ON THE BAND-SPECTRAL ESTIMATION OF BUSINESS CYCLE MODELS

Nikolay Iskrev

EEA-ESEM 2023 August 31, 2023

The views expressed do not necessarily reflect the position of Banco de Portugal or the Eurosystem.

What?

What?

models

investigate the properties and performance of band-spectral estimators of BC/DSGE

what is band-spectral estimation?

- what is band-spectral estimation?
 - estimation in the frequency domain based on a subset (band) of frequencies

- what is band-spectral estimation?
 - estimation in the frequency domain based on a subset (band) of frequencies
- · why is this useful?

- what is band-spectral estimation?
 - estimation in the frequency domain based on a subset (band) of frequencies
- · why is this useful?
 - estimate relationships which vary across frequencies

- what is band-spectral estimation?
 - estimation in the frequency domain based on a subset (band) of frequencies
- · why is this useful?
 - estimate relationships which vary across frequencies
 - estimate models which are a priori known to be unable to represent some frequencies

From "Quantifying confidence" by Angeletos, Collard, and Dellas (2018)

The model described above – like other business-cycle models – cater to **business-cycle phenomena** and therefore **omit** shocks and mechanisms that may account for medium- to long-run phenomena, such as trends in demographics and labor-market participation, structural transformation, regime changes in productivity growth or inflation, and so on.

From "Quantifying confidence" by Angeletos, Collard, and Dellas (2018)

model by frequencies that the model was **not designed** to capture.

In a nutshell, there is a risk of **contamination** of the estimates of a

From "Quantifying confidence" by Angeletos, Collard, and Dellas (2018)

In a nutshell, there is a risk of **contamination** of the estimates of a model by frequencies that the model was **not designed** to capture.

 ACD estimate their model with band-spectral estimator using business cycle frequencies only

Monte Carlo study, compare 3 maximum likelihood estimators (MLE)

- Monte Carlo study, compare 3 maximum likelihood estimators (MLE)
 - ► Time domain, Kalman filter likelihood (**TD**)
 - Frequency domain, Whittle likelihood, using all frequencies (FD)
 - ► Frequency domain, Whittle likelihood, using business cycle frequencies only (BC)

- Monte Carlo study, compare 3 maximum likelihood estimators (MLE)
 - ► Time domain, Kalman filter likelihood (**TD**)
 - Frequency domain, Whittle likelihood, using all frequencies (FD)
 - ► Frequency domain, Whittle likelihood, using business cycle frequencies only (BC)
- compare bias and estimation efficiency

- Monte Carlo study, compare 3 maximum likelihood estimators (MLE)
 - ► Time domain, Kalman filter likelihood (**TD**)
 - Frequency domain, Whittle likelihood, using all frequencies (FD)
 - ► Frequency domain, Whittle likelihood, using business cycle frequencies only (BC)
- compare bias and estimation efficiency
- Main question: BC uses less information. How much less? Which parameters are more/less affected

Results

• no (good) reason to use full info FD (all freqs) instead of full info TD estimator

Results

- no (good) reason to use full info FD (all freqs) instead of full info TD estimator
- significantly less info in BC frequencies for all parameters

Results

- no (good) reason to use full info FD (all freqs) instead of full info TD estimator
- significantly less info in BC frequencies for all parameters
- we can reliably predict loss of efficiency

Likelihood

- Monte Carlo: setup, results
- Conclusion

Let y_t be a stationary Gaussian process with zero mean.

$$oldsymbol{Y}_T = ig(oldsymbol{y}_1', oldsymbol{y}_2', \dots, oldsymbol{y}_T'ig)' \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Sigma}_T(oldsymbol{ heta})
ight)$$

The log-likelihood is

$$\ell(\boldsymbol{\theta}; \boldsymbol{Y}_T) = -\frac{1}{2} \log \det(\boldsymbol{\Sigma}_T(\boldsymbol{\theta})) - \frac{1}{2} \boldsymbol{Y}_T' \boldsymbol{\Sigma}_T^{-1}(\boldsymbol{\theta}) \boldsymbol{Y}_T$$

(1)

