

PREDICTING INDIVIDUAL JOB MATCH QUALITY

EEA, 28.08.2023

Sabrina Mühlbauer Enzo Weber

- Definition Matching: a job seeker enters into employment by being matched to a certain job category (i.e. occupational field)
- improve matching process in German Employment Agencies (support caseworkers)
- provide a list of job recommendations individually for each job seeker
- find out differences between the application of traditional estimation methods and machine learning algorithms

IN BRIEF

 \rightarrow provide index for job match quality for each person

 \rightarrow additional alternatives could support caseworkers and improve the matching (Belot et al. (2019), Blundell et al. (2004))

- Matching Probability: predict probability that a person (with specific characteristics) gets employed in a certain job category
 - field experiment shows that having more alternatives and information has a positive effect on labor market success (Altmann et al. (2018))
- Job Match Quality
 - Job Stability: probability for being long term employed after starting a new job
 - Wage: expected wage if starting a job in a certain occupation
 - job stability and wages are common measures for job match quality (i.e. Caliendo et al. (2013), van den Berg and Vikström (2014) or Nekoei and Weber (2017))

METHODS - OVERVIEW

METHODS - SELECTION FOR THE PRESENT PROJECT

- OLS, logit, multinomial logit
 - manual model selection (time-consuming)
 - large classification models can not be estimated with multinomial logit
 - models do not improve much by having more data
- random forest, xgboost
 - does not need (much) hyperparameter tuning
 - fast in computing large and complex models
 - high prediction performance
- neural networks, support vector machines
 - for complex models: hyperparameter tuning is extremely time consuming
 - model gets extremely large: estimation collapses
 - splitting the sample: error rate increases dramatically

METHODS - SELECTION FOR THE PRESENT PROJECT II

k-Nearest Neighbors

- the more observations the higher the optimal k
- the higher k the higher the computing time and the required RAM
- machine learning in labor market research
 - analysis of vacancies by text classification (Amato et al. (2015))
 - matching vacancies to candidates (Bhatia et al. (2020), van Belle et al. (2018), Fang (2015))
- \rightarrow prefer random forest and xgboost

DATA - INTEGRATED EMPLOYMENT BIOGRAPHIES

Integrated Employment Biographies (IEB)

- contains information from 1975 onwards
- covers all employment biographies in Germany
- administrative, high frequency dataset
- sources: Jobseeker Histories and Employee History
- estimations:
 - use random 10 %-sample
 - observations from 2012 onwards

- gender (male, female)
- federal state (a person lives in)
- nationality (German, EU, Europe without EU, 8 migration countries, remaining nations)
- marital status (single, partnership)
- children (at minimum one child under 15 years, no children)
- education (no school leaving certificate, ..., university)
- job category of completed vocational training
- job category someone was employed in before starting a new job
- skill level
- age at the start of employment
- number of days in unemployment before starting a new employment

MATCHING PROBABILITY: THE MODEL

Definition

 $P(M_i = j) = f(X_i, Y_i),$

- $j = 1, \ldots, J$, J is the number of different job categories,
- $i = 1, \ldots, N$, N is the number of observations
- *M_i* denotes the occupation of observation i
- X is a vector denoting the characteristics of observation i
- Y is a vector denoting the characteristics of jobs of observation i

Endogenous Variable: Job Category

- 144 different occupational groups: 3-digit defined in the German classification of occupations 2010
- consider jobs subject to social security
- observation period: 2012-2018

Sample

- stock of persons having a job subject to social security
- 54,781,854 observations of 2,883,188 different persons
- unbalanced distribution of persons across job categories

MATCHING PROBABILITY: ESTIMATION

- test-train split by year
 - train set: 2012-2017
 - test set: 2018
- best method: random forest
- measure of goodness: classification error rates (= number of wrong predictions/ total number of observations)
- out-of-sample error: 42.20 %
- random forest error is by 18.50 percentage points lower than for OLS
- important variables
 - calculate Gini-based importance
 - most important predictors: last job category someone was employed in, skill level required for previous employment

Definition:

P(duration > 6 months) = f(X, Y),

- X is a matrix covering *i* characteristics of every person
- Y is a matrix covering *j* characteristics of jobs of every person
- *n* is the number of observations (i.e. spells)

Endogenous Variable: employment duration

- two categories: short term (< 6 months) and long term employment (> 6 months)
- test-train split by year
 - train set: 2012-2016
 - test set: 2017
- best method: xgboost
- measure of goodness: classification error

Two samples

- occupation duration sample: being employed in the same occupation (i.e. job category)
 - classification error rate for xgboost: 13.68 %
 - by 21.6 % lower than logit
- **employment duration sample**: being employed without interruption by an unemployment period
 - classification error rate for xgboost: 15.25 %
 - by 36.7 % lower than logit

Definition: The Model

 $ln(wage) = f(\mathbf{X}, \mathbf{Y}).$

endogenous variable: daily wages

- daily wages are available for full-time employed persons
- imputation of daily wages above the contribution limit

WAGES: ESTIMATION

- best method: xgboost
- measure of goodness: mean squared error
- test-train split
 - train set: 2017
 - test set: 2018

Descriptives

- train set: 1,050,210 observations of 856,636 different persons
- test set: 1,092,315 observations of 869,990 different persons Results
- MSE log daily wage: 0.0558
- xgboost MSE is by 69% smaller than OLS MSE

Definition:

 $Q_{rs} = P(\text{duration}_r > 6 \text{ months}|s) * E[\text{wage}_r|s] * P(M_r = s),$

- *r* = 1, ..., *N*, *N* is the number of observations
- *s* = 1, ... *S*, *S* is the number of job categories
- scale index to a range from 1 to 10
- list of job recommendations for each individual

 \rightarrow additional information on job match quality (job stability and wages) leads to a difference in job recommendations

Cumulative Densitiy Function

- machine learning (ML) can play an important role in labour market matching
- ML should be preferred over common methods in any case
- tree-based methods (random forest and xgboost) work best
- ML results get better, the larger the training data while common methods not: ML finds additional patterns
- Outlook:
 - add information on skills and competencies
 - start a field experiment in German Employment Agencies

THANK YOU FOR YOUR ATTENTION!

Sabrina Mühlbauer sabrina.muehlbauer@iab.de