The Role of Industries in Rising Inequality

Juraj Briskar¹ Edoardo Di Porto² José V. Rodríguez Mora³ Cristina Tealdi⁴

¹London School of Economics (LSE)
 ²INPS, CSEF and Universita' Federico II Napoli
 ³University of Edinburgh & CEPR
 ⁴Heriot-Watt University - Edinburgh and IZA

Motivation

- Growth in pay inequality in many industrialized economies since 1980s. More recently, the focus on the role of firms.
- Increasingly some firms pay a lot, some little.
- Song et al. (2019) show that two thirds of the rise in US earnings inequality since 1980s took place between firms, only one third within firms.
 - ▶ Also documented by Faggio et al. (2010) for the UK, Card et al. (2013) for West Germany and Alvarez et al. (2018) for Brazil.

Motivation

- What is the role of industry? Is earnings inequality growing mainly:
 - between firms in different industries?
 - between firms in the same industry?
- We investigate this question using admin data for Italy.
- At the same time, Haltiwanger et al. (2022) used US data and find:
 - Majority of the inequality growth in the USA occurred between industries.
 - Driven by a small number (just 10%) of industries.
- Little evidence for other countries.
 - Except Faggio et al. (2010) for the UK.
- Important for understanding drivers of inequality.

Main Findings 1/3

- Between-sector variance dominant (as in Haltiwanger, 2022).
- Of the total increase in earnings inequality in Italy between 1985 and 2018:
 - ▶ 55% between industries
 - ▶ 18% between firms within the same industry
 - ▶ 27% within firms
- Less than 3% of industries accounting for two-thirds of the total inequality-increasing effect (between industries), while only initially representing around 7% of employment.
 - Similar concentration as in the USA.
- Key industries:
 - Low-paying: food and drink, accommodation, social care, cleaning of buildings, employment services.
 - Greater role of low-paying industries in Italy than in the USA.

Main Findings 2/3

- Using econometric model of worker and firm fixed effects (AKM) we find:
 - Variance of worker FEs ↑
 - ▶ Variance of firm FEs ↓
 - Covariance of worker and firm FEs ↑
 - ▶ The same patterns as in the USA.
- Investigating the role of segregation, sorting and firm pay premiums across and within industries:
 - Majority of the rise in earnings inequality is due to an an increase in sorting and segregation across industries (as in Haltiwanger et al.).
 - Firm pay premiums play no role.

Main Findings 3/3

- Unlike the US studies, we have a measure of labour supply quantities.
- Contribution to the rise of variance of log annual earnings:
 - Variance of labour supply quantities: -10%
 - Variance of the rate of pay: 48%
 - ► Covariance of the two: 62%
- Growing inequality in the rate of pay and growing association between the rate of pay and labour supply quantities.
- Variance of labour supply across workers roughly constant.
- The fact that sectors with low rate of pay also employ workers for only a part of the year (temporary contracts) or part-time amplifies the effect on inequality.

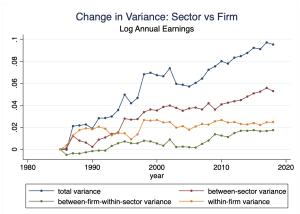
Contribution

- Developments in a small number of industries explain a large part of the rise in earnings inequality.
- Workers with low earnings ability are more likely to work with other low-income workers in the same industry, and they are more likely to work in industries with particularly low firm premia.
- First paper to test the hypothesis in a very different institutional context to the one prevalent in the USA.
- Similarities in the patterns of rising inequality between Italy and the USA suggest that the underlying forces were likely similar.
- Additionally, we highlight the crucial role of growing association between the rate of pay and labour supply quantities.

