Causal Inference with Corrupted Data Measurement Error, Missing Values, Discretization, and Differential Privacy

Anish Agarwal¹, Rahul Singh²

¹Columbia IEOR ²Harvard Economics

EEA ESEM 2023

1 Motivation

2 Model

3 Proposal

4 Case study

2020 Census will have differential privacy

■ (slowly) breaking news: April 22, 2022

The New York Times

The 2020 Census Suggests That People Live Underwater. There's a Reason.

2020 Census will have differential privacy

differential privacy achieved by injecting synthetic noise

- "We are deploying differential privacy, the gold standard for privacy protection in computer science and cryptography, to preserve confidentiality in the 2020 Census and beyond"
- "There are many variants of differential privacy. The one selected for the 2020 Census introduces controlled noise into the data"

previously implemented in Apple iOS and Google Chrome

 painful trade-off between privacy and precision (Duchi et al. 2018, Abowd + Schmutte 2019, Hotz et al. 2022)

Why will the Census have privacy?

a simulated attack on the 2010 Census

what did they find?

• "Our simulated attack demonstrated that, depending on the quality of the external data used,

between 52 and 179 million respondents to the 2010 Census can be correctly re-identified from the reconstructed microdata"

Another recent announcement: discretization

to further protect privacy, the Bureau will discretize wage data

Atlanta Fed Wage Tracker data with and without rounded wages

Median annual log wage change, three-month moving average

after backlash, the policy was delayed

What are experts saying?

Prof. Cynthia Dwork (computer science)

"Imagine a kind of weaponization, one where somebody decides to make a list of all the gay households across the country. I expect there will be people who would write the software to do that."

Prof. Charles Manski (econometrics)

"This is not a minor technical issue. It's an inescapable tension between enhancing privacy and enhancing data usability."

Prof. John Abowd (US Census Bureau)

"Until now, our discipline has ceded one of the most important debates of the information age to computer science."

What are experts saying?

Prof. Cynthia Dwork (computer science)

"Imagine a kind of weaponization, one where somebody decides to make a list of all the gay households across the country. I expect there will be people who would write the software to do that."

Prof. Charles Manski (econometrics)

"This is not a minor technical issue. It's an inescapable tension between enhancing privacy and enhancing data usability."

Prof. John Abowd (US Census Bureau)

"Until now, our discipline has ceded one of the most important debates of the information age to computer science."

What are experts saying?

Prof. Cynthia Dwork (computer science)

"Imagine a kind of weaponization, one where somebody decides to make a list of all the gay households across the country. I expect there will be people who would write the software to do that."

Prof. Charles Manski (econometrics)

"This is not a minor technical issue. It's an inescapable tension between enhancing privacy and enhancing data usability."

Prof. John Abowd (US Census Bureau)

• "Until now, our discipline has ceded one of the most important debates of the information age to computer science."

What does this mean for causal inference?

economists are worried about these "new" data corruptions

- differential privacy
- discretization

even before 2020, the Census had "old" data corruptions...

- missing values
- measurement error
- we propose a new end-to-end procedure
 - 1 data cleaning (slow rate)
 - **2** estimation (fast rate)
 - 3 inference (adjusted confidence interval)

What does this mean for causal inference?

economists are worried about these "new" data corruptions

- differential privacy
- discretization

even before 2020, the Census had "old" data corruptions...

- missing values
- measurement error

we propose a new end-to-end procedure

- 1 data cleaning (slow rate)
- 2 estimation (fast rate)
- 3 inference (adjusted confidence interval)

What does this mean for causal inference?

economists are worried about these "new" data corruptions

- differential privacy
- discretization
- even before 2020, the Census had "old" data corruptions...
 - missing values
 - measurement error
 - we propose a new end-to-end procedure
 - 1 data cleaning (slow rate)
 - 2 estimation (fast rate)
 - 3 inference (adjusted confidence interval)

Related work

semiparametric statistics

- asymptotic variance (Newey 1994, Robins et al. 1995, Hirano et al. 2003)
- targeted machine learning (van der Laan + Rubin 2006, Zheng + van der Laan 2011, Luedtke + van der Laan 2016)
- debiased machine learning (Chernozhukov et al. 2016, 2018, 2021)

error-in-variable regression

- auxiliary info: repeated measurement, instrument, negative control (Hausman et al. 1991, Schennach 2007, Maio et al. 2018, Deaner 2018)
- Lasso and Dantzig: covariance of measurement error must be known (Loh + Wainwright 2012, Rosenbaum + Tsybakov 2013, Belloni et al. 2017)
- principal component regression (Stock + Watson 2002, Agarwal et al. 2020)
- PCA for large factor models
 - identification, inference for latent factors (Bai 2003, Bai + Ng 2013)
- treatment effects with corrupted data
 - multiple imputation (Rubin 1976, Meng 1994)

causal inference with the 2020 US Census?

1 Motivation

2 Model

3 Proposal

4 Case study

Model: Causal parameter

- $Y_i \in \mathbb{R}$ outcome
- $D_i \in \{0, 1\}$ treatment
- $X_{i,\cdot} \in \mathbb{R}^p$ covariates
- for today, we focus on ATE with i.n.i.d. data

$$heta_0 = rac{1}{n}\sum_{i=1}^n heta_i, \hspace{1em} heta_i = \mathbb{E}[\,Y_i^{(1)} - \,Y_i^{(0)}]$$

■ the paper considers LATE, elasticity, CATE, etc

However, we observe $(Y_i, D_i, Z_{i,\cdot})$ rather than $(Y_i, D_i, X_{i,\cdot})$ $Y_i = \gamma_0(D_i, X_{i,\cdot}) + \varepsilon_i$ $Z_{i,\cdot} = [X_{i,\cdot} + H_{i,\cdot}] \odot \pi_{i,\cdot}$

This model encompasses all four types of corruption.

