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investigate the properties and performance of band-spectral estimators of BC/DSGE
models



Why?



Why?

» what is band-spectral estimation?



Why?

» what is band-spectral estimation?

» estimation in the frequency domain based on a subset (band) of frequencies



Why?

» what is band-spectral estimation?

» estimation in the frequency domain based on a subset (band) of frequencies

+ why is this useful?



Why?

» what is band-spectral estimation?
» estimation in the frequency domain based on a subset (band) of frequencies
+ why is this useful?

» estimate relationships which vary across frequencies



Why?

» what is band-spectral estimation?
» estimation in the frequency domain based on a subset (band) of frequencies
* why is this useful?

» estimate relationships which vary across frequencies

» estimate models which are a priori known to be unable to represent some frequencies
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From “Quantifying confidence” by Angeletos, Collard, and Dellas (2018)

The model described above — like other business-cycle models —
cater to business-cycle phenomena and therefore omit shocks
and mechanisms that may account for medium- to long-run
phenomena, such as trends in demographics and labor-market
participation, structural transformation, regime changes in
productivity growth or inflation, and so on.
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model by frequencies that the model was not designed to capture.



From “Quantifying confidence” by Angeletos, Collard, and Dellas (2018)

In a nutshell, there is a risk of contamination of the estimates of a
model by frequencies that the model was not designed to capture.

» ACD estimate their model with band-spectral estimator using business cycle
frequencies only
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How?

* Monte Carlo study, compare 3 maximum likelihood estimators (MLE)

» Time domain, Kalman filter likelihood (TD)
» Frequency domain, Whittle likelihood, using all frequencies (FD)

» Frequency domain, Whittle likelihood, using business cycle frequencies only (BC)

« compare bias and estimation efficiency

» Main question: BC uses less information. How much less? Which parameters are
more/less affected
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Results

* no (good) reason to use full info FD (all fregs) instead of full info TD estimator
+ significantly less info in BC frequencies for all parameters

» we can reliably predict loss of efficiency



» Likelihood
» Monte Carlo: setup, results

« Conclusion



Gaussian Likelihood Function



Gaussian Likelihood Function

Let y; be a stationary Gaussian process with zero mean.

Yr = (v}, 45 uh) ~ N (0,7(6))

The log-likelihood is

(8 ¥r) = —logdet(Sr(8)) — JY{S7(O)¥r (1)



Gaussian Likelihood Function
Whittle approximation: replace X1(0) ~ £21(0) = F;S1(0)Fr

1 1
(6;Yr) = —§1ogdet(zT(9))—iYT’zgl(a)YT

~ —%logdet(ST(O)) (FrYr)*S~(0)(FrYr)

1
2

—% Z {logdet(s(ﬂ,w)) + ﬂ(w)*s_l(O,w)g(w)}

w=w1

%

e Fr is Fourier transform matrix
* S7(0) is block-diagonal



Gaussian Likelihood Function

Rep|ace ET(Q) With SYMMETRIC BLOCK CIRCULANT MATRIX QT(Q)

ET(Q) ~ QT(O) = F;ST(O)FT

e Fris Fourier transform matrix
+ S7(0) is block-diagonal matrix of spectral density of y;, evaluated at different
frequencies.

o0

Z covy(T; 0) exp(—iw;T), w; =

T=—00

27 (i — 1)
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Three estimators

* TD maximizes (full info, KF)
1
(0: ¥r) = — 3 log det(B7(6)) — Y43, (6) Y7
+ FD maximizes (full info, Whittle, all fregs)

00(0:Ir) = —3 3" {log det(s(8,w)) + §(w)*s ™ (6,0)5(w)
2

all w

+ BC maximizes (limited info, Whittle, BC freqs - periodicity between 6 and 32 quarters)

L0780 =~ 3 {logdet(s(8,w)) + §(w)s™ (6,0)3(w) )

weBC
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DGP

New Keynesian DSGE model from “Quantifying confidence” by Angeletos, Collard, and
Dellas (2018)

+ sticky prices, habit formation in consumption, adjustment costs in investment,
monetary policy following a Taylor rule

* 9 shocks: permanent and transitory TFP, permanent and transitory ISP, intertemporal
preference, government-spending, monetary policy, news about future TFP,
confidence

+ the confidence shock represents perceived bias in the other agents’ expectations
about the level of TFP in each period (higher-order beliefs)

* leads to waves of optimism (believing that others are optimistic) and pessimism
(believing that others are pessimistic) that generate business cycle fluctuations
unrelated to fundamentals



DGP

New Keynesian DSGE model from “Quantifying confidence” by Angeletos, Collard, and
Dellas (2018)

« 25 estimated parameters

* six observed variables: GDP, consumption, investment, hours worked, inflation, and
the federal funds rate

« T=192



RESULTS

1000 replications
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o 4%, ™%, 13%
« rank corr: 0.57 (TD, FD), 0.84 (TD, BC), 0.66 (FD, BC)
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* 27%, 32%, 53%
* rank corr: 0.98 (TD, FD), 0.95 (TD, BC)



Efficiency loss

How much less information in the BC frequencies?

std(BC)
std(T'D)
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Can efficiency loss be predicted?
Fisher information approach



Can efficiency loss be predicted?
Fisher information approach

* FIM (expected information about 6 in the sample)
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Can efficiency loss be predicted?
Fisher information approach
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Can efficiency loss be predicted?
Fisher information approach

- Cramér-Rao lower bound (CRLB): if 8 is unbiased, then

stdg, > /{Z71(0)};; = crlby

* predicted efficiency loss

crlb(BC)
crlb(T'D)



Can efficiency loss be predicted?
Fisher information approach

S calb(BC) _ std(BC)
crlb(TD) — std(TD)
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How much less information in the BC frequencies?
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What’s wrong with p, (and p,, kg, o, ...)?