Related Literature

- The role of firms in accounting for rising earnings inequality
 - ► Faggio et al. 2010, Barth et al. 2016, Alvarez et al. 2018, Song et al. 2019, Haltiwanger et al. 2022, Kleinman 2022
- Decomposing earnings variance into the contribution of worker heterogeneity, firm heterogeneity and sorting of workers into firms
 - ▶ Abowd et al. 1999, Card et al. 2013, Bonhomme et al. 2019
- Estimating rent-sharing elasticities
 - ► Card et al. 2018, Lamadon et al. 2019
- Applications to Italian context
 - ▶ Bingley and Cappellari 2018, Devicienti et al. 2019

Data


- Social security admin data covering the universe of private sector employment in Italy.
- The same sample restrictions as in Song et al. (2019) and Haltiwanger et al. (2022).
 - Sum income across all employment spells in a given year for each worker.
 - ► The worker is linked with the firm that accounts for the largest share of his/her income.
 - Threshold level of annual earnings imposed (in 2018, 3520 €= 6.77 €/hour (lowest hourly wage) × 13 weeks (one quarter) × 40 hours/week).
 - ▶ Adjusted for all other years using an index of nominal wage growth.
 - Only workers between the ages of 20 and 60.
 - Only firms (and workers in firms) with at least 10 workers.

Firms vs sectors

$$\underbrace{\frac{1}{N}\sum_{\forall i}(w_{ijs} - \bar{w})^{2}}_{\text{total variance}} = \underbrace{\sum_{\forall s} \frac{n_{s}}{N}(\bar{w_{s}} - \bar{w})^{2}}_{\text{between-sector variance}} + \underbrace{\sum_{\forall s} \frac{n_{s}}{N}\sum_{\forall j|j \in s} \frac{n_{j}}{n_{s}}(\bar{w_{j}} - \bar{w_{s}})^{2}}_{\text{between-firm-within-sector variance}} + \underbrace{\sum_{\forall j} \frac{n_{j}}{N} \frac{\sum_{\forall i|i \in j}(w_{ijs} - \bar{w_{j}})^{2}}{N}}_{\text{within-firm variance}}.$$

$$(1)$$

Firms vs sectors

a) Variance change over time

	Between	Between firms	Within	Total
	sector	within sector	firm	
1985	0.083	0.079	0.192	0.354
2018	0.136	0.096	0.218	0.450
Change	0.053	0.017	0.026	0.096
% of total increase	55.2%	17.7%	27.1%	100.0%

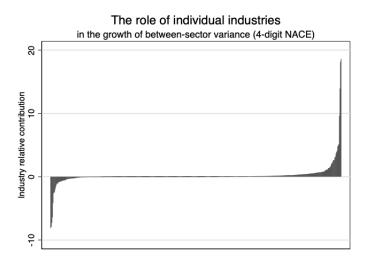
b) Variance Shares:

	Between	Between firms	Within
	sector	within sector	firm
1985	23.4%	22.3%	54.2%
2018	30.2%	21.3%	48.4%

Between vs within sectors

	Bet	Total		
	2 digit	3 digit	4 digit	
	(88 sectors)	(268 sectors)	(593 sectors)	
1985	0.065	0.077	0.083	0.354
2018	0.120	0.130	0.136	0.450
Change	0.055	0.053	0.053	0.096
% of total increase	57.3%	55.2%	55.2%	100.0%

• The level of aggregation of industry doesn't seem to make a big difference.


The sectors that drive growth in inequality

The contribution of individual sectors to the between sector variance growth:

$$\underline{\Delta var(\bar{w}_{s,p} - \bar{w}_p)}_{\text{between-sector variance growth}} = \sum_{s=1}^{523} \underline{\Delta \underbrace{\left(\frac{n_{s,p}}{N_p}\right)}_{\text{employment}} \underbrace{\left(\bar{w}_{s,p} - \bar{w}_p\right)^2}_{\text{relative earnings}}}_{\text{share}}$$