Whittle approximation: replace $\Sigma_T(\theta) pprox \Omega_T(\theta) = F_T^* S_T(\theta) F_T$

$$\ell(\boldsymbol{\theta}; \boldsymbol{Y}_{T}) = -\frac{1}{2} \log \det(\boldsymbol{\Sigma}_{T}(\boldsymbol{\theta})) - \frac{1}{2} \boldsymbol{Y}_{T}^{\prime} \boldsymbol{\Sigma}_{T}^{-1}(\boldsymbol{\theta}) \boldsymbol{Y}_{T}$$

$$\approx -\frac{1}{2} \log \det(\boldsymbol{S}_{T}(\boldsymbol{\theta})) - \frac{1}{2} (\boldsymbol{F}_{T} \boldsymbol{Y}_{T})^{*} \boldsymbol{S}^{-1}(\boldsymbol{\theta}) (\boldsymbol{F}_{T} \boldsymbol{Y}_{T})$$

$$\approx -\frac{1}{2} \sum_{\omega = \omega_{1}}^{\omega_{T}} \left\{ \log \det(\boldsymbol{s}(\boldsymbol{\theta}, \omega)) + \tilde{\boldsymbol{y}}(\omega)^{*} \boldsymbol{s}^{-1}(\boldsymbol{\theta}, \omega) \tilde{\boldsymbol{y}}(\omega) \right\}$$

$$(3)$$

- F_T is Fourier transform matrix
- $S_T(\theta)$ is block-diagonal

Replace $oldsymbol{\Sigma}_T(oldsymbol{ heta})$ with symmetric block circulant matrix $oldsymbol{arOmega}_T(oldsymbol{ heta})$

$$oldsymbol{\Sigma}_T(oldsymbol{ heta})pprox oldsymbol{\Omega}_T(oldsymbol{ heta})=oldsymbol{F}_T^*oldsymbol{S}_T(oldsymbol{ heta})oldsymbol{F}_T$$

- F_T is Fourier transform matrix
- $S_T(\theta)$ is block-diagonal matrix of spectral density of y_t , evaluated at different frequencies.

$$s(\boldsymbol{\theta}, \omega_i) = \frac{1}{2\pi} \sum_{j=1}^{\infty} \text{cov}_{\boldsymbol{y}}(\tau; \boldsymbol{\theta}) \exp(-i\omega_i \tau), \ \omega_i = \frac{2\pi(i-1)}{T}$$

Three estimators

TD maximizes (full info. KF)

$$\ell(\boldsymbol{\theta}; \boldsymbol{Y}_T) = -\frac{1}{2} \log \det(\boldsymbol{\Sigma}_T(\boldsymbol{\theta})) - \frac{1}{2} \boldsymbol{Y}_T' \boldsymbol{\Sigma}_T^{-1}(\boldsymbol{\theta}) \boldsymbol{Y}_T$$

• FD maximizes (full info, Whittle, all fregs)

$$\ell_w(\boldsymbol{\theta}; \boldsymbol{I}_T) = -\frac{1}{2} \sum_{\boldsymbol{\sigma}} \left\{ \log \det(\boldsymbol{s}(\boldsymbol{\theta}, \omega)) + \tilde{\boldsymbol{y}}(\omega)^* \boldsymbol{s}^{-1}(\boldsymbol{\theta}, \omega) \tilde{\boldsymbol{y}}(\omega) \right\}$$

• BC maximizes (limited info, Whittle, BC freqs - periodicity between 6 and 32 quarters)

$$\ell_w(\boldsymbol{\theta}; \boldsymbol{I}_T^{BC}) = -\frac{1}{2} \sum_{\boldsymbol{\sigma}} \left\{ \log \det(\boldsymbol{s}(\boldsymbol{\theta}, \omega)) + \tilde{\boldsymbol{y}}(\omega)^* \boldsymbol{s}^{-1}(\boldsymbol{\theta}, \omega) \tilde{\boldsymbol{y}}(\omega) \right\}$$

MONTE CARLO

DGP

New Keynesian DSGE model from "Quantifying confidence" by Angeletos, Collard, and Dellas (2018)

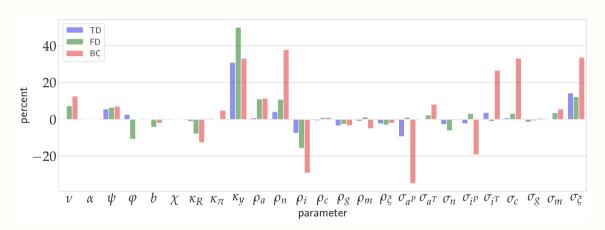
DGP

New Keynesian DSGE model from "Quantifying confidence" by Angeletos, Collard, and Dellas (2018)

