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Introduction

Alternatives can be described in terms of their features

Features are measurable characteristics

Examples: consumer products, political parties, investment options etc.

DM aggregates relevant features into a preference

Analyst observes choices, but does not observe relevant features

What can we learn about which features are relevant from DM’s

choices?
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Introduction

We develop a theory of relevant feature identification

Useful for understanding consumption, investment, political decisions etc

Example: company launching a new product
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Literature

Alternatives = bundles of characteristics demanded by consumers (Lancaster,

1966). Objectively known and same for all

We focus on identification

Remain agnostic why DM neglects some features

Bounded rationality (N too large)

Preference
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Example

Features x1 and x2

Preferences are strictly monotone (incr or decr) with respect to relevant

features (not observed)

Choice of y reveals both features as relevant

Choice of x reveals nothing
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Preview of results

Characterise pairs (X,x∗) ( = feasible set, observed choice) that reveal set of

relevant features

partial identification

full identification

Minimal data: single observation, multiple observations

Minimal assumptions on behaviour: “Pareto optimality” w.r.t relevant features
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Framework

F = {1, . . . , N}: set of possible features

Nonempty I ⊆ F is a type (not observed)

Type I only cares for features in I

X ⊆ RN : set (nonempty closed bounded convex) of feasible alternatives

Analyst observes X and choice x∗ ∈ X, wants to identify DM’s type I
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Behavioural assumption

Evaluation function e : F → {−1, 0, 1} captures how features matter

e(i) = 1: i matters positively

e(i) = −1: i matters negatively

e(i) = 0: i does not matter

Definition
x ∈ X is e-admissible if

(∀i : e(i)yi ≥ e(i)xi) & (∃i : e(i)yi > e(i)xi) ⇒ y /∈ X
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Possible / identified type

Definition
A type I ⊆ F is possible at x∗ ∈ X if there exists an evaluation function

e : F → {−1, 0, 1} such that

(i) supp(e) = I

(ii) x∗ is e-admissible

Definition
At x∗, the type is:

fully identified = exactly one possible type at x∗

partially identified = some type is possible at x∗ but not all

not identified = all types are possible at x∗
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Example

The type is

fully identified at x: type {1, 2}

partially identified at y: types {1}, {1, 2}

not identified at z: types {1}, {2}, {1, 2}
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Structure of possibility

Types I, J are possible =⇒ I ∪ J is possible?

Yes

Theorem

For any nonempty collection I ⊆ 2F of types,

(i) there exist X ⊆ RN and x∗ ∈ X such that the set of possible types at x∗ is I

iff

(ii) I is closed under union
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Partial identification

Partial identification is important in applications

Example: alternatives = stocks, features = past returns, partial identification

= DM looks only at the past two years of history

Theorem (partial identification)

The following statements are equivalent, for x∗ ∈ ∂X: (∂X = boundary of X)

(i) The type is partially identified at x∗

(ii) There exists an i ∈ F such that the elementary type {i} is not possible at x∗

(iii) Cone of feasible directions at x∗ is not contained in any orthant
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Elementary type condition

(ii) There exists an i ∈ F such that the elementary type {i} is not possible at x∗

Reduces from 2N − 1 to N the number of types to check
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Orthant condition

(iii) Cone of feasible directions at x∗ is not contained in any orthant

Cone of feasible directions at x∗ is {α (y − x∗) |y ∈ X, α ≥ 0}

In R2, orthant is a quadrant

Enough richness in set of feasible tradeoffs btw the various dimensions at x∗

Shape matters: “fatter” shape around x∗ is better than “sharper” shape

Orientation matters too
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Full identification

Recall: full identification = exists exactly one possible type

Theorem
The type is fully identified at x∗ ∈ ∂X iff either

(i) dimX = N and the cone of feasible directions at x∗ contains{
x ∈ RN | (xi1 , . . . , xik ) ∈ K

}
,

where {i1, . . . , ik} is the identified type and K is a closed convex cone in Rk,

k ≤ N , such that intK ∪ {0} (int = interior) contains an orthant of Rk

(ii) dimX = N − 1 and x∗ ∈ riX. (ri = relative interior)
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Orthant condition

(i) dimX = N and the cone of feasible directions at x∗ contains{
x ∈ RN | (xi1 , . . . , xik ) ∈ K

}
,

where {i1, . . . , ik} is the identified type and K is a closed convex cone in Rk,

k ≤ N , such that intK ∪ {0} contains an orthant of Rk

Yes: only {1, 2} possible No: both {2} and {1, 2} possible

Cone of feasible directions at x∗ contains an orthant in its interior

More subtle in higher dimensions
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Interior condition

(ii) dimX = N − 1 and x∗ ∈ riX.

Yes: only {2} possible (x∗ ∈ riX) No: all types possible (x∗ /∈ riX)

Corollary (dimensionality constraint)

Full identification is only possible if dimX ≥ N − 1
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Linear case

Special case: X is a polytope

DM maximises a linear objective function (wlog)

Algebraic conditions for identification

Proposition (partial identification)

The type is partially identified at x∗ ⇐⇒ there is a column in
(
B̄T (x∗)

)−1
that

contains both a positive and a negative entry

Similar conditions for X finite
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Multiple observations

Additional observations may improve identification

Type partially identified in both sets, but fully identified with 2 obs
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Applications

Understanding the motivations behind economic activities

More accurate selection of observed characteristics

Recommendation algorithms

Design of experiments, political polls and market surveys (control over the

feasible set)
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Future work

More on multiple observations

Population of agents

Stochastic choice

Non-convex sets
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