coherently with the theoretical results presented in Sections 3.2 and 4. Moreover β̂tal under BIC always has the

lowest bias and MSE across the DGPs, supporting the use of β̂tal with BIC in the empirical section. Boxplots

for the bias in Figure 1 support these conclusions.

Table 2 presents the variable selection results for both β̂tal and β̂mle. Note that for the latter, we perform

variable selection based on the significance of the t-statistics associated to the candidate predictors. To measure

the ability to select the correct predictors, we assess the average selection rates of truly active and inactive

predictors for both the shape and scale parameters. Moreover, we compute the correct classification rate (CCR)

of each estimator, i.e. the proportion of selected truly active and unselected truly inactive predictors on the

total candidate predictors. Results in Table 2 show that variable selection improves as T increases for each

estimator. For β̂mle the average selection rates of truly inactive stationary predictors approach the significance

level α = 0.05, whereas the average selection rates of truly inactive local unit-root predictors are much higher

than α = 0.05, for both k and σ, and regardless of the DGP. These results are coherent with the asymptotic

results derived in Section 3.2, and echo the size distortion concerns of using t-tests to select non-stationary

predictors discussed in Section 4. Remarkably, the average selection rates of truly active predictors for β̂mle are

much lower than those for β̂tal. Moreover, we see that the power of t-tests performed with β̂mle1· is lower than

the one for β̂mle2· due to the uncertainty in the estimation of β̂mle1· . Finally, Table 2 shows that β̂tal with BIC

always has the highest CCR and produces the most accurate selection regardless the DGP, supporting the use

of β̂tal with BIC for the empirical application.

6 Empirical Study

We study the high-frequency excess loss distributions of nine large liquid U.S. stocks: American Express (AXP),

Boeing (BA), General Electric (GE), Home Depot (HD), IBM, Johnson and Johnson (JNJ), JPMorgan Chase

(JPM), Coca-Cola (KO), and ExxonMobil (XOM). Our data covers all transactions observed from January

2006 to December 2014. Market uncertainty and liquidity being elusive concepts, we study their impact on the

excess loss distribution using as predictors several high-frequency volatility and liquidity indicators, and select

11



(a)

(b)

(c)

(d)

Fig. 1: Boxplots of bias (36) obtained from 100 replications with β̂mle and β̂tal using the optimal tuning pa-
rameters selected by AIC, HQ and BIC criteria.
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Table 1: Average absolute bias (36) and MSE (37) over 100 replications obtained with β̂mle and β̂tal using the
optimal tuning parameters selected by AIC, HQ and BIC criteria.

Bias MSE

DGPs
Estimators

T
25,000 50,000 100,000 25,000 50,000 100,000

DGP 1

β̂mle 0.031 0.015 0.008 0.105 0.031 0.016

β̂tal + AIC 0.014 0.007 0.004 0.036 0.014 0.007

β̂tal + HQ 0.010 0.006 0.004 0.030 0.012 0.006

β̂tal + BIC 0.010 0.005 0.004 0.026 0.011 0.006

DGP 2

β̂mle 0.027 0.017 0.010 0.091 0.031 0.014

β̂tal + AIC 0.015 0.011 0.006 0.047 0.020 0.009

β̂tal + HQ 0.012 0.009 0.004 0.034 0.012 0.007

β̂tal + BIC 0.009 0.007 0.003 0.030 0.011 0.005

DGP 3

β̂mle 0.047 0.023 0.009 0.197 0.051 0.023

β̂tal + AIC 0.021 0.015 0.005 0.082 0.024 0.013

β̂tal + HQ 0.018 0.013 0.003 0.067 0.021 0.011

β̂tal + BIC 0.017 0.012 0.003 0.060 0.020 0.010

DGP 4

β̂mle 0.029 0.025 0.019 0.128 0.165 0.263

β̂tal + AIC 0.018 0.017 0.006 0.071 0.099 0.013

β̂tal + HQ 0.015 0.014 0.006 0.065 0.093 0.012

β̂tal + BIC 0.015 0.014 0.005 0.057 0.091 0.011

the most appropriate ones with the two-step ALMLE developed in Section 4. We perform an in-sample analysis

providing an economic interpretation for the impact of the selected predictors on the excess loss distribution,

and an out-of-sample VaR forecast analysis to assess the goodness of fit of the predicted excess loss distribution.

6.1 Variables description

The raw intraday data of the studied stocks contain transaction timestamps in milliseconds, transaction prices

per share, and transaction volume in shares for each trade. We cleaned the raw data according to standard

procedures in Brownlees and Gallo (2006) and Barndorff-Nielsen et al. (2009). Since transaction data are

irregularly-spaced, we need to define an equally-spaced grid at a fixed frequency to analyse losses with our

model. We choose to analyse losses at the five minute frequency. Let Pt,i be the transaction price of the i-th

trade in the t-th five minute interval, and let Vt,i be the corresponding quantity of traded shares, with 0 ≤ i ≤ nt

where nt is the number of trades in the t-th five minute interval and 0 < t ≤ T . We define 5-min prices, Pt,

as the median transaction price in the t-th five minute interval, and compute 5-min losses as the negative t-th

return, Rt := log(Pt) − log(Pt−1). To obtain the time series of excess losses we consider a dynamic threshold

accounting for the time-varying behavior of losses at high-frequency. Specifically, the threshold ut at time t is

defined as the 90%-quantile of the losses observed over the period (t− 1, t− h), with h > 1 the moving window

size. We consider 12 possible values of h ranging from one week to twelve weeks.

Liquidity refers to the ability to trade large volume of a financial instrument with low price impact, cost

and postponement. As liquidity can be decomposed into different dimensions (Harris et al., 1990), we consider

several liquidity indicators as possible predictors. Similarly, to characterize market uncertainty we consider

several indicators for the observed dispersion of transaction prices. Moreover, to disentangle the impact of

trading activity at different frequencies, we build our set of candidate predictors considering both information

within the t-th five minute interval and across neighbourhoods of the t-th five minute interval. Let Pt,BU :=

[Pt,1, . . . , Pt,nt
]′ and Rt,BU := [Rt,1, . . . , Rt,nt

]′ be the vectors of traded prices and trade returns observed

within the t-th five minute interval, with Rt,i := log(Pt,i) − log(Pt,i−1). Let Tw be a neighborhood size, and

define Pt,Tw
:= [Pt, . . . , Pt−Tw+1]

′ the vector of 5-min prices within a neighborhood of size Tw and Rt,Tw
:=
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log(Pt,Tw) − log(Pt−1,Tw) the corresponding vector of returns. Let durt,i denote the execution duration of the

i-th transaction in the t-th five minute interval, i.e. the time difference between the order executed time and

order placed time. Table 3 lists the liquidity predictors we consider in the analysis. They are classified according

to their frequency, i.e. within or across the five minute interval, and by their nature of price impact or spread

proxies (Goyenko et al., 2009) or volatility of liquidity measures. Table 4 lists the volatility predictors we consider

in the analysis and are classified according to the frequency at which they are computed, i.e., within or across

the five minute interval.

Table 3: Liquidity measures proxying for price impact (PI), spread (S) and volatility of liquidity (Vol) computed
using information within the five minute interval (W), across (A) 5-min observations in a neighbourhood of size
Tw, or as a ratio (R) between the two frequencies. △ denotes the first difference operator for vectors; cov(,)
and cor(,) denote the covariance and the correlation between two input variables, respectively; var() denotes
the variance of the input variable or vector.