- sticky prices, habit formation in consumption, adjustment costs in investment, monetary policy following a Taylor rule
- 9 shocks: permanent and transitory TFP, permanent and transitory ISP, intertemporal preference, government-spending, monetary policy, news about future TFP, confidence
- the confidence shock represents perceived bias in the other agents' expectations about the level of TFP in each period (higher-order beliefs)
- leads to waves of optimism (believing that others are optimistic) and pessimism (believing that others are pessimistic) that generate business cycle fluctuations unrelated to fundamentals

DGP

New Keynesian DSGE model from "Quantifying confidence" by Angeletos, Collard, and Dellas (2018)

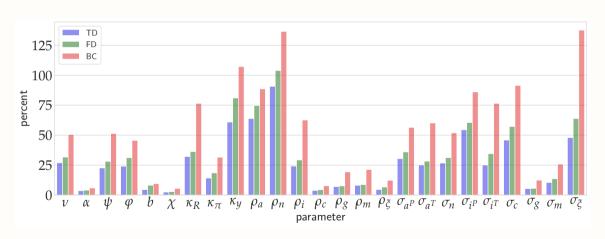

- 25 estimated parameters
- six observed variables: GDP, consumption, investment, hours worked, inflation, and the federal funds rate

• T=192

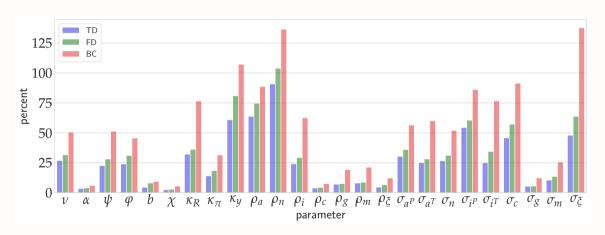

RESULTS

1000 replications

Bias (% of θ)



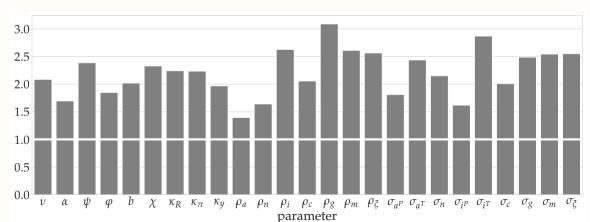
Bias (% of θ)



- 4%, 7%, 13%
- rank corr: 0.57 (TD, FD), 0.84 (TD, BC), 0.66 (FD, BC)

Efficiency (std as % of θ)

Efficiency (std as % of θ)



- 27%, 32%, **53**%
- rank corr: 0.98 (TD, FD), 0.95 (TD, BC)

Efficiency loss

How much less information in the BC frequencies?

 $\frac{\operatorname{std}(BC)}{\operatorname{std}(TD)}$

Fisher information approach

Can efficiency loss be predicted?

• FIM (expected information about θ in the sample)

$$\mathcal{I}(\boldsymbol{\theta}) = \mathrm{E}\left[\frac{\partial}{\partial \boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \boldsymbol{Y}) \frac{\partial}{\partial \boldsymbol{\theta'}} \ell(\boldsymbol{\theta}; \boldsymbol{Y})\right] = - \, \mathrm{E}\left[\frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta'}} \ell(\boldsymbol{\theta}; \boldsymbol{Y})\right]$$

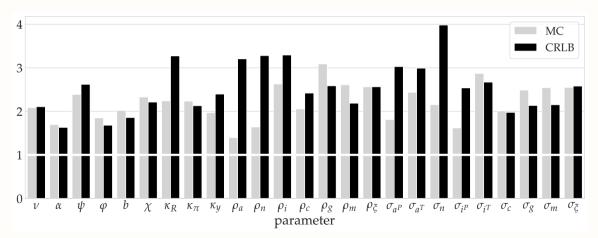
(1)

• Cramér-Rao lower bound (CRLB): if $\hat{\theta}$ is unbiased, then

$$\operatorname{std}_{\hat{\theta}_i} \ge \sqrt{\{\mathcal{I}^{-1}(\boldsymbol{\theta})\}_{ii}} = \operatorname{crlb}_{\hat{\theta}_i}$$
 (1)

