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MOTIVATION

• Definition Matching: a job seeker enters into employment by being matched to a certain job
category (i.e. occupational field)

• improve matching process in German Employment Agencies (support caseworkers)

• provide a list of job recommendations individually for each job seeker

• find out differences between the application of traditional estimation methods and machine
learning algorithms
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IN BRIEF

→ provide index for job match quality for each person
→ additional alternatives could support caseworkers and improve the matching (Belot et al.
(2019), Blundell et al. (2004))
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JOB RECOMMENDATIONS

• Matching Probability: predict probability that a person (with specific characteristics) gets
employed in a certain job category
– field experiment shows that having more alternatives and information has a positive effect on labor

market success (Altmann et al. (2018))

• Job Match Quality
– Job Stability: probability for being long term employed after starting a new job
– Wage: expected wage if starting a job in a certain occupation
– job stability and wages are common measures for job match quality (i.e. Caliendo et al. (2013), van

den Berg and Vikström (2014) or Nekoei and Weber (2017))
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METHODS - OVERVIEW
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METHODS - SELECTION FOR THE PRESENT PROJECT

• OLS, logit, multinomial logit
– manual model selection (time-consuming)
– large classification models can not be estimated with multinomial logit
– models do not improve much by having more data

• random forest, xgboost
– does not need (much) hyperparameter tuning
– fast in computing large and complex models
– high prediction performance

• neural networks, support vector machines
– for complex models: hyperparameter tuning is extremely time consuming
– model gets extremely large: estimation collapses
– splitting the sample: error rate increases dramatically
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METHODS - SELECTION FOR THE PRESENT PROJECT II

• k-Nearest Neighbors
– the more observations the higher the optimal k
– the higher k the higher the computing time and the required RAM

• machine learning in labor market research
– analysis of vacancies by text classification (Amato et al. (2015))
– matching vacancies to candidates (Bhatia et al. (2020), van Belle et al.(2018), Fang (2015))

→ prefer random forest and xgboost
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DATA - INTEGRATED EMPLOYMENT BIOGRAPHIES

Integrated Employment Biographies (IEB)

• contains information from 1975 onwards

• covers all employment biographies in Germany

• administrative, high frequency dataset

• sources: Jobseeker Histories and Employee History
• estimations:

– use random 10 %-sample
– observations from 2012 onwards
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EXPLANATORY VARIABLES

• gender (male, female)
• federal state (a person lives in)
• nationality (German, EU, Europe without EU, 8 migration countries, remaining nations)
• marital status (single, partnership)
• children (at minimum one child under 15 years, no children)
• education (no school leaving certificate, . . . , university)
• job category of completed vocational training
• job category someone was employed in before starting a new job
• skill level
• age at the start of employment
• number of days in unemployment before starting a new employment
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MATCHING PROBABILITY: THE MODEL

Definition

P(Mi = j) = f(Xi, Yi),

• j = 1, . . . , J, J is the number of different job categories,

• i = 1, . . . ,N, N is the number of observations

• Mi denotes the occupation of observation i

• X is a vector denoting the characteristics of observation i

• Y is a vector denoting the characteristics of jobs of observation i
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MATCHING PROBABILITY

Endogenous Variable: Job Category

• 144 different occupational groups: 3-digit defined in the German classification of
occupations 2010

• consider jobs subject to social security

• observation period: 2012-2018

Sample

• stock of persons having a job subject to social security

• 54,781,854 observations of 2,883,188 different persons

• unbalanced distribution of persons across job categories

Predicting Individual Job Match Quality // Slide 11



MATCHING PROBABILITY: ESTIMATION

• test-train split by year
– train set: 2012-2017
– test set: 2018

• best method: random forest
• measure of goodness: classification error rates (= number of wrong predictions/ total

number of observations)
• out-of-sample error: 42.20 %
• random forest error is by 18.50 percentage points lower than for OLS
• important variables

– calculate Gini-based importance
– most important predictors: last job category someone was employed in, skill level required for

previous employment
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JOB STABILITY: THE MODEL

Definition:

P(duration > 6 months) = f(X, Y),

• X is a matrix covering i characteristics of every person

• Y is a matrix covering j characteristics of jobs of every person

• n is the number of observations (i.e. spells)
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JOB STABILITY

Endogenous Variable: employment duration

• two categories: short term (< 6 months) and long term employment (> 6 months)
• test-train split by year

– train set: 2012-2016
– test set: 2017

• best method: xgboost

• measure of goodness: classification error
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JOB STABILITY: ESTIMATION

Two samples
• occupation duration sample: being employed in the same occupation (i.e. job category)

– classification error rate for xgboost: 13.68 %
– by 21.6 % lower than logit

• employment duration sample: being employed without interruption by an unemployment
period
– classification error rate for xgboost: 15.25 %
– by 36.7 % lower than logit
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WAGES

Definition: The Model

ln(wage) = f(X, Y).

endogenous variable: daily wages

• daily wages are available for full-time employed persons

• imputation of daily wages above the contribution limit
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WAGES: ESTIMATION

• best method: xgboost
• measure of goodness: mean squared error
• test-train split

– train set: 2017
– test set: 2018

Descriptives
• train set: 1,050,210 observations of 856,636 different persons
• test set: 1,092,315 observations of 869,990 different persons

Results
• MSE log daily wage: 0.0558
• xgboost MSE is by 69% smaller than OLS MSE

Predicting Individual Job Match Quality // Slide 17



INDEX: JOB MATCH QUALITY

Definition:

Qrs = P(durationr > 6 months|s) ∗ E[wager|s] ∗ P(Mr = s),

• r = 1, ..., N, N is the number of observations

• s = 1, ... S, S is the number of job categories

• scale index to a range from 1 to 10

• list of job recommendations for each individual
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DIFFERENCE: MATCHING PROBABILITIES VS. INDEX

→ additional information on job match quality (job stability and wages) leads to a difference in
job recommendations
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CONCLUSION

• machine learning (ML) can play an important role in labour market matching

• ML should be preferred over common methods in any case

• tree-based methods (random forest and xgboost) work best

• ML results get better, the larger the training data while common methods not: ML finds
additional patterns

• Outlook:
– add information on skills and competencies
– start a field experiment in German Employment Agencies
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