Frequency Proxy Liquidity Predictors Formula

W PI Transaction Volume TVt =
∑nt

i=1 Pt,i Vt,i

W PI Transaction Quantity TQt =
∑nt

i=1 Vt,i

W Vol Micro Transaction Volume Volatility MTVVt =

√
1
nt

∑nt

j=1

(
Pt,j Vt,j − 1

nt

∑nt

i=1 Pt,i Vt,i

)2
W Vol Micro Volatility of Trading Quantity in shares MTQVt =

√
1
nt

∑nt

j=1

(
Vt,j − 1

nt

∑nt

i=1 Vt,i

)2
W PI Amihud Illiquidity Measure AMt =

1
nt

∑nt

i=1
|Rt,i|
Pt,i Vt,i

W PI Extended Amihud Measures (Goyenko et al., 2009) EAMt =
max(Pt,BU )−min(Pt,BU )

TVt

W PI Transaction Duration durt =
∑nt

i=1 durt,i
nt

A S Roll (Roll, 1984) Rollt = cov (△Pt,Tw ,△Pt−1.Tw)

A S Modified Roll RollModt =
cov(△Pt,Tw ,△Pt−1.Tw )

Pm
t

A S Negative Roll Roll−t = Rollt 1{Rollt < 0}

A S Negative Modified Roll RollMod−t = RollModt 1{RollModt < 0}

A S Return Autocorrelation (Grossman and Miller, 1988) RACt = cor (Rt,Tw , Rt−1.Tw)

A PI Amihud Illiquidity Measure AMIt =
1
Tw

∑Tw−1
j=0

|Rt−j |
TVt−j

A Vol Transaction Volume Volatility TVVt =
√

1
Tw

∑Tw−1
j=0

(
TVt−j − TVt,Tw

)2
A Vol Relative Transaction Volume Volatility RTVVt =

TVVt
1

Tw

∑Tw−1
j=0 TVt−j

A Vol Trading Quantity Volatility TQVt =

√
1
Tw

∑Tw−1
j=0

(
TQt−j − 1

Tw

∑Tw−1
j=0 TQt−j

)2
A Vol Relative Trading Quantity Volatility RTQVt =

TQVt

TQt,Tw

R S Variance Ratio (Hasbrouck and Schwartz, 1988) VRt =
Tw·var(log(Pt,BU )−log(Pt))

nt var(Rt,Tw )

6.2 In-sample estimates

We divide each time series into an in-sample period covering the first 90% of the observations and an out-of-

sample period spanning the last 10% of the sample. We model the excess losses {yt} of each stock with the

time-varying GPD regression model in (3)-(4), using the variables defined in Tables 3 and 4, with Tw ∈ {2, 6, 12},
as possible predictors in both scale and shape parameters. Coefficient estimates obtained with the two-step

ALMLE are presented in Tables 5 and 6 for the shape and scale parameters, respectively.

Results for the shape parameter in Table 5 show that estimated coefficients have almost always the same

sign across the stocks. As to liquidity predictors, we find that price impact proxies are selected for almost

all the stocks, suggesting that they better capture liquidity effects on extreme losses. In particular, TV and

TQ display positive coefficients while AM and EAM display negative coefficients, entailing that larger extreme
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Table 4: Volatility measures computed using information within the five minute interval (W), across (A) 5-min
observations in a neighbourhood of size Tw, or as a ratio (R) between the two frequencies.

Frequency Volatility Predictors Formulas

W Micro Noise Return Volatility MNRVt =
√

1
nt

∑nt

i=1 (log(Pt,i)− log(Pt))
2

W Micro Realized Volatility MRVt =
√∑nt

i=1 (log(Pt,i)− log(Pt,i−1))
2

A Realized Volatility RVt,Tw =
√∑Tw−1

j=0 R2
t−j

R MNRV2RV MNRV2RV = MNRVt

RVt

R MRV2RV MRV2RV = MRVt

RVt

losses are associated with high levels of liquidity in the last five minutes. Although counter-intuitive at first, this

result is very interesting when read together with the other selected variables. As to the volatility of liquidity,

we notice that RTVV(Tw = 6) and RTQV(Tw = 6) are selected across most of the stocks and display large

and positive coefficients, indicating that extreme losses tend to be larger during periods of high volatility of

liquidity. Almost for every stock, we select the ratio MRV2RV(Tw = 12), essentially capturing the impact of the

volatility of volatility or jump risk on extreme losses, and associate a positive coefficient to it, conveying the idea

that extreme losses tend to be larger during periods of high uncertainty. Altogether these results are coherent

with the findings in Brogaard et al. (2018), i.e. that market markers amplify extreme price movements while

withdrawing from the market after large uncertainty shocks that caused their liquidity supply to be outstripped

by liquidity demand.

Table 6 shows that more variables are selected for the scale parameter but their pattern is less stable across

stocks. In general, we notice that the autoregressive component contributes to the dynamics, and that the

realized volatility predictor computed within the five-minute interval is always selected and displays positive

coefficient. This is coherent with the fact that the scale parameter captures the time-varying heteroscedasticity

in the data.

For comparison purposes, we report estimated regression coefficients for the shape and scale parameters

obtained with MLE in Tables 7-8. All of the estimated coefficients are nonzero and we cannot compute the

corresponding standard errors because the obtained Fisher information matrix of the MLE is not positive

definitive. This makes variable interpretation very difficult if not impossible.

6.3 Out-of-sample VaR forecast

The coefficient estimates β̂ obtained on the in-sample period are used to compute a one-step ahead VaR

prediction in the out-of-sample period. Specifically, the VaR of each stock at a risk level α at time t given xt−1

and β̂ is obtained as

V̂aRt(α) =
σ̂t(xt−1, β̂)

k̂t(xt−1, β̂)

((
1− α− Ft(ût)

1− Ft(ût)

)−k̂t(xt−1,β̂)

− 1

)
+ ût. (38)

where Ft(ût) is the probability of exceeding the threshold ût and is fixed to 90%. The coverage rate of

{V̂aRt(α)}Tis+Tos

t=Tis+1 for the out-of sample period is obtained as follows,

Coverage Rate =

∑Tis+Tos

t=Tis+1 1{lt ≤ V̂aRt(α)}
Tos

. (39)

Table 9 shows the coverage rate of {V̂aRt(α)}Tis+Tos

t=Tis+1 at the risk level α for various α ∈ [90%, 100%). We resort

to the Kolmogorov–Smirnov (K-S) test to test the goodness of fit of the predicted GPD over the out-of-sample
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Table 5: Empirical estimates of the regression coefficients for the shape parameter obtained with the two-step
ALMLE.

Predictors
Stocks

AXP BA GE HD IBM JNJ JPM KO XOM selection per stock

TV 1.105 0.676 0.581 1.912 1.205 0.660 1.109 2.014 0.89
TQ 1.314 1.101 0.501 0.874 0.813 1.130 0.756 0.0004 0.89
AM -0.345 0.719 -0.037 -0.522 -0.030 0.56
MTVV 0.067 0.11
EAM -1.637 -1.760 -0.913 -1.789 -1.681 -1.396 -1.650 -0.201 0.89
MTQV 0.200 0.166 0.009 0.177 0.44
MRV 0.328 -0.901 -0.367 -0.274 0.44
MNRV -0.794 -0.242 -0.491 0.020 0.44
dur 0.00
AMI (Tw = 2) 0.00
VR (Tw = 2) 0.00
RV (Tw = 2) 0.00
MNRV2RV (Tw = 2) -0.084 0.11
MRV2RV (Tw = 2) 0.095 0.11
AMI (Tw = 6) -0.003 0.11
Roll (Tw = 6) 0.00
Roll− (Tw = 6) 0.00
RollMod (Tw = 6) 0.00
RollMod− (Tw = 6) 0.00
TVV (Tw = 6) 0.00
TQV (Tw = 6) 0.00
RTVV (Tw = 6) 0.068 0.298 0.159 0.218 0.264 0.56
RTQV (Tw = 6) 0.069 0.300 0.159 0.218 0.270 0.56
RAC (Tw = 6) 0.00
VR (Tw = 6) 0.00
RV (Tw = 6) -0.203 0.11
MNRV2RV (Tw = 6) -0.415 -0.185 0.22
MRV2RV (Tw = 6) 0.194 -0.010 0.0003 0.33
AMI (Tw = 12) 0.524 0.648 0.22
Roll (Tw = 12) 0.00
Roll− (Tw = 12) 0.00
RollMod (Tw = 12) 0.00
RollMod− (Tw = 12) 0.00
TVV (Tw = 12) -0.851 0.11
TQV (Tw = 12) 0.00
RTVV (Tw = 12) -0.090 0.11
RTQV (Tw = 12) -0.090 0.11
RAC (Tw = 12) 0.00
VR (Tw = 12) 0.415 0.244 -0.00002 0.33
RV (Tw = 12) -0.436 0.11
MNRV2RV (Tw = 12) 0.297 0.11
MRV2RV (Tw = 12) 0.994 0.608 0.287 0.554 0.548 0.487 0.544 0.766 0.89

total number of selected variables 6 7 10 8 5 7 11 17 8
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Table 6: Empirical estimates of the regression coefficients for the scale parameter obtained with the two-step
ALMLE.