• Cramér-Rao lower bound (CRLB): if $\hat{\theta}$ is unbiased, then

$$\operatorname{std}_{\hat{\theta}_i} \ge \sqrt{\{\mathcal{I}^{-1}(\boldsymbol{\theta})\}_{ii}} = \operatorname{crlb}_{\hat{\theta}_i}$$
 (1)

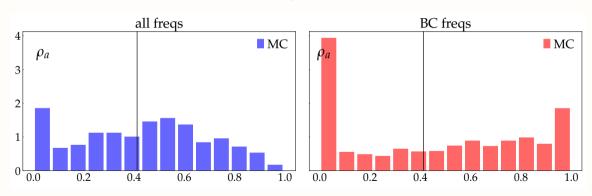

predicted efficiency loss

$$\frac{\operatorname{crlb}(BC)}{\operatorname{crlb}(TD)} \tag{2}$$

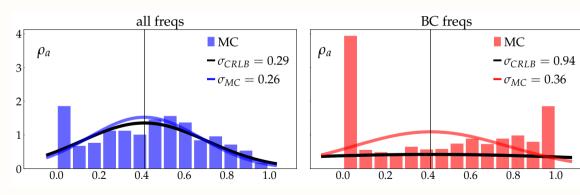
```
is \frac{\operatorname{crlb}(BC)}{\operatorname{crlb}(TD)} \approx \frac{\operatorname{std}(BC)}{\operatorname{std}(TD)}?
```

Efficiency loss

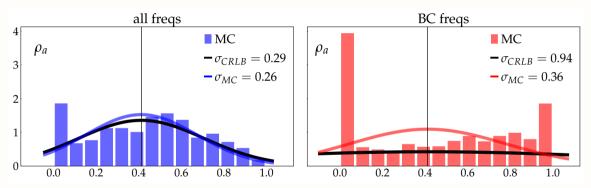
How much less information in the BC frequencies?



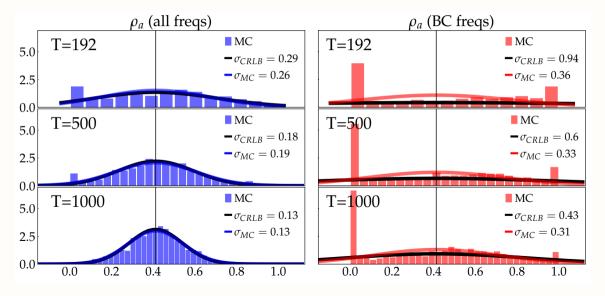
short answer:


- · MC overestimates sample information, esp. in BC band.
- Thus, MC underestimates the efficiency loss.

$$\frac{\operatorname{std}(BC)}{\operatorname{std}(TD)}$$


MC-estimated marginal distribution of $\hat{\rho}_a$

MC-estimated vs CRLB-predicted marginal distribution of $\hat{\rho}_a$


MC-estimated vs CRLB-predicted marginal distribution of $\hat{\rho}_a$

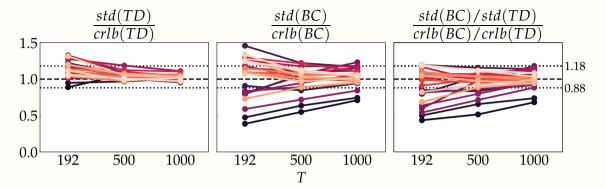
MC underestimates uncertainty (overestimates information **contained in the sample**) due to

- flat likelihood
- parameter constraints

ρ_a : MC vs CRLB as T increases

ρ_a : MC vs CRLB for T=1000 (T=192)

estimated/predicted uncertainty: full info


$$std(TD)/crlb(TD) = 1.04 (0.89)$$

estimated/predicted uncertainty: BC freqs

$$std(BC)/crlb(BC) = 0.71 \ (0.39)$$

estimated/predicted relative efficiency

$$\frac{\operatorname{std}(BC)}{\operatorname{std}(TD)} / \frac{\operatorname{crlb}(BC)}{\operatorname{crlb}(TD)} = 0.68 \quad (0.44)$$

· CRLB is good predictor of estimation uncertainty if

std / crlb
$$\approx 1$$

· CRLB is good predictor of relative efficiency if

$$\frac{\operatorname{std}(BC)}{\operatorname{std}(TD)} / \frac{\operatorname{crlb}(BC)}{\operatorname{crlb}(TD)} \approx$$

Conclusion

- Full information TD estimator (KF) is superior to FD estimator (Whittle likelihood)
 - lower bias and estimation uncertainty

