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What?



What?
investigate the properties and performance of band-spectral estimators of BC/DSGE
models



Why?



Why?
• what is band-spectral estimation?



Why?
• what is band-spectral estimation?

▶ estimation in the frequency domain based on a subset (band) of frequencies



Why?
• what is band-spectral estimation?

▶ estimation in the frequency domain based on a subset (band) of frequencies

• why is this useful?



Why?
• what is band-spectral estimation?

▶ estimation in the frequency domain based on a subset (band) of frequencies

• why is this useful?

▶ estimate relationships which vary across frequencies



Why?
• what is band-spectral estimation?

▶ estimation in the frequency domain based on a subset (band) of frequencies

• why is this useful?

▶ estimate relationships which vary across frequencies

▶ estimate models which are a priori known to be unable to represent some frequencies
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From “Quantifying confidence” by Angeletos, Collard, and Dellas (2018)

The model described above – like other business-cycle models –
cater to business-cycle phenomena and therefore omit shocks
and mechanisms that may account for medium- to long-run
phenomena, such as trends in demographics and labor-market
participation, structural transformation, regime changes in
productivity growth or inflation, and so on.
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From “Quantifying confidence” by Angeletos, Collard, and Dellas (2018)

In a nutshell, there is a risk of contamination of the estimates of a
model by frequencies that the model was not designed to capture.

• ACD estimate their model with band-spectral estimator using business cycle
frequencies only
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How?
• Monte Carlo study, compare 3 maximum likelihood estimators (MLE)

▶ Time domain, Kalman filter likelihood (TD)

▶ Frequency domain, Whittle likelihood, using all frequencies (FD)

▶ Frequency domain, Whittle likelihood, using business cycle frequencies only (BC)

• compare bias and estimation efficiency

• Main question: BC uses less information. How much less? Which parameters are
more/less affected
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Results
• no (good) reason to use full info FD (all freqs) instead of full info TD estimator

• significantly less info in BC frequencies for all parameters

• we can reliably predict loss of efficiency



• Likelihood

• Monte Carlo: setup, results

• Conclusion
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Gaussian Likelihood Function

Let yt be a stationary Gaussian process with zero mean.
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Gaussian Likelihood Function

Whittle approximation: replace ΣT (θ) ≈ ΩT (θ) = F ∗
TST (θ)FT

ℓ(θ;YT ) = −1

2
log det(ΣT (θ))−

1
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Y ′
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−1
T (θ)YT (1)
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log det(ST (θ))−

1

2
(FTYT )
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ωT∑
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{
log det(s(θ, ω)) + ỹ(ω)∗s−1(θ, ω)ỹ(ω)

}
(3)

• FT is Fourier transform matrix
• ST (θ) is block-diagonal



Gaussian Likelihood Function

Replace ΣT (θ) with SYMMETRIC BLOCK CIRCULANT MATRIX ΩT (θ)

ΣT (θ) ≈ ΩT (θ) = F ∗
TST (θ)FT

• FT is Fourier transform matrix
• ST (θ) is block-diagonal matrix of spectral density of yt, evaluated at different

frequencies.

s(θ, ωi) =
1

2π

∞∑
τ=−∞

covy(τ ;θ) exp(−iωiτ), ωi =
2π(i− 1)

T



Three estimators

• TD maximizes (full info, KF)

ℓ(θ;YT ) = −1
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• FD maximizes (full info, Whittle, all freqs)

ℓw(θ; IT ) = −1
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∑
all ω

{
log det(s(θ, ω)) + ỹ(ω)∗s−1(θ, ω)ỹ(ω)

}
• BC maximizes (limited info, Whittle, BC freqs - periodicity between 6 and 32 quarters)
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DGP
New Keynesian DSGE model from “Quantifying confidence” by Angeletos, Collard, and

Dellas (2018)

• sticky prices, habit formation in consumption, adjustment costs in investment,
monetary policy following a Taylor rule

• 9 shocks: permanent and transitory TFP, permanent and transitory ISP, intertemporal
preference, government-spending, monetary policy, news about future TFP,
confidence

• the confidence shock represents perceived bias in the other agents’ expectations
about the level of TFP in each period (higher-order beliefs)

• leads to waves of optimism (believing that others are optimistic) and pessimism
(believing that others are pessimistic) that generate business cycle fluctuations
unrelated to fundamentals



DGP
New Keynesian DSGE model from “Quantifying confidence” by Angeletos, Collard, and

Dellas (2018)

• 25 estimated parameters

• six observed variables: GDP, consumption, investment, hours worked, inflation, and
the federal funds rate