Predictors
Stocks

AXP BA GE HD IBM JNJ JPM KO XOM selection per stock

TV -0.004 -0.005 0.042 -0.044 0.212 0.095 0.67
TQ 0.039 0.110 0.015 0.042 0.047 0.092 -0.102 -0.095 0.89
AM 0.024 0.050 0.22
MTVV 0.048 -0.029 -0.137 -0.260 0.44
EAM -0.040 -0.012 -0.043 0.33
MTQV -0.123 0.016 0.021 0.135 0.168 -0.003 0.67
MRV 0.049 0.032 0.057 0.33
MNRV 0.049 0.139 0.056 0.055 0.067 0.079 0.048 0.128 0.091 1.00
dur 0.00
AMI (Tw = 2) -0.018 0.11
VR (Tw = 2) 0.00
RV (Tw = 2) 0.017 -0.021 0.22
MNRV2RV (Tw = 2) 0.00
MRV2RV (Tw = 2) 0.00
AMI (Tw = 6) -0.014 -0.003 0.22
Roll (Tw = 6) -0.054 0.11
Roll− (Tw = 6) -0.035 -0.086 0.22
RollMod (Tw = 6) -0.061 -0.048 -0.050 0.33
RollMod− (Tw = 6) 0.077 0.008 0.051 0.053 0.062 0.104 0.061 0.78
TVV (Tw = 6) 0.006 0.029 0.22
TQV (Tw = 6) -0.015 -0.048 -0.006 0.33
RTVV (Tw = 6) 0.015 0.11
RTQV (Tw = 6) 0.0003 0.11
RAC (Tw = 6) 0.00
VR (Tw = 6) -0.003 0.11
RV (Tw = 6) 0.017 0.038 0.22
MNRV2RV (Tw = 6) -0.002 -0.056 -0.037 -0.082 0.44
MRV2RV (Tw = 6) -0.028 0.041 0.044 0.33
AMI (Tw = 12) 0.039 0.11
Roll (Tw = 12) -0.005 0.027 0.22
Roll− (Tw = 12) 0.006 0.11
RollMod (Tw = 12) -0.005 -0.038 -0.014 0.33
RollMod− (Tw = 12) 0.004 0.006 0.022 0.33
TVV (Tw = 12) -0.036 -0.009 0.22
TQV (Tw = 12) -0.013 -0.001 -0.010 -0.011 0.44
RTVV (Tw = 12) 0.003 0.11
RTQV (Tw = 12) 0.046 0.11
RAC (Tw = 12) 0.00
VR (Tw = 12) -0.004 -0.032 0.22
RV (Tw = 12) 0.027 0.034 0.22
MNRV2RV (Tw = 12) 0.014 0.007 0.032 0.037 0.061 0.023 0.103 0.78
MRV2RV (Tw = 12) 0.022 0.021 -0.005 -0.00005 0.014 -0.016 0.67
log(σt−1) 0.849 0.631 0.758 0.724 0.832 0.778 0.829 0.668 0.770 1.00

total number of selected variables 14 10 12 12 20 11 16 7 18
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Table 7: Empirical estimates of the regression coefficients for the scale parameter obtained with the MLE.

Predictors
Stocks

AXP BA GE HD IBM JNJ JPM KO XOM selection per stock

TV 0.396 0.264 0.116 0.264 0.563 0.631 0.239 0.602 0.239 1.00
TQ 0.469 0.313 0.173 0.326 0.457 0.619 0.259 0.519 0.216 1.00
AM -0.083 -0.167 0.303 -0.042 -0.287 -0.394 -0.067 -0.221 -0.080 1.00
TVV 0.249 0.017 0.064 0.094 0.135 0.115 0.055 0.090 0.059 1.00
EAM -0.621 -0.406 -0.062 -0.451 -0.525 -1.095 -0.236 -0.966 -0.350 1.00
TQV 0.195 0.020 0.076 0.100 0.151 0.112 0.053 0.087 0.057 1.00
MRV 0.062 0.001 0.224 -0.003 0.136 0.188 0.051 0.086 0.048 1.00
MNRV -0.055 -0.081 0.072 -0.140 -0.021 0.028 0.009 -0.121 -0.035 1.00
dur -0.025 0.000 -0.026 0.016 0.000 0.033 0.020 0.021 0.000 1.00
AMI (Tw = 2) -0.130 -0.048 0.036 0.129 -0.386 -0.194 -0.008 0.098 -0.239 1.00
VR (Tw = 2) 0.000 0.060 0.000 0.013 0.000 0.034 -0.001 0.016 0.000 0.56
RV (Tw = 2) -0.047 -0.048 0.036 -0.178 0.047 0.006 0.027 -0.005 -0.070 1.00
MNRV2RV (Tw = 2) 0.000 0.048 0.000 0.012 0.000 0.084 -0.043 -0.066 0.000 0.78
MRV2RV (Tw = 2) 0.000 0.035 0.000 0.010 0.000 0.007 -0.025 0.036 0.000 0.78
AMI (Tw = 6) 0.005 -0.154 0.107 -0.059 -0.401 -0.188 0.000 0.111 0.019 1.00
Roll (Tw = 6) 0.043 0.035 -0.010 0.018 0.032 -0.045 -0.004 0.001 0.001 1.00
Roll− (Tw = 6) 0.052 0.019 -0.016 0.045 0.011 -0.066 -0.011 0.001 0.010 1.00
RollMod (Tw = 6) 0.026 0.024 -0.022 -0.014 0.029 -0.051 -0.007 0.001 0.005 1.00
RollMod− (Tw = 6) 0.024 0.013 -0.031 0.011 0.008 -0.076 -0.016 0.001 0.006 1.00
TVV (Tw = 6) 0.015 0.026 -0.048 0.063 0.004 0.010 0.059 -0.021 0.023 1.00
TQV (Tw = 6) 0.062 0.038 -0.004 0.095 -0.015 0.006 0.070 -0.049 0.020 1.00
RTVV (Tw = 6) 0.132 0.081 0.080 0.182 0.080 0.152 0.093 0.168 0.147 1.00
RTQV (Tw = 6) 0.131 0.081 0.080 0.182 0.080 0.152 0.092 0.168 0.147 1.00
RAC (Tw = 6) -0.042 -0.063 -0.029 -0.071 -0.020 -0.013 0.053 -0.078 -0.101 1.00
VR (Tw = 6) 0.103 0.032 -0.010 0.115 -0.018 -0.020 0.033 -0.052 0.043 1.00
RV (Tw = 6) -0.116 -0.104 0.116 -0.176 -0.036 -0.099 -0.015 -0.114 -0.128 1.00
MNRV2RV (Tw = 6) 0.011 0.090 -0.151 0.058 0.009 0.044 -0.004 -0.087 -0.018 1.00
MRV2RV (Tw = 6) 0.097 0.165 0.031 0.188 0.231 0.107 0.068 0.142 0.132 1.00
AMI (Tw = 12) -0.032 -0.133 0.162 -0.036 -0.259 -0.030 -0.021 0.152 -0.015 1.00
Roll (Tw = 12) -0.019 0.005 -0.023 0.000 0.047 0.009 0.011 0.002 0.009 1.00
Roll− (Tw = 12) 0.074 0.059 -0.013 0.081 0.041 0.031 0.014 0.003 0.040 1.00
RollMod (Tw = 12) -0.021 0.012 -0.026 -0.040 0.045 0.006 0.009 0.002 0.013 1.00
RollMod− (Tw = 12) 0.026 0.051 -0.029 0.020 0.039 0.018 0.006 0.002 0.031 1.00
TVV (Tw = 12) -0.125 -0.049 -0.143 -0.051 -0.132 -0.141 -0.019 -0.285 -0.069 1.00
TQV (Tw = 12) -0.059 -0.031 -0.096 -0.021 -0.159 -0.150 -0.008 -0.308 -0.070 1.00
RTVV (Tw = 12) -0.008 0.035 0.010 -0.001 0.006 0.033 0.030 -0.028 0.056 1.00
RTQV (Tw = 12) -0.008 0.036 0.010 -0.002 0.005 0.032 0.030 -0.027 0.056 1.00
RAC (Tw = 12) -0.097 -0.007 -0.063 -0.124 0.036 0.132 0.019 -0.054 0.031 1.00
VR (Tw = 12) 0.087 0.029 0.011 0.046 0.031 0.043 0.062 -0.003 0.085 1.00
RV (Tw = 12) -0.171 -0.167 0.028 -0.241 -0.118 -0.267 -0.074 -0.227 -0.258 1.00
MNRV2RV (Tw = 12) 0.034 0.138 -0.050 0.043 0.161 0.217 0.050 0.136 0.091 1.00
MRV2RV (Tw = 12) 0.163 0.228 0.170 0.190 0.376 0.309 0.131 0.376 0.257 1.00

