Informational Autocrats, Diverse Societies

Arda Gitmez

(with Pooya Molavi)

presented at EEA-ESEM 2023

August 31, 2023

Arda Gitmez (Bilkent)

Informational Autocrats, Diverse Societies

August 31, 2023

(人間) トイヨト イヨト

1/14

Informational Autocrats

Informational Autocrats are on the rise (Guriev and Treisman 2019, 2020; Levitsky and Way 2002; Brancati 2014).

Informational Autocrats

Informational Autocrats are on the rise (Guriev and Treisman 2019, 2020; Levitsky and Way 2002; Brancati 2014).

These "spin dictators":

- survive through popular support from citizens,
- rely on information manipulation to cultivate their image as competent leaders, by:
 - controlling state media (Rozenas and Stukal 2019),
 - censoring independent media (Lorentzen 2014),
 - capturing private media (Szeidl and Szucs 2021),
 - bribing private media (McMillan and Zoido 2004)...

What We Do

We present a model of an informational autocrat with sophisticated and heterogeneous citizens.

- autocrat can manipulate information, but the autocrat's strategy is known to the citizens.
- heterogeneity \implies difficult to align messaging with the citizens' attitudes.

What We Do

We present a model of an informational autocrat with sophisticated and heterogeneous citizens.

- autocrat can manipulate information, but the autocrat's strategy is known to the citizens.
- heterogeneity \implies difficult to align messaging with the citizens' attitudes.

Questions:

- Given the distribution of attitudes, how does information manipulation play out in equilibrium?
- Which societies are more susceptible to information manipulation?
 - lots of variation in media freedom across autocracies Egorov and Sonin, 2022

Takeaway of Today's Talk:

When the attitudes in society are more dispersed, the autocrat manipulates information less.

・ロト ・ 西ト ・ ヨト ・ ヨト

Literature

Media capture, information manipulation, censorship: Besley and Prat (2006); Edmond (2013); Gehlbach and Sonin (2014); Shadmehr and Bernhardt (2015); Boleslavsky, Shadmehr and Sonin (2021)... Prat (2015) and Enikolopov and Petrova (2015) for two surveys

Variation in information manipulation and its limits: Egorov, Guriev and Sonin (2009); DiTella, Galiani and Schargrodsky (2012); Durante and Knight (2012); VonDoepp and Young (2013); Qin, Strömberg and Wu (2018); Knight and Tribin (2019); Gläßel and Paula (2019); Knight and Tribin (2022); Enikolopov, Rochlitz, Schoors and Zakharov (2023)

Bayesian persuasion: Kamenica and Gentzkow (2011)

- Heterogeneous preferences: Wang (2015); Alonso and Câmara (2016); Kolotilin, Mylovanov, Zapechelnyuk and Li (2017)...
- Heterogeneous priors: Alonso and Câmara (2016); Laclau and Renou (2017); Kosterina (2022)
- Comparative statics: Kolotilin, Mylovanov and Zapechelnyuk (2022); Curello and Sinander (2022)

人口区 医静脉 医原体 医原体 医尿

The Model

Informational Autocrats, Diverse Societies

4/14

э

Model

State Prior

$$egin{aligned} & heta \in \{0,1\} \ &\mathbb{P}(heta = 1) = oldsymbol{
ho} \end{aligned}$$

"autocrat competent?"

Model

State	$ heta \in \{0,1\}$	"autocrat competent?"
Prior	$\mathbb{P}(heta=1)= heta$	
Receivers $r\in [0,1]$ (cit	izens)	
Action	$a_r \in \{0,1\}$	"support the autocrat"
Cost of support	$c_r \in (0,1)$	$c_r \sim F$, density f
Payoff	$u_r(a_r, heta)=a_r(heta-c_r)$	" $a_r = 1$ iff posterior is above c_r "

◆□ → ◆圖 → ◆臣 → ◆臣 → ○臣

Model

"autocrat competent?"	$\{0,1\}$ "aut	tate $ heta \in \{$	Stat
	=1)=p	rior $\mathbb{P}(heta$ =	Pric
		ivers $r\in [0,1]$ (citizens)	Receive
"support the autocrat"	: {0,1} "sup	action $a_r \in$	Act
$c_r \sim F$, density f	$(0,1)$ $c_r \sim$	ost of support $c_r \in$	Cos
" $a_r = 1$ iff posterior is above c_r "	$(a_r, heta) = a_r(heta - c_r)$ "ar	ayoff $u_r(a_r)$	Pay
"maximize support"	$[a_r\}_r) = \int_0^1 a_r dr$ "ma	er (autocrat) ayoff u _s ({a	Sender Pay
"support the autocrat" $c_r \sim F$, density f " $a_r = 1$ iff posterior is above "maximize support"	$\{0, 1\}$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(1, 2)$ $($	ction $a_r \in$ ost of support $c_r \in$ ayoff $u_r(a_r)$ er (autocrat) $u_s(\{a_r\})$	Act Cos Pay Sender Pay

Informational Autocrats, Diverse Societies

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

Autocrat

Autocrat sends message m from set M.

Bayesian persuasion: Autocrat can commit to a public communication strategy More on Commitment

$$\sigma: \{0,1\} \to \Delta(M)$$

Timing: Autocrat commits to σ , message drawn according to σ , each citizen updates and acts.