Conclusion

- Full information TD estimator (KF) is superior to FD estimator (Whittle likelihood)
 - lower bias and estimation uncertainty
- band-spectral estimation significantly less efficient
 - a lot of info outside the BC freqs for all parameters

Conclusion

- Full information TD estimator (KF) is superior to FD estimator (Whittle likelihood)
 - lower bias and estimation uncertainty
- band-spectral estimation significantly less efficient
 - a lot of info outside the BC freqs for all parameters
- FIM analysis is useful to assess the loss of information in band-spectral estimation
 - (relative) CRLBs accurately predict (relative) estimation uncertainty

• time domain (full info) estimation of BC models

- time domain (full info) estimation of BC models
 - contaminated information?

- Evidence for misspecification
 - estimating a model over different frequency bands leads to different estimates (Qu and Tkachenko (2012), Sala (2015))

- Evidence for misspecification
 - estimating a model over different frequency bands leads to different estimates (Qu and Tkachenko (2012), Sala (2015))
 - might be true even if the model is not misspecified

- Calibration
 - weakly identified parameters are often calibrated

- Calibration
 - weakly identified parameters are often calibrated
 - may have to calibrate (many) other parameters for band-spectral estimation

· Bayesian estimation and importance of priors

· Bayesian estimation and importance of priors

▶ the same prior is much more informative with band-spectral estimation

Sala (2015)

- Monte Carlo experiment with NK DSGE model
- 100 samples T = 170
- · KF, All, Low-Pass, High-Pass, BC
- "In sum, the evidence shows that, when using the DSGE model as data-generating process, maximum likelihood in the frequency domain is equivalent to maximum likelihood in the time domain, and that the precision of the estimates is still very good when estimation is performed on frequency bands"

$$m{A} = egin{bmatrix} A_0 & A_1 & \cdots & A_1' \ A_1' & A_0 & \cdots & A_2' \ dots & dots & \ddots & dots \ A_1 & A_2 & \cdots & A_0 \end{bmatrix},$$