total number of selected variables 39 42 39 42 41 42 42 42 41
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Table 8: Empirical estimates of the regression coefficients for the scale parameter obtained with the MLE.

Predictors
Stocks

AXP BA GE HD IBM JNJ JPM KO XOM selection per stock

TV -0.033 -0.138 0.058 -0.064 0.114 -0.055 -0.075 0.314 0.253 1.00
TQ 0.094 0.325 -0.033 0.100 0.012 0.090 0.166 -0.190 -0.110 1.00
AM -0.010 0.018 0.046 0.039 0.021 0.006 0.021 0.029 0.027 1.00
TVV -0.045 0.157 -0.127 -0.018 0.051 -0.035 -0.224 -0.378 -0.043 1.00
EAM -0.026 -0.039 -0.007 -0.055 -0.060 -0.018 -0.029 -0.008 -0.056 1.00
TQV 0.045 -0.312 0.142 0.011 -0.241 0.048 0.219 0.279 -0.148 1.00
MRV 0.028 0.024 0.021 0.018 -0.007 0.019 0.055 0.023 -0.015 1.00
MNRV 0.099 0.137 0.060 0.070 0.199 0.060 0.061 0.094 0.149 1.00
dur -0.002 -0.031 0.000 -0.005 0.046 -0.007 -0.001 -0.005 0.003 1.00
AMI (Tw = 2) 0.030 0.009 -0.012 0.000 0.045 0.019 0.005 -0.045 0.043 1.00
VR (Tw = 2) -0.005 -0.009 0.000 -0.007 0.014 0.001 0.020 -0.014 -0.007 1.00
RV (Tw = 2) -0.037 -0.050 0.011 -0.006 -0.068 -0.007 -0.071 0.031 -0.015 1.00
MNRV2RV (Tw = 2) 0.010 0.001 0.001 -0.001 0.026 -0.010 -0.033 -0.015 -0.007 1.00
MRV2RV (Tw = 2) -0.024 0.009 0.001 0.008 0.023 0.015 0.017 0.039 -0.007 1.00
AMI (Tw = 6) 0.009 -0.016 -0.009 -0.009 -0.047 -0.032 0.006 0.002 -0.106 1.00
Roll (Tw = 6) 0.069 0.014 -0.002 0.040 0.019 -0.087 0.020 0.050 -0.001 1.00
Roll− (Tw = 6) -0.062 -0.013 -0.046 -0.090 -0.024 -0.022 -0.066 0.070 -0.009 1.00
RollMod (Tw = 6) -0.114 0.022 -0.072 -0.027 -0.037 0.019 -0.058 0.040 -0.041 1.00
RollMod− (Tw = 6) 0.127 -0.016 0.139 0.096 0.049 0.113 0.125 0.058 0.068 1.00
TVV (Tw = 6) 0.016 0.045 -0.025 0.070 -0.033 0.055 -0.003 0.031 -0.011 1.00
TQV (Tw = 6) -0.031 -0.041 0.024 -0.078 0.016 -0.074 -0.010 -0.027 -0.002 1.00
RTVV (Tw = 6) -0.011 -0.010 -0.005 -0.004 0.014 0.006 -0.016 -0.003 -0.009 1.00
RTQV (Tw = 6) -0.006 0.012 -0.005 0.004 0.013 0.008 0.005 -0.001 0.000 1.00
RAC (Tw = 6) 0.005 -0.010 0.008 -0.013 -0.012 -0.008 -0.004 -0.011 -0.002 1.00
VR (Tw = 6) 0.050 0.088 0.138 0.035 0.080 0.046 0.012 0.017 0.038 1.00
RV (Tw = 6) 0.020 -0.009 0.026 0.029 0.006 0.016 0.012 -0.064 0.031 1.00
MNRV2RV (Tw = 6) -0.163 -0.190 -0.076 -0.080 -0.077 -0.114 -0.064 -0.112 -0.243 1.00
MRV2RV (Tw = 6) 0.081 0.054 0.014 0.010 -0.031 0.035 0.025 0.068 0.153 1.00
AMI (Tw = 12) 0.014 0.038 0.014 0.016 0.078 0.018 0.013 0.017 0.069 1.00
Roll (Tw = 12) 0.047 -0.052 0.097 0.041 -0.017 0.032 0.089 0.069 0.010 1.00
Roll− (Tw = 12) -0.063 0.033 -0.071 -0.033 0.016 0.017 -0.114 0.063 -0.050 1.00
RollMod (Tw = 12) -0.068 0.041 -0.077 -0.058 -0.023 -0.041 -0.094 0.063 -0.037 1.00
RollMod− (Tw = 12) 0.086 -0.024 0.047 0.051 0.043 -0.009 0.118 0.063 0.086 1.00
TVV (Tw = 12) 0.010 -0.092 0.006 -0.037 0.032 0.100 0.008 -0.029 0.001 1.00
TQV (Tw = 12) -0.025 0.046 -0.015 0.031 -0.034 -0.095 -0.022 0.015 -0.011 1.00
RTVV (Tw = 12) 0.009 0.022 0.005 -0.001 0.007 -0.007 -0.002 0.003 0.013 1.00
RTQV (Tw = 12) 0.010 0.044 -0.001 0.008 -0.003 -0.003 0.016 0.011 0.012 1.00
RAC (Tw = 12) 0.000 0.016 -0.005 0.008 0.003 0.012 0.002 0.013 0.009 1.00
VR (Tw = 12) -0.072 -0.205 -0.026 -0.029 -0.056 -0.063 -0.037 -0.022 -0.070 1.00
RV (Tw = 12) 0.038 0.041 0.001 0.024 0.066 0.054 0.022 0.097 0.042 1.00
MNRV2RV (Tw = 12) 0.183 0.149 0.083 0.073 -0.033 0.194 0.121 0.131 0.211 1.00
MRV2RV (Tw = 12) -0.045 -0.019 -0.007 0.016 0.091 -0.060 -0.028 -0.071 -0.074 1.00
log(σt−1) 0.752 0.480 0.736 0.674 0.445 0.739 0.761 0.645 0.545 1.00

total number of selected variables 43 43 43 43 43 43 43 43 43
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period, i.e., we test whether {F̂ (yt|yt > 0) = GPD(yt;xt−1, β̂)} follows a standard uniform distribution. The

p-values of the K-S tests in Table 9 indicate that we reject the regression model on three stocks out of nine at

the 1% significance level.