What's wrong with p, (and p,, kg, oy, ..

short answer:
* MC overestimates sample information, esp. in BC band.

» Thus, MC underestimates the efficiency loss.

std(BC)
std(T'D)

)?



What’s wrong with p, (and p,, kg, oy, ..

MC-estimated marginal distribution of 5,
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What’s wrong with p, (and p,, kg, oy, ..

MC-estimated vs CRLB-predicted marginal distribution of 5,

)?
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What’s wrong with p, (and p,,, kg, on, ..

MC-estimated vs CRLB-predicted marginal distribution of 5,

)?

all fregs BC fregs
0 BEMC 0 BEMC
! =ocrre = 0.29 a =ocrrg = 0.94
=0MC — 0.26 =0pMC = 0.36
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

MC underestimates uncertainty (overestimates information contained in the sample)

due to
« flat likelihood
+ parameter constraints



5.0

25

0.0
5.0

25

0.0
5.0

25

0.0

p.. MC vs CRLB as T increases

pq (all fregs) pa (BC freqgs)
T=192 aMC T=192 AMC
=0UCRLB = 0.29 =0UCRLB = 0.94
=opc = 0.26 I =opc = 0.36
T=500 mMC T=500 mMC
= O0CRLB — 0.18 =0CRLB — 0.6
=opmc = 0.19 =opmc = 0.33
T=1000 EMC T=1000 B MC
= O0CRLB = 0.13 = O0CRLB = 0.43
=opme = 031

Iimll =0opc =013

0.0 0.2

0.4 0.6

0.8 1.0




pa: MC vs CRLB for 7" = 1000 (T" = 192)

+ estimated/predicted uncertainty: full info

std(TD)/ crlb(TD) = 1.04 (0.89)
+ estimated/predicted uncertainty: BC fregs

std(BC)/ erlb(BC) = 0.71 (0.39)
+ estimated/predicted relative efficiency

std(BC) /crlb(BC)
Std(TD)/crlb(TD)

= 0.68 (0.44)



std(TD) std(BC) std(BC) /std(TD)

crlb(TD) crlb(BC) crlb(BC)/crlb(TD)
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0.88

Uy 192 500 1000 192 500 1000 192 500 1000
T

» CRLB is good predictor of estimation uncertainty if
std / crlb ~ 1

+ CRLB is good predictor of relative efficiency if

std(BC’)/crlb(BC’)

~ 1
std(TD)/ crlb(T'D)
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Conclusion

 Full information TD estimator (KF) is superior to FD estimator (Whittle likelihood)
» lower bias and estimation uncertainty

 band-spectral estimation significantly less efficient
» a lot of info outside the BC fregs for all parameters

» FIM analysis is useful to assess the loss of information in band-spectral estimation
» (relative) CRLBs accurately predict (relative) estimation uncertainty
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+ time domain (full info) estimation of BC models

» contaminated information?
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» estimating a model over different frequency bands leads to different estimates (Qu and
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Some Implications
 Evidence for misspecification

» estimating a model over different frequency bands leads to different estimates (Qu and
Tkachenko (2012), Sala (2015))

» might be true even if the model is not misspecified
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+ Calibration

» weakly identified parameters are often calibrated



Some Implications

» Calibration

» weakly identified parameters are often calibrated

» may have to calibrate (many) other parameters for band-spectral estimation



Some Implications

 Bayesian estimation and importance of priors



Some Implications

» Bayesian estimation and importance of priors

» the same prior is much more informative with band-spectral estimation



Sala (2015)

Monte Carlo experiment with NK DSGE model

100 samples T' = 170

KF, All, Low-Pass, High-Pass, BC

“In sum, the evidence shows that, when using the DSGE model as data-generating
process, maximum likelihood in the frequency domain is equivalent to maximum

likelihood in the time domain, and that the precision of the estimates is still very good
when estimation is performed on frequency bands’
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Table: posterior median
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utilization elasticity

inverse labor supply elasticity

capital share

investment adjustment costs

habit persistence

Calvo parameter,

Taylor rule smoothing,

Taylor rule inflation,

Taylor rule output,

AR mon. policy

AR transitory TFP component

AR news

AR transitory investment-specific technology
AR preference

AR government spending

AR confidence

std. permanent TFP component

std. transitory TFP component

std. news

std. permanent investment-specific technology
std. transitory investment-specific shocks
std. preference

std. government spending

std. confidence

std. mon. policy

0.500
0.282
0.255
3.312
0.758
0.732
0.198
2.271
0.121
0.647
0.412
0.224
0.374
0.888
0.786
0.833
0.406
0.347
0.378
0.610
5.805
0.357
1.705
0.613
0.313