variance growth

Sector contributions are very concentrated

Top 4-digit sectors

NACE	Industry	Emplo	yment	Rela	ative	Share of
code		sh	are	earn	ings	between sector
		1985	2018	1985	2018	variance growt
7830	Other human resources provision	0.0%	4.9%	0.41	-0.44	18.6%
5610	Restaurants and mobile food service activities	0.4%	2.6%	-0.28	-0.61	18.2%
8129	Other cleaning activities	1.5%	3.2%	-0.54	-0.60	13.9%
8899	Other non-residential social work	0.5%	2.6%	-0.22	-0.44	9.6%
5629	Other food service activities	0.5%	1.0%	-0.27	-0.55	5.2%
5510	Hotels and similar accommodation	1.1%	2.1%	-0.42	-0.47	5.0%
5630	Beverage serving activities	0.2%	0.8%	-0.28	-0.56	4.8%
8121	General cleaning of buildings	0.0%	0.3%	-0.51	-0.80	4.1%
3514	Trade of electricity	0.1%	0.5%	0.75	0.72	3.9%
4910	Passenger rail transport	0.1%	0.7%	-0.11	0.54	3.6%
6209	Servicing of personal computers	0.2%	2.0%	0.13	0.29	3.2%
8790	Other residential care activities	0.1%	0.9%	-0.34	-0.43	3.1%
3312	Repair of machinery	2.6%	2.5%	0.06	0.25	2.7%
2120	Pharmaceutical manufacturing	0.5%	0.4%	0.34	0.69	2.6%

The role of firm and worker heterogeneity

We estimate the regression model of worker and firm fixed effects (AKM model):

$$y_t^{i,j,s,p} = \theta^{i,p} + \psi^{j,s,p} + X_t^{i,p} \beta^p + \epsilon_t^{i,j,s,p}$$
 (2)

AKM variance decomposition:

$$Var(y_t^{i,j,s}) = Var(\theta^i) + Var(\psi^{j,s}) + Var(X_t^i\beta)$$

$$+ 2Cov(\theta^i, \psi^{j,s}) + 2Cov(\theta^i, X_t^i\beta)$$

$$+ 2Cov(\psi^{j,s}, X_t^i\beta) + Var(\epsilon_t^{i,j,s})$$
(3)

The role of firm and worker heterogeneity

	Inter	Interval 1		Interval 5		Growth	
	1985-1991		2013-2019		1 to 5		
	Comp.	Share	Comp.	Share	Change	% of total	
						var. change	
	(1)	(2)	(3)	(4)	(5)	(6)	
Total variance							
Var(y)	0.341	-	0.422	-	0.081	-	
Components							
Var(WFE)	0.188	55.1%	0.252	59.7%	0.064	79.0%	
Var(FFE)	0.071	20.8%	0.057	13.5%	-0.014	-17.3%	
Var(Xb)	0.020	5.9%	0.015	3.6%	-0.005	-6.2%	
$Var(\epsilon)$	0.072	21.1%	0.058	13.7%	-0.014	-17.3%	
2*Cov(WFE,FFE)	-0.013	-3.8%	0.045	10.7%	0.058	71.6%	
2 * Cov(WFE, Xb)	-0.002	-0.6%	-0.009	-2.1%	-0.007	-8.6%	
2 * Cov(FFE, Xb)	0.005	1.5%	0.004	0.9%	-0.001	-1.2%	
Sample size (millions)	33	3.9	59	0.0			
Workers (millions)	6	.9	11	4			
Firms (thousands)	16	52	30	00			

Industry-enhanced AKM variance decomposition

$$Var(y_t^{i,j,s}) = \underbrace{Var(\bar{\psi}^s)}_{between-sector\ pay\ premia} + \underbrace{2Cov(\bar{\psi}^s, \bar{\theta}^s) + 2Cov(\bar{\psi}^s, \bar{X}^s\beta)}_{between-sector\ sorting} + \underbrace{Var(\bar{\theta}^s) + Var(\bar{X}^s\beta) + 2Cov(\bar{\theta}^s, \bar{X}^s\beta)}_{between-sector\ segregation} + \underbrace{Var(\psi^{j,s} - \bar{\psi}^s)}_{between-sector\ pay\ premia} + \underbrace{2Cov(\bar{\theta}^{j,s} - \bar{\theta}^s, \bar{\psi}^{j,s} - \bar{\psi}^s) + 2Cov(\bar{\psi}^{j,s} - \bar{\psi}^s, \bar{X}^{j,s}\beta - \bar{X}^s\beta)}_{between-firm\ within-sector\ sorting} + \underbrace{Var(\bar{\theta}^{j,s} - \bar{\theta}^s) + Var(\bar{X}^{j,s}\beta - \bar{X}^s\beta) + 2Cov(\bar{\theta}^{j,s} - \bar{\theta}^s, \bar{X}^{j,s}\beta - \bar{X}^s\beta)}_{between-firm\ within-sector\ segregation} + \underbrace{Var(\theta^i - \bar{\theta}^{j,s}) + Var(X_t^i\beta - \bar{X}_t^{j,s}\beta) + 2Cov(\theta^i - \bar{\theta}^{j,s}, X_t^i\beta - \bar{X}_t^{j,s}\beta) + Var(\varepsilon_t^{i,j,s})}_{within-firm\ person\ effect,\ observables,\ their\ covariance\ and\ residual}$$