Table 9: Out-of-sample VaR Coverage Rates and p-values for the K-S Test.

Stock Names
VaR risk level

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 0.999 0.9999 K-S Test p-values

AXP 0.8999 0.9111 0.9224 0.9314 0.9414 0.9520 0.9631 0.9729 0.9827 0.9913 0.9986 0.9996 0.208
BA 0.9000 0.9098 0.9210 0.9309 0.9417 0.9522 0.9630 0.9738 0.9836 0.9930 0.9985 0.9996 0.0431
GE 0.8999 0.9171 0.9254 0.9376 0.9475 0.9622 0.9709 0.9811 0.9889 0.9943 0.9989 0.9999 2.68× 10−12

HD 0.9001 0.9097 0.9217 0.9339 0.9453 0.9551 0.9652 0.9756 0.9840 0.9934 0.9990 0.9998 0.0023
IBM 0.9003 0.9094 0.9204 0.9312 0.9414 0.9509 0.9614 0.9702 0.9809 0.9905 0.9980 0.9993 0.8954
JNJ 0.9000 0.9083 0.9195 0.9284 0.9382 0.9480 0.9571 0.9682 0.9786 0.9888 0.9977 0.9995 0.3322
JPM 0.9000 0.9094 0.9176 0.9294 0.9385 0.9500 0.9612 0.9711 0.9815 0.9904 0.9982 0.9997 0.3993
KO 0.8996 0.9109 0.9180 0.9273 0.9380 0.9489 0.9594 0.9709 0.9813 0.9909 0.9980 0.9994 0.3786
XOM 0.8988 0.9056 0.9136 0.9218 0.9303 0.9396 0.9502 0.9630 0.9742 0.9863 0.9972 0.9992 6.32× 10−8

7 Conclusion

This paper proposes a novel extreme value regression framework to study the dynamics of high-frequency tail

risk. The proposed model allows for both stationary and local unit-root predictors to capture the persistence

of high-frequency extreme losses. We propose a two-step regularized approach to perform automatic variable

selection, and establish the oracle property of the corresponding ALMLE in selecting stationary and local

unit-root predictors. We use the proposed approach to investigate the predictive content of 42 liquidity and

volatility indicators on the distribution of extreme losses for nine large liquid U.S. stocks. Our variable selection

procedure reveals that the severity of tail risk is strongly associated to low price impact in periods of high

volatility of liquidity and volatility of volatility. These findings can contribute to timely alert high-frequency

traders of rising risk levels and facilitate improvements of their algorithmic trading practices for financial risk

management. Moreover, it provides incentives for market markers to absorb liquidity demand in periods of

instability. Finally, it suggests a set of predictors to regulators investigating trading activities that can help

defining proper regulation guidelines and safeguard financial stability.
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Appendices

A Proofs

A.1 MLE - Gradient and Hessian matrix of the loglikelihood function L(·)

The gradient function of L(β; {yt}, {zt−1}) is given by

∂L(β; {yt}, {zt−1})
∂β

=

T∑
t=1

ψt(β), (40)

ψt(β) := 1{yt > 0}


Xt−1



gk,t(β)
...

gk,t(β)

gσ,t(β)

gσ,t(β)
...

gσ,t(β)

gσ,t(β)


+ gσ,t(β)

t−1∑
i=0



0
...

0

βi2,p+1

βi2,p+1z1,t−1−i
...

βi2,p+1zp,t−1−i∑p
j=1 β2,j i β

i−1
2,p+1 zj,t−1−i




, (41)

Xt := diag(xt),

xt := [1, z′t, 1, z
′
t, log(σt(β))]

′,

gk,t(β):=
(

1
kt(β) − 2

)
log
(
1 + kt(β)

yt
σt(β)

)
+
(

1
kt(β) − 1− 2kt(β)

)(
1

1+kt(β)
yt

σt(β)

− 1

)
,

gσ,t(β) :=
1

kt(β)

(
1− 1

1 + kt(β)
yt

σt(β)

)
− 1

1 + kt(β)
yt

σt(β)

,

gA,i,t :=

[
0, . . . , 0, βi2,p+1, β

i
2,p+1z1,t−1−i, . . . , β

i
2,p+1zp,t−1−i,

∑p
j=1 β2,j i β

i−1
2,p+1 zj,t−1−i

]′
,

(42)

where diag(xt) denotes the square diagonal matrix with the elements of vector xt on the main diagonal. Using

the gradient information in (42), we give the Hessian matrix of L(β; {yt}, {zt−1}) below.

HL(β) :=
∂2L(β; {yt}, {zt−1})

∂β∂β′ =

T∑
t=1

∂ψt(β)

∂β′

∂ψt(β)

∂β′ = 1{yt > 0}

(
Xt−1Hg +

t−1∑
i=0

diag (gA,i,t)

(
I(2p+3)×1

⊗ ∂gσ,t(β)

∂β′

)
+ gσ,t(β)HA

)
,
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...
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∂gk,t(β)

∂β′ =
[
∂gk,t(β)
∂logit(kt)

. . .
∂gk,t(β)
∂logit(kt)

∂gk,t(β)
∂ log(σt)

. . .
∂gk,t(β)
∂ log(σt)

]
diag(Xt−1)
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∂gk,t(β)

∂logit(kt)
= (2− 1

kt
) log(1 + kt

yt
σt

) + (1 + kt
yt
σt

)−1((1− 2 kt)
2 − (

1

kt
− 2 kt)(1− 2 kt))

+ (1 + kt
yt
σt

)−2 yt
σt

(2k2t + kt − 1)
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∂ log(σt)
= kt
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)(1 + kt
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)−1 + (
1

kt
− 1− 2 kt)(1 + kt
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σt
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= (1 + kt
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)−2 yt
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1

kt

∂gσ,t(β)

∂ log(σt)
= − yt

σt
(1 + kt

yt
σt

)−2(1 + kt),

(45)

where
⊗

denotes the Kronecker product operator, and we suppress the coefficients in kt := kt(β), σt := σt(β)

and the conditional variables in ψt(β) := ψ(β;Lt−1,Zt−1, Lt−2,Zt−2, . . .) for ease of the notations. We also

denote specifically that kot := kt(β
o) and σot := σt(β

o) to ease the notation.

A.2 MLE - Proofs

Proposition 1. Under Assumptions M.1, M.2, M.3, M.5(1) and M.6, for any ε > 0 and any interior β̃ in

Θ, it holds that there exists an δ > 0 such that

sup
∥β−β̃∥<δ

∥∥∥ψt(β)−ψt(β̃)∥∥∥ < ε, (46)

where ∥·∥ is the Euclidean norm.

Proof. This proposition claims that ψt(·) is uniformly continuous in β ∈ Θ. To prove this proposition, we show

that ψt(·) is continuous and tight in β ∈ Θ below.

First, viewing the formula of ψt(·) in Appendix A.1, we know that ψt(·) is a composition of continuous functions

in β and hence is continuous in β. Secondly, by Assumptions M.1, M.3, M.5(1) and M.6, we know that β and

zt−1 are bounded in probability and thereby kt(·) and σt(·) are bounded and their lower bounds are above

zero in probability. It follows that we get that gσ,t(·) and gA,i,t(·) are also bounded in probability. Additionally,

under Assumption M.2, we know that |yt| is bounded in probability. By Jensen’s inequality, we obtain that

gk,t(·) is bounded in probability. Therefore, we obtain that ψt(·) is bounded in probability in β ∈ Θ and thereby

accomplish this proof.