However, we observe $(Y_i, D_i, Z_{i,\cdot})$ rather than $(Y_i, D_i, X_{i,\cdot})$

$$egin{aligned} Y_i &= \gamma_0(D_i, X_{i,\cdot}) + arepsilon_i \ Z_{i,\cdot} &= [X_{i,\cdot} + H_{i,\cdot}] \odot \pi_{i,\cdot} \end{aligned}$$

However, we observe $(Y_i, D_i, Z_{i,\cdot})$ rather than $(Y_i, D_i, X_{i,\cdot})$

$$egin{aligned} Y_i &= \gamma_0(D_i, X_{i,\cdot}) + arepsilon_i \ Z_{i,\cdot} &= [X_{i,\cdot} + H_{i,\cdot}] \odot \pi_{i,\cdot} \end{aligned}$$

However, we observe $(Y_i, D_i, Z_{i,\cdot})$ rather than $(Y_i, D_i, X_{i,\cdot})$ $Y_i = \gamma_0(D_i, X_{i,\cdot}) + \varepsilon_i$ $Z_{i,\cdot} = [X_{i,\cdot} + H_{i,\cdot}] \odot \pi_{i,\cdot}$

Model: Key assumption

Assumption: true covariates X are approximately low rank

Why? It holds in Census data (Autor et al. 2013)

Intuition: repeated measurement model

- average disability benefits
- average medical benefits
- average unemployment benefits

Model: Key assumption

Assumption: true covariates X are approximately low rank

Why? It holds in Census data (Autor et al. 2013)

Intuition: repeated measurement model

- average disability benefits
- average medical benefits
- average unemployment benefits

Census is $\sim low \ rank$; has \sim repeated measurements

1 Motivation

2 Model

3 Proposal

We would like a procedure that

- estimates causal parameters as if data were uncorrupted
- adjusts for data cleaning in the confidence interval
- does not require knowledge of the corruption covariance structure
- preempts the looming trade-off of privacy versus precision

Proposal: Algorithm

Using the split sample

- 1 data cleaning: Â using "train"
- 2 regression: $\hat{\gamma}$ using "train"
- 3 balancing weights: $\hat{\alpha}$ using "train"
- 4 causal parameter: $\hat{\theta}$ using "test"
 - implicit data cleaning of Z_{test}!

Proposal: Theory

Assume

- 1 each row of measurement error $H_{i,\cdot}$ is mean zero and subexponential
- 2 each row of missingness $\pi_{i,.}$ is subexponential
- 3 $r \approx rank(X)$ and the singular values are well-balanced

Theorem (informal):

$$\hat{\mathrm{X}} \stackrel{p}{
ightarrow} \mathrm{X}, \quad \hat{ heta} \stackrel{p}{
ightarrow} heta_{0}, \quad rac{\sqrt{n}}{\sigma} (\hat{ heta} - heta_{0}) \stackrel{d}{
ightarrow} \mathcal{N}(0,1), \quad \mathbb{P}\left(heta_{0} \in CI
ight)
ightarrow 0.95$$

Interpretation

- from data cleaning to confidence interval
- $\hat{X} X$ converges at rate slower than $n^{-1/2}$
- yet $\hat{ heta} heta_0$ converges at rate $n^{-1/2}$

Proposal: Theory

Assume

- 1 each row of measurement error $H_{i,\cdot}$ is mean zero and subexponential
- 2 each row of missingness $\pi_{i,.}$ is subexponential
- 3 $r \approx rank(X)$ and the singular values are well-balanced

Theorem (informal):

$$\hat{\mathrm{X}} \stackrel{p}{
ightarrow} \mathrm{X}, \quad \hat{ heta} \stackrel{p}{
ightarrow} heta_0, \quad rac{\sqrt{n}}{\sigma} (\hat{ heta} - heta_0) \stackrel{d}{
ightarrow} \mathcal{N}(0,1), \quad \mathbb{P}\left(heta_0 \in CI
ight)
ightarrow 0.95$$

Interpretation

- from data cleaning to confidence interval
- $\hat{X} X$ converges at rate slower than $n^{-1/2}$
- yet $\hat{ heta} heta_0$ converges at rate $n^{-1/2}$

slow data cleaning, yet *fast* causal inference

1 Motivation

2 Model

3 Proposal

4 Case study

Case study: Import competition

what is the effect of import competition on the US labor market?

- Census data at commuting zone level (Autor et al. 2013)
- can we recover the same effects with synthetic corruption?
 - differential privacy calibrated to 2020 Census levels
- causal parameter: partially linear IV

Case study: Synthetic corruption

(b) Missing values

(d) Differential privacy

(a) Measurement error

26/30

Case study: Calibration

Calibrated differential privacy

Results with formal differential privacy guarantee

- plausible deniability that any individual contributed data to a CZ
- parametrized by ε_{DP} , a measure of privacy loss
- calibrate Laplacian variance to ε_{DP} and variation within the CZ (Dwork et al. 2006)

Case study: Takeaway

both privacy and precision

hide your cake and eat it too

Conclusion

■ goal: causal inference using 2020 Census

- abstractly: learn causal parameter from corrupted data
- concretely: overcome trade-off between privacy and precision

• we propose new data cleaning-adjusted confidence intervals

- bridge matrix completion $(\hat{X} X)$ with semiparametrics $(\hat{\theta} \theta_0)$
- future work: confounded noise, sample selection bias

I would love to talk more!

email: rahul_singh@fas.harvard.edu