(4)

Industry-enhanced AKM variance decomposition

	Interval 1	Interval 5	Growth
	1985-1991	2013-2019	1 to 5
Total variance	0.341	0.422	0.081
Compone	nt shares		
Between-sector	22.6%	29.9%	60.5%
Sector pay premium	6.9%	4.6%	-4.7%
Sector sorting	8.7%	12.9%	30.5%
Sector segregation	6.9%	12.2%	34.3%
Between-firm-within-sector	16.7%	19.9%	33.3%
Firm pay premium	14.0%	9.0%	-12.1%
Firm sorting	-11.0%	-1.4%	39.1%
Firm segregation	13.7%	12.2%	5.8%
Within-firm	60.7%	50.5%	7.4%
Person effect	36.0%	36.5%	38.8%
Time-variant characteristics	5.1%	3.2%	-5.1%
Covariance of the above two	-1.5%	-3.0%	-9.4%
Residuals	21.1%	13.7%	-17.3%

Weekly earnings vs weeks worked

Annual earnings can be broken up into weekly earnings and weeks worked in a year (full-time equivalent)

$$Y_t^i = W_t^i H_t^i \tag{5}$$

where $W_t^i = Y_t^i/H_t^i$.

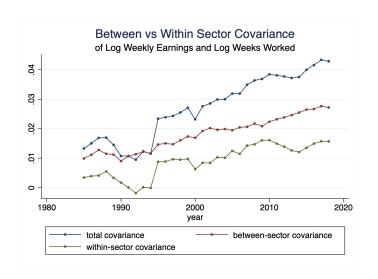
Taking logs:

$$y_t^i = w_t^i + h_t^i \tag{6}$$

Variance decomposition:

$$Var(y_t^i) = Var(w_t^i) + Var(h_t^i) + 2Cov(w_t^i, h_t^i)$$
 (7)

Weekly earnings vs weeks worked


a) Variance change over time

	Weekly	Weeks	2*Covariance	Annual
	earnings	worked	of weeks	earnings
	variance	variance	and earnings	variance
1985	0.159	0.168	0.027	0.353
2018	0.205	0.158	0.086	0.449
Change	0.046	-0.010	0.059	0.096
% of total increase	47.9%	-10.4%	61.5%	100.0%

b) Variance shares

	Weekly	Weeks	2*Covariance
	earnings	worked	of weeks and earnings
1985	45.0%	47.6%	7.6%
2018	45.7%	35.2%	19.2%

Covariance: between vs within sectors

Conclusion

- Inequality of annual earnings in Italy grew:
 - Mostly between industries, driven by a small number of industries,
 - due to changes in the allocation and workers across industries (between-sector sorting and segregation)
 - and due to rising positive association between the rate of pay and labour supply quantities across industries.
- First paper to test the hypothesis in a very different institutional context to the USA.
- Similarities in the patterns of rising inequality suggest that the underlying forces were likely similar.

Possible explanations

- Outsourcing
- Dual labour market
- Structural transformation: from manufacturing to services
 - ▶ Falling pay and rising employment in the key low-paid service sectors.
- On Routine-biased technological change
- Trade
 - Structure of industry-level labour demand has changed.