Proposition 2. Under Assumptions M.1, M.2, M.3, M.5(1) and M.6, it holds that {E[ψt(β)],β ∈ Θ} has

unique zero at β = βo∗ and for any ϵ > 0,

lim
T→∞

P

{∥∥∥∥∥ 1T
T∑
t=1

ψt(β
o∗)

∥∥∥∥∥ > ϵ

}
= 0, (47)

Proof. First, the equality (47) claims that 1
T

∑T
t=1 ψt(β

o∗) converges to zero in probability. Let us prove the

equality (47) using the conditions in Theorem 1 of Csörgő (1968).

Under Assumptions M.1 and M.2, we take the expectation with respect to the true conditional probability

function of yt and obtain that

E [ψt(β
o∗)|Ft−1] = 0, for t = 1, . . . , T. (48)

We also have that
T∑
t=1

1

t2
E [ψt(β

o∗)] ≤
T∑
t=1

1

t2
M 12p+3

<∞,

(49)
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where M ∈ R is a large finite number and 12p+3 denotes a vector of (2p+ 3) ones; the second last inequality is

obtained by the tightness of ψt(·) in Proposition 1; the last inequality is obtained by
∑T
t=1

1
t2 <∞. Therefore,

by applying Theorem 1 of Csörgő (1968) we conclude that 1
T

∑T
t=1 ψt(β

o∗) converges to zero in probability.

Secondly, we are going to show the uniqueness of βo∗ in Θ such that E[ψt(βo∗)] = 0 by contradiction. Suppose

there is a β ∈ Θ and β ̸= βo∗ such that

E[ψt(β)] = 0. (50)

On the other hand, by the mean value theorem it holds that

ψt(β)−ψt(βo∗) = HL(β) (β − βo∗) , (51)

where β is between β and βo∗. Since HL(·) is positive definite in Θ almost surely by Assumption M.6 and

β ̸= βo∗, we obtain that ψt(β) ̸= ψt(βo∗) almost surely and contradict (50). Hence, we conclude the uniqueness

of βo∗ in Θ.

Proof of Theorem 1

Proof. First, let us prove that β̂mle is in Θ. By Proposition 2, we can get that for any ϵ ∈ R2p+3 and ϵ > 0 ,

there exists TN such that for T > TN we have∣∣∣∣∣ 1T
T∑
t=1

ψt(β
o∗)

∣∣∣∣∣ < ϵ. (52)

Under Assumptions M.4 and M.6, we know that βo∗ is an interior point in Θ. Since βo∗ is an interior point in

Θ and 1
T

∑T
t=1 ψt(·) is uniformly continuous in Θ by Proposition 1, there exists δ > 0 and a ball B(βo∗, δ) :=

{β ∈ Θ| ∥βo∗ − β∥ < δ} such that ∣∣∣∣∣ 1T
T∑
t=1

ψt(β
o∗)− 1

T

T∑
t=1

ψt(β)

∣∣∣∣∣ < 1

2
ϵ. (53)

Moreover, there exist β1,β2 ∈ B(βo∗, δ) such that if
∣∣∣ 1T ∑T

t=1 ψt(β
o∗)
∣∣∣ ̸= 0, then

0 <
1

T

T∑
t=1

ψt(β
o∗)− 1

T

T∑
t=1

ψt(β1) ≤
1

2

∣∣∣∣∣ 1T
T∑
t=1

ψt(β
o∗)

∣∣∣∣∣ (54)

−1

2

∣∣∣∣∣ 1T
T∑
t=1

ψt(β
o∗)

∣∣∣∣∣ ≤ 1

T

T∑
t=1

ψt(β
o∗)− 1

T

T∑
t=1

ψt(β2) < 0 (55)

which results in

1

T

T∑
t=1

ψt(β
o∗)− 1

2

∣∣∣∣∣ 1T
T∑
t=1

ψt(β
o∗)

∣∣∣∣∣ ≤ 1

T

T∑
t=1

ψt(β1) <
1

T

T∑
t=1

ψt(β
o∗) (56)

1

T

T∑
t=1

ψt(β
o∗) <

1

T

T∑
t=1

ψt(β2) ≤
1

T

T∑
t=1

ψt(β
o∗) +

1

2

∣∣∣∣∣ 1T
T∑
t=1

ψt(β
o∗)

∣∣∣∣∣ . (57)

Hence we find
∣∣∣ 1T ∑T

t=1 ψt(β1)
∣∣∣ < ∣∣∣ 1T ∑T

t=1 ψt(β
o∗)
∣∣∣ < ϵ or

∣∣∣ 1T ∑T
t=1 ψt(β2)

∣∣∣ < ∣∣∣ 1T ∑T
t=1 ψt(β

o∗)
∣∣∣ < ϵ.

Continue this process, and we can find a sequence of points in Θ has decreasing values of
∣∣∣ 1T ∑T

t=1 ψt(·)
∣∣∣.

There exists a subsequence of the resulted point sequence and the limit of the subsequence is β̂mle in Θ with∣∣∣ 1T ∑T
t=1 ψt(β̂

mle)
∣∣∣ = 0. Since limT→∞

1
T

∑T
t=1 ψt(β

o∗) = 0, then we obtain limT→∞ β̂
mle = βo∗ and conclude

this proof.
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Proof of Theorem 2

Proof. Apply the Taylor expansion of
∑T
t=1 ψt(β̂

mle) at βo∗ and the mean value theorem, we obtain

1√
T

T∑
t=1

ψt(β̂
mle) =

1√
T

T∑
t=1

ψt(β
o∗) +

1

T
HL(β)

√
T
(
β̂mle − βo∗

)
, (58)

where β is between β̂mle and βo∗. Since
∑T
t=1 ψt(β̂

mle) = 0, the above expansion results in

(
1

T
HL(β)

)−1
1√
T

T∑
t=1

ψt(β
o∗) =

√
T
(
β̂mle − βo∗

)
. (59)

1
THL(·) is uniformly continuous inΘ, which can be proved analogously to the proof of Proposition 1 with knowing

y2t ∈ Op(1) thanks to 0 < kt(β
o∗) < 0.5. By the continuous mapping theorem and knowing limT→∞ β̂

mle = βo∗

from Theorem 1, we obtain that

lim
T→∞

(
1

T
HL(β)

)−1

=

(
1

T
HL(β

o∗)

)−1

.

From Assumptions M.7 and M.8 we know that
1√
T

T∑
t=1

ψt(β
o∗)

D∼ Sψ

1

T
HL(β

o∗)
D∼ ΩH

(60)

and thus by Slutsky’s theorem, we obtain that

√
T
(
βo∗ − β̂mle

)
D∼ Ω−1

H Sψ. (61)

A.3 ALMLE - Proofs

Proof of Theorem 3

Proof. We prove this theorem by contradiction. In the proof below, we show that truly inactive predictors have

a non-zero probability to get selected since λk,T , λσ,T ∈ O(T
1
2 ) if there is no β̂al(λk,T , λσ,T ) with λk,T , λσ,T ∈

O(T
1
2 ) such that the condition (22) is met.

We set wk,i, wσ,j , e.g. using the MLE in section 3, such that
√
T ( 1

wk,i
−β∗o

1,i) = Op(1) and
√
T ( 1

wσ,j
−β∗o

2,j) =

Op(1), for i = 1, . . . , p, j = 1, . . . , p+ 1.