• T=192



RESULTS
1000 replications
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• 4%, 7%, 13%
• rank corr: 0.57 (TD, FD), 0.84 (TD, BC), 0.66 (FD, BC)
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Efficiency (std as % of θ)
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• 27%, 32%, 53%
• rank corr: 0.98 (TD, FD), 0.95 (TD, BC)



Efficiency loss
How much less information in the BC frequencies?
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Can efficiency loss be predicted?
Fisher information approach

• FIM (expected information about θ in the sample)

I(θ) = E

[
∂

∂θ
ℓ(θ;Y )

∂

∂θ′ ℓ(θ;Y )

]
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(1)



Can efficiency loss be predicted?
Fisher information approach

• Cramér-Rao lower bound (CRLB): if θ̂ is unbiased, then
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Can efficiency loss be predicted?
Fisher information approach

• Cramér-Rao lower bound (CRLB): if θ̂ is unbiased, then

stdθ̂i ≥
√

{I−1(θ)}ii = crlbθ̂i (1)

• predicted efficiency loss

crlb(BC)

crlb(TD)
(2)



Can efficiency loss be predicted?
Fisher information approach

is
crlb(BC)

crlb(TD)
≈ std(BC)

std(TD)
?



Efficiency loss
How much less information in the BC frequencies?
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What’s wrong with ρa (and ρn, κR, σn, ...)?



What’s wrong with ρa (and ρn, κR, σn, ...)?

short answer:

• MC overestimates sample information, esp. in BC band.

• Thus, MC underestimates the efficiency loss.

std(BC)

std(TD)
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What’s wrong with ρa (and ρn, κR, σn, ...)?
MC-estimated vs CRLB-predicted marginal distribution of ρ̂a
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MC underestimates uncertainty (overestimates information contained in the sample)
due to

• flat likelihood
• parameter constraints



ρa: MC vs CRLB as T increases
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ρa: MC vs CRLB for T = 1000 (T = 192)

• estimated/predicted uncertainty: full info

std(TD)
/
crlb(TD) = 1.04 (0.89)

• estimated/predicted uncertainty: BC freqs

std(BC)
/
crlb(BC) = 0.71 (0.39)

• estimated/predicted relative efficiency

std(BC)

std(TD)

/
crlb(BC)

crlb(TD)
= 0.68 (0.44)
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• CRLB is good predictor of estimation uncertainty if

std
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• CRLB is good predictor of relative efficiency if
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≈ 1
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Conclusion
• Full information TD estimator (KF) is superior to FD estimator (Whittle likelihood)

▶ lower bias and estimation uncertainty

• band-spectral estimation significantly less efficient
▶ a lot of info outside the BC freqs for all parameters

• FIM analysis is useful to assess the loss of information in band-spectral estimation
▶ (relative) CRLBs accurately predict (relative) estimation uncertainty
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Some Implications
• Evidence for misspecification

▶ estimating a model over different frequency bands leads to different estimates (Qu and
Tkachenko (2012), Sala (2015))

▶ might be true even if the model is not misspecified
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Some Implications
• Calibration

▶ weakly identified parameters are often calibrated

▶ may have to calibrate (many) other parameters for band-spectral estimation



Some Implications

• Bayesian estimation and importance of priors



Some Implications
• Bayesian estimation and importance of priors

▶ the same prior is much more informative with band-spectral estimation



Sala (2015)

• Monte Carlo experiment with NK DSGE model

• 100 samples T = 170

• KF, All, Low-Pass, High-Pass, BC

• “In sum, the evidence shows that, when using the DSGE model as data-generating
process, maximum likelihood in the frequency domain is equivalent to maximum
likelihood in the time domain, and that the precision of the estimates is still very good
when estimation is performed on frequency bands”
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Table: posterior median

ψ utilization elasticity 0.500
ν inverse labor supply elasticity 0.282
α capital share 0.255
φ investment adjustment costs 3.312
b habit persistence 0.758
χ Calvo parameter, 0.732
κR Taylor rule smoothing, 0.198
κπ Taylor rule inflation, 2.271
κy Taylor rule output, 0.121
ρm AR mon. policy 0.647
ρa AR transitory TFP component 0.412
ρn AR news 0.224
ρi AR transitory investment-specific technology 0.374
ρc AR preference 0.888
ρg AR government spending 0.786
ρξ AR confidence 0.833
σP
a std. permanent TFP component 0.406
σT
a std. transitory TFP component 0.347
σn std. news 0.378
σP
i std. permanent investment-specific technology 0.610
σT
i std. transitory investment-specific shocks 5.805
σc std. preference 0.357
σg std. government spending 1.705
σξ std. confidence 0.613
σm std. mon. policy 0.313