◆ BACK

Table: posterior median

inverse labor supply elasticity			
capital share 0.255 investment adjustment costs 3.315 investment costs investment adjustment costs 3.316 investment costs investment properties and cost a	ψ	utilization elasticity	0.500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ν	inverse labor supply elasticity	0.282
habit persistence 0.758 Calvo parameter, 0.732 κ_R Taylor rule smoothing, 0.198 κ_R Taylor rule smoothing, 0.198 κ_R Taylor rule output, 0.121 κ_R Taylor rule output, 0.121 κ_R Taylor rule output, 0.121 κ_R AR mon. policy 0.647 κ_R AR transitory TFP component 0.412 κ_R AR news 0.224 κ_R AR transitory investment-specific technology 0.374 κ_R AR government spending 0.786 κ_R AR confidence 0.833 κ_R At confidence 0.833 κ_R std. permanent TFP component 0.406 κ_R at the investment-specific technology 0.378 κ_R std. permanent investment-specific technology 0.610 κ_R std. transitory investment-specific technology 0.610 κ_R std. government spending 1.705 κ_R std. confidence 0.613	α	capital share	0.255
$\begin{array}{c} \chi \\ \chi $	φ	investment adjustment costs	3.312
$ \begin{array}{c} \kappa_R \\ \kappa_{\pi} \\ \hline \ \ \ \ \ \ \ \ $	b	habit persistence	0.758
$\begin{array}{c} \kappa_{\pi} & \text{Taylor rule inflation,} \\ \kappa_y & \text{Taylor rule output,} \\ \rho_{m} & \text{AR mon. policy} \\ \rho_{m} & \text{AR mon. policy} \\ \rho_{m} & \text{AR transitory TFP component} \\ \rho_{m} & \text{AR transitory TFP component} \\ \rho_{m} & \text{AR transitory investment-specific technology} \\ \rho_{m} & \text{AR transitory investment-specific technology} \\ \rho_{m} & \text{AR preference} \\ \rho_{m} & \text{AR preference} \\ \rho_{m} & \text{AR government spending} \\ \rho_{m} & \text{AR conflidence} \\ \rho_{m} & \text{std. permanent TFP component} \\ \rho_{m} & \text{std. transitory TFP component} \\ \rho_{m} & \text{std. transitory TFP component} \\ \rho_{m} & \text{std. transitory investment-specific technology} \\ \rho_{m} & \text{std. permanent investment-specific technology} \\ \rho_{m} & \text{std. preference} \\ \rho_{m} & \text{std. preference} \\ \rho_{m} & \text{std. government spending} \\ \rho_{m} & \text{std. government spending} \\ \rho_{m} & \text{std. confidence} \\ \end{array} $	χ	Calvo parameter,	0.732
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	κ_R	Taylor rule smoothing,	0.198
$\begin{array}{c} \sigma_m \\ \rho_m \\ \rho_a \\ \rho_b \\ \rho_c \\$	κ_{π}	Taylor rule inflation,	2.271
$\begin{array}{llllllllllllllllllllllllllllllllllll$	κ_y	Taylor rule output,	0.121
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ρ_m	AR mon. policy	0.647
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ρ_a	AR transitory TFP component	0.412
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o_n	AR news	0.224
$\begin{array}{llll} & \text{AR government spending} & 0.786 \\ o_{\xi} & \text{AR confidence} & 0.833 \\ \tau_{q}^{P} & \text{std. permanent TFP component} & 0.406 \\ \tau_{q}^{A} & \text{std. transitory TFP component} & 0.347 \\ \tau_{n} & \text{std. news} & 0.378 \\ \tau_{p}^{P} & \text{std. permanent investment-specific technology} & 0.610 \\ \tau_{c}^{T} & \text{std. transitory investment-specific shocks} & 5.805 \\ \tau_{c}^{D} & \text{std. permanent spending} & 0.357 \\ \tau_{c}^{D} & \text{std. government spending} & 0.361 \\ 0.613 & \text{std. confidence} & 0.613 \\ \end{array}$	o_i	AR transitory investment-specific technology	0.374
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ρ_c	AR preference	0.888
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o_g		
$\begin{array}{lll} \sigma_n & \text{std. news} & 0.378 \\ \sigma_t^P & \text{std. permanent investment-specific technology} & 0.610 \\ \tau_t^T & \text{std. transitory investment-specific shocks} & 5.805 \\ \sigma_c & \text{std. preference} & 0.357 \\ \sigma_g & \text{std. government spending} & 1.705 \\ \sigma_\xi & \text{std. confidence} & 0.613 \end{array}$		AR confidence	0.833
$\begin{array}{lll} \sigma_n & \text{std. news} & 0.378 \\ \sigma_t^P & \text{std. permanent investment-specific technology} & 0.610 \\ \tau_t^T & \text{std. transitory investment-specific shocks} & 5.805 \\ \sigma_c & \text{std. preference} & 0.357 \\ \sigma_g & \text{std. government spending} & 1.705 \\ \sigma_\xi & \text{std. confidence} & 0.613 \end{array}$	σ_a^P	std. permanent TFP component	0.406
$\begin{array}{lll} \sigma_n & \text{std. news} & 0.378 \\ \sigma_t^P & \text{std. permanent investment-specific technology} & 0.610 \\ \tau_t^T & \text{std. transitory investment-specific shocks} & 5.805 \\ \sigma_c & \text{std. perference} & 0.357 \\ \sigma_g & \text{std. government spending} & 1.705 \\ \sigma_\xi & \text{std. confidence} & 0.613 \end{array}$	σ_a^T	std. transitory TFP component	0.347
$ \begin{array}{lll} \sigma_c & \text{ std. preference} & 0.357 \\ \sigma_g & \text{ std. government spending} & 1.705 \\ \sigma_\xi & \text{ std. confidence} & 0.613 \\ \end{array} $	σ_n	std. news	0.378
$ \begin{array}{lll} \sigma_c & \text{ std. preference} & 0.357 \\ \sigma_g & \text{ std. government spending} & 1.705 \\ \sigma_\xi & \text{ std. confidence} & 0.613 \\ \end{array} $	σ_i^P	std. permanent investment-specific technology	0.610
$ \begin{array}{lll} \sigma_c & \text{ std. preference} & 0.357 \\ \sigma_g & \text{ std. government spending} & 1.705 \\ \sigma_\xi & \text{ std. confidence} & 0.613 \\ \end{array} $	σ_i^T	std. transitory investment-specific shocks	5.805
σ_{ξ}^{σ} std. confidence 0.613	σ_c^{ι}	std. preference	0.357
σ_{ξ} std. confidence 0.613	σ_q	std. government spending	1.705
	σέ	std. confidence	0.613
	σ_m	std. mon. policy	0.313