Let us go over the tuning parameter grid {(λk,T , λσ,T ) : λk,T ∈ Sλk,T
, λσ,T ∈ Sλσ,T

, }. λk,T,max and λσ,T,max

are chosen large enough such that β̂al(λk,T,max, λσ,T,max) = 0, i.e., no predictors get selected. By the Karush-

Kuhn-Tucker (KKT) optimality condition and with (λk,T,max, λσ,T,max), we have



∣∣∣∣∣ ∂L∂β̂al
1,i

∣∣∣∣∣ ≤ λk,T,max wk,i, (1, i) ∈ Ak ∪ Ac
k,∣∣∣∣∣ ∂L∂β̂al

2,j

∣∣∣∣∣ ≤ λσ,T,max wσ,j , (2, j) ∈ Aσ ∪ Ac
σ,

(62)

where we denote Ak :=
{
(1, i) : i ≥ 1, β∗o

1,i ̸= 0
}
, Ac

k :=
{
(1, i) : i ≥ 1, β∗o

1,i = 0
}
, Aσ :=

{
(2, j) : j ≥ 1, β∗o

2,j ̸= 0
}
,

and Ac
σ :=

{
(2, j) : j ≥ 1, β∗o

2,j = 0
}
. We rewrite ∂L

∂β̂al(λk,T,max,λσ,T,max)
using the mean value theorem because
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L(·; {yt}, {z∗t }) is twice continuously differentiable, and substitute this rewriting into the above KKT condition

and get 

∣∣∣∣∣∣ ∂L∂β∗o
1,i

−
p∑

ig=0

∂2L
∂β̂al

1,i∂β̂
al′
1,ig

β
(2nλk

nλσ )

1,ig
−

p+1∑
jg=0

∂2L
∂β̂al

1,i∂β̂
al′
2,jg

β
(2nλk

nλσ )

2,jg

∣∣∣∣∣∣ ≤λk,T,max wk,i,

(1, i) ∈ Ak ∪ Ac
k,∣∣∣∣∣∣ ∂L∂β∗o

2,j

−
p∑

ig=0

∂2L
∂β̂al

2,j∂β̂
al′
1,ig

β
(2nλk

nλσ−1)

1,ig
−

p+1∑
jg=0

∂2L
∂β̂al

2,j∂β̂
al′
2,jg

β
(2nλk

nλσ−1)

2,jg

∣∣∣∣∣∣ ≤λσ,T,max wσ,j ,

(2, j) ∈ Aσ ∪ Ac
σ,

(63)

where β
(2nλk

nλσ )

1,ig
,β

(2nλk
nλσ−1)

1,ig
∈
[
β∗o
1,ig

, β̂al
1,ig

(λk,T,max, λσ,T,max)
]
, and β

(2nλk
nλσ )

1,jg
,β

(2nλk
nλσ−1)

1,jg
∈ [β∗o

2,jg
,

β̂al
2,jg

(λk,T,max, λσ,T,max)]. In fact, we can find a pair of (λk,T,max, λσ,T,max) in O(T ).

Lower the tuning parameters from (λk,T,max, λσ,T,max), and β̂
al is able to screen variables. Truly inactively

predictors always meet the inequality of the KKT condition with
λk,T√
T

→ ∞ and
λσ,T√
T

→ ∞, thereby not being

selected. Coming to λk,T , λσ,T ∈ O(T
1
2 ), we get that λk,T wk,i = Op(T

1
2 ) for (1, i) ∈ Ak; λk,T wk,i = Op(T ) for

(1, i) ∈ Ac
k; λσ,T wσ,j = Op(T

1
2 ) for (2, j) ∈ Aσ; λσ,T wσ,i = Op(T ) for (2, i) ∈ Ac

σ. If with any λk,T ∈ O(T
1
2 )

and λσ,T ∈ O(T
1
2 ), there is no β̂al(λk,T , λσ,T ) such that the condition (22) is met, then there exists (1, ia) ∈ Ak

or (2, ja) ∈ Aσ such that ∣∣∣∣∣ ∂L
∂β̂al

1,ia

∣∣∣∣∣ ≤ λk,T wk,ia (64)

or ∣∣∣∣∣ ∂L
∂β̂al

2,ja

∣∣∣∣∣ ≤ λσ,T wσ,ja (65)

but β̂al
1,ia

= 0 or β̂al
2,ja

= 0 correspondingly for any λk,T , λσ,T ∈ O(T
1
2 ).

Under the condition (22) is broken, if

∣∣∣∣ ∂L
∂β̂al

1,ia

∣∣∣∣ ≤ λk,T wk,ia with β̂al
1,ia

= 0 and any λk,T , λσ,T ∈ O(T
1
2 ), we

get that λk,T wk,i = Op(T
1
2 ) for (1, i) ∈ Ak and λk,T wk,i = Op(T ) for (1, i) ∈ Ac

k. Then each truly inactively

predictor but correlated with the ia-th predictor of the shape model gains a non-zero probability to get selected

due to

P

{∣∣∣∣∣ ∂L∂β̂al
1,i

∣∣∣∣∣ ≥ λk,T wk,i, i ∈ Ac
k

∣∣∣∣∣β̂al
1,ia = 0, λk,T ∈ O(T

1
2 ), λσ,T ∈ O(T

1
2 )

}
̸= 0. (66)

The above probability is obtained easily by rewriting

∣∣∣∣ ∂L∂β̂al
1,i

∣∣∣∣ using the mean value theorem as done in (63) and

obtaining that

∣∣∣∣ ∂L∂β̂al
1,i

∣∣∣∣ ∈ Op(T ). For each β̂
al
1,i ̸= 0, i ∈ Ac

k with λk,T ∈ O(T
1
2 ), the bias of β̂al

1,i is Op(1). Lowering

λk,T , it follows that β̂
al
1,i = Op(T

−γ) meets the equality of the KKT condition with λk,T ∈ O(T
1
2−γ) and remains

selected for γ ∈ [0, 12 ].

The same reasoning applies if

∣∣∣∣ ∂L
∂β̂al

2,ja

∣∣∣∣ ≤ λσ,T wσ,ja with β̂al
1,ja

= 0 and any λk,T , λσ,T ∈ O(T
1
2 ), we get that

each truly inactively predictor but correlated with the ja-th predictor of the scale model then gains a non-zero

probability to get selected, i.e.,

P

{∣∣∣∣∣ ∂L∂β̂al
2,j

∣∣∣∣∣ ≥ λσ,T wσ,j , j ∈ Ac
σ

∣∣∣∣∣β̂al
2,ja = 0 λk,T ∈ O(T

1
2 ), λσ,T ∈ O(T

1
2 )

}
̸= 0. (67)

Therefore, the model selection consistency cannot be achieved if the condition (22) is not met, and we finish

the proof.

Proof of Theorem 4
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Proof. In this proof, we first prove the selection consistency of β̂k,al on truly active predictors of the shape

model, i.e.,

lim
T→∞

P
{
β̂k,al1,i ̸= 0,∀(1, i) ∈ Ak

}
= 1 (68)

which is also equivalent to limT→∞ P
{
Ak,al
k,T ⊇ Ak

}
= 1 with Ak,al

k,T := {(1, i) : β̂k,al1,i ̸= 0}. It follows that this

over-selection possibility for the shape model due to β̂k,al is proved to be curbed to zero by β̂tal, and the oracle

property of β̂tal is obtained lastly.

Firstly, we rewrite the objective function to obtain β̂k,al as follows: according to Assumption L2, there exists

βk,o, and

V (k)(ν(k)) = −L
(
βk,o +

ν(k)

√
T
; {yt}, {z∗t }

)
+ λk,T

p∑
i=1

w̃k,i

∣∣∣∣∣βk,o1,i +
ν
(k)
1,i√
T

∣∣∣∣∣ , (69)

where ν(k) := [ν
(k)
1,0 , . . . , ν

(k)
1,p , ν

(k)
2,0 , 0, . . . , 0]

′ ∈ Rp+2×0(p+1). We obtain that ν̂(k) = argmin
ν(k)∈Rp+2×0(p+1)

V (k)(ν(k))−

V (k)(0) such that equivalently

β̂k,al = βk,o +
ν̂(k)

√
T
. (70)

Specifically,

V (k)(ν(k))− V (k)(0)

= −
(
L(βk,o + ν(k)

√
T
; {yt}, {z∗t })− L

(
βk,o; {yt}, {z∗t }

))
+
λk,T√
T

p∑
i=1

w̃k,i
√
T

(∣∣∣∣∣βk,o1,i +
ν
(k)
1,i√
T

∣∣∣∣∣− ∣∣∣βk,o1,i

∣∣∣) .
(71)

According to Assumption L2 and Theorem 2, we have that
√
T (β̂k,mle1,i − βk,o1,i ) = Op(1) and

√
T (β̂mle1,i − β∗o

1,i) =

Op(1). Considering that

lim
T→∞

√
T

(∣∣∣∣∣βk,o1,i +
ν
(k)
1,i√
T

∣∣∣∣∣− ∣∣∣βk,o1,i

∣∣∣) =

ν
(k)
1,i sgn(βk,o1,i ), ifβk,o1,i ̸= 0,∣∣∣ν(k)1,i

∣∣∣ , ifβk,o1,i = 0,
(72)

and under Assumption L1 we obtain that

λk,T√
T
w̃k,i

√
T

(∣∣∣∣∣βk,o1,i +
ν
(k)
1,i√
T

∣∣∣∣∣− ∣∣∣βk,o1,i

∣∣∣) =


Op(T

−γ1) ν
(k)
1,i sgn(βk,o1,i ), ifβ∗o

1,i ̸= 0,

Op(T
1
2−γ1) ν

(k)
1,i sgn(βk,o1,i ), ifβ∗o

1,i = 0 but βk,o1,i ̸= 0,

Op(T
1−γ1)

∣∣∣ν(k)1,i

∣∣∣ , ifβ∗o
1,i = 0 and βk,o1,i = 0.

(73)

Also, we know that

−
(
L(βk,o + ν(k)

√
T
; {yt}, {z∗t })− L

(
βk,o; {yt}, {z∗t }

))
= Op(1) max{(ν(k)1,i )

2} (74)

by Taylor’s expansion and the tightness of 1
THL(·) in Θ as shown in the proof of Theorem 2. Substitute Eq. (73)

back into Eq. (71), and by Slutsky’s theorem we obtain that

V (k)(ν
(k)
1,i )− V (k)(0) =



Op(T ), if
ν
(k)
1,i√
T

= Op(1),∀(1, i) ∈ Ak,al
k and ν

(k)
1,i = Op(1),∀(1, i) /∈ Ak,al

k ;

Op(T
1−2γ), if ν

(k)
1,i = Op(T

1
2−γ),∀(1, i) ∈ Ak,al

k with 0 < 2γ < γ1 and ν
(k)
1,i = Op(1),∀(1, i) /∈ Ak,al

k ;

Op(T
1−γ1), if ν

(k)
1,i = Op(T

1
2−γ),∀(1, i) ∈ Ak,al

k with
γ1
2

≤ γ ≤ 1

2
and ν

(k)
1,i = Op(1),∀(1, i) /∈ Ak,al

k ;

Op(T
1−2γ), if ν

(k)
1,i = Op(T

1
2−γ),∀(1, i) ∈ Ak,al

k with 0 < γ < γ1 and ν
(k)
1,i = 0,∀(1, i) /∈ Ak,al

k ;

Op(T
1−γ−γ1), if ν

(k)
1,i = Op(T

1
2−γ),∀(1, i) ∈ Ak,al

k with γ1 ≤ γ ≤ 1

2
and ν

(k)
1,i = 0,∀(1, i) /∈ Ak,al

k ,

(75)
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where Ak,al
k := {(1, i) : βk,o1,i ̸= 0}. Therefore, we have that

ν̂
(k)
1,i = Op(1),∀(1, i) ∈ Ak,al

k and ν̂
(k)
1,i = 0,∀(1, i) /∈ Ak,al

k , (76)

minimizing V (k)(ν(k))− V (k)(0), and hence that

lim
T→∞

P

{
β̂k,al1,i = βk,o1,i +

ν̂
(k)
1,i√
T

̸= 0,∀(1, i) ∈ Ak,al
k

}
= P

{
βk,o1,i ̸= 0,∀(1, i) ∈ Ak,al

k

}
= 1. (77)

Thus we obtain limT→∞ P
{
β̂k,al1,i ̸= 0,∀(1, i) ∈ Ak

}
= 1.

Secondly, we show the asymptotic behaviour of β̂tal. Write β = βo∗+ ν√
T
for β ∈ Θ with ν := [ν1,0, . . . , ν1,p, ν2,0,

. . . , ν2,p+1]
′ ∈ R2p+3, and rewrite the objective function to obtain β̂tal as follows:

V (ν) = −L
(
βo∗ +

ν√
T
; {yt}, {z∗t }

)
+ λ̂k,T

p∑
i=1

w̃k,i

∣∣∣∣βo∗1,i + ν1,i√
T

∣∣∣∣+ λσ,T

p+1∑
j=1

w̃σ,j

∣∣∣∣βo∗2,j + ν2,j√
T

∣∣∣∣ . (78)

We obtain ν̂ := argmin
ν∈R2p+3

V (ν)− V (0) such that

β̂tal = β∗o +
ν̂√
T
. (79)

Specifically,

V (ν)− V (0)

= −
(
L(βo∗ + ν√

T
; {yt}, {z∗t })− L (βo∗; {yt}, {z∗t })

)
+
λ̂k,T√
T

p∑
i=1

w̃k,i
√
T

(∣∣∣∣βo∗1,i + ν1,i√
T

∣∣∣∣− ∣∣βo∗1,i∣∣)+
λσ,T√
T

p+1∑
j=1

w̃σ,j
√
T

(∣∣∣∣βo∗2,j + ν2,j√
T

∣∣∣∣− ∣∣βo∗2,j∣∣) .
(80)

Analogously to (75), we can also get that

lim
T→∞

V (ν)− V (0) =


Op(1), if ν1,i = Op(1), ν2,j = Op(1), for ∀(1, i) ∈ Ak,∀(2, j) ∈ Aσ,

and ν1,i = 0, ν2,j = 0, for ∀(1, i) /∈ Ak,∀(2, j) /∈ Aσ,

∞, otherwise of ν = Op(1).

(81)

Therefore, minimizing V (ν)−V (0) is equivalent to minimizing−
(
L(βo∗ + ν√

T
; {yt}, {z∗t })− L (βo∗; {yt}, {z∗t })

)
with ν1,i = 0, ν2,j = 0 for any (1, i) /∈ Ak, (2, j) /∈ Aσ, which leads to

√
T
(
β̂tal − βo∗

)
= ν̂ = argmin

ν∈R2p+3∩{ν1,i=0.ν2,j=0,(1,i)/∈Ak,(2,j)/∈Aσ}
V (ν)− V (0) (82)

as T → ∞ and thereby we obtain the asymptotic behavior of ν̂ by Theorem 2 with the restriction of

limT→∞ ν̂1,i = 0, limT→∞ ν̂2,j = 0 for any (1, i) /∈ Ak, (2, j) /∈ Aσ. Moreover,

lim
T→∞

P
{
Atal
T = A

}
= lim
T→∞

P

{
{β̂tal1,i = β∗o

1,i +
ν̂1,i√
T

̸= 0, β̂tal2,j = β∗o
2,j +

ν̂2,j√
T

̸= 0,∀(1, i) ∈ Ak,∀(2, j) ∈ Aσ} ∩ {β̂tal1,i = 0, β̂tal2,j = 0,∀(1, i) /∈ Ak,∀(2, j) /∈ Aσ}
}

= P
{
{β∗o

1,i ̸= 0, β∗o
2,j ̸= 0,∀(1, i) ∈ Ak,∀(2, j) ∈ Aσ} ∩ {β∗o

1,i = 0, β∗o
2,j = 0,∀(1, i) /∈ Ak,∀(2, j) /∈ Aσ}

}
= 1

(83)

which concludes that β̂tal is model selection consistent. Together with the limiting distribution of
√
T
(
β̂tal − βo∗

)
,

we conclude that β̂tal has the oracle property.
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