Autocrat

Autocrat sends message m from set M.

Bayesian persuasion: Autocrat can commit to a public communication strategy More on Commitment

$$\sigma: \{0,1\} \to \Delta(M)$$

Timing: Autocrat commits to σ , message drawn according to σ , each citizen updates and acts.

Value function: When posterior is $\mathbb{P}(\theta = 1|m) = \mu$, what is the autocrat's payoff? Recall: *r* takes $a_r = 1$ if and only if $\mu \ge c_r$. Thus, total support/autocrat's payoff is:

$$v(\mu) = F(\mu)$$

Then, $v'(\mu) = f(\mu)$.

人口区 医静脉 医原体 医原体 医尿

Monolithic and Divided Societies

 $f(\mu)$: density of "on-the-fence" citizens when the posterior is μ .

			2.40
Arda Gitmez (Bilkent)	Informational Autocrats, Diverse Societies	August 31, 2023	7 / 14

Monolithic Societies

< □ > < □ > < □ > < □ > < □ > < □ > < □ >
 August 31, 2023

Definition

The density $f(\mu)$ is **single-peaked** if there exists some $\tilde{\mu} \in [0, 1]$ such that $f'(\mu) > 0$ for all $\mu < \tilde{\mu}$ and $f'(\mu) < 0$ for all $\mu > \tilde{\mu}$.

Single-peaked densities \leftrightarrow societies with many moderate citizens.

Information Manipulation in a Monolithic Society

Arda Gitmez (Bilkent)

Informational Autocrats, Diverse Societies

August 31, 2023

9/14

Information Manipulation in a Monolithic Society

Proposition

If the density is single-peaked,

- the optimal strategy uses only two messages.
- one of the messages fully reveals the bad state.

August 31, 2023

A Measure of Information Manipulation

Let $M = \{good, bad\}$.

A strategy is represented by two numbers:

$$egin{aligned} \sigma^0 &\equiv \mathbb{P}(m = \textit{good} \mid heta = 0) \ \sigma^1 &\equiv \mathbb{P}(m = \textit{good} \mid heta = 1) \end{aligned}$$

э

A Measure of Information Manipulation

Let $M = \{good, bad\}$.

A strategy is represented by two numbers:

$$\sigma^0 \equiv \mathbb{P}(m = good \mid \theta = 0)$$

 $\sigma^1 \equiv \mathbb{P}(m = good \mid \theta = 1)$

With a single-peaked density, the optimal strategy has $\sigma^1 = 1$.

So σ^0 summarizes the extent of manipulation.

Definition

Consider single-peaked densities f_1 and f_2 with the corresponding optimal strategies σ_1^0 and σ_2^0 . The autocrat **manipulates information less** given f_1 than given f_2 if $\sigma_1^0 \le \sigma_2^0$.

• • = • • = •

Here is a partial order to compare dispersion of two densities:

Definition

Consider single-peaked densities f_1 and f_2 satisfying

$$f_2(\mu) = \alpha \left(f_1(\mu) \right)$$
 for all μ

for some strictly increasing and convex function α .

Then, f_2 is less dispersed than f_1 and f_1 is more dispersed than f_2 .

(4) (E) (A) (E)

A Measure of Dispersion

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 August 31, 2023

э

A Measure of Dispersion

Examples of densities that can be ranked:

- Beta distributions with the same mode
- truncated normals with the same mean

August 31, 2023

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Dispersion and Information Manipulation

Theorem

Let f_1 and f_2 be two single-peaked densities. If f_1 is more dispersed than f_2 , then the autocrat manipulates information less given f_1 than f_2 .

(4) (E) (A) (E)

Theorem

Let f_1 and f_2 be two single-peaked densities. If f_1 is more dispersed than f_2 , then the autocrat manipulates information less given f_1 than f_2 .

Intuition: if the autocrat reduces σ^0 ,

- "good" message sent less frequently (\sim intensive margin)
- + more people pay attention to messages sent (\sim extensive margin)

Dispersion: less citizens "on-the-fence"

- \implies given a strategy, fewer citizens pay attention to messages
 - \implies autocrat increases informativeness

Conclusion

"When the society is single-minded, it can be manipulated more easily.

A diverse society is less susceptible to manipulation."

Divided Societies Putting Everything Together Some Patterns

Conclusion

"When the society is single-minded, it can be manipulated more easily.

A diverse society is less susceptible to manipulation."

Factors leading to more dispersed societies: independent and online media (Enikolopov, Rochlitz, Schoors and Zakharov, 2023)

Future research:

• How do repression and information manipulation interact in heterogeneous societies? (Gitmez and Sonin, 2023)

• • = • • = •

Putting Everything Together

Information Manipulation

An autocrat can force the media to bias its coverage, but can't force the citizens to pay attention to coverage.

Information manipulation is a double-edged sword:

- biasing the coverage may convince some citizens...
- but citizens ignore obviously biased coverage.

▶ < ⊒ ▶

Information Manipulation

An autocrat can force the media to bias its coverage, but can't force the citizens to pay attention to coverage.

Information manipulation is a double-edged sword:

- biasing the coverage may convince some citizens...
- but citizens ignore obviously biased coverage.

Paying attention to coverage is a strategic choice that depends on

- I a citizen's attitudes about the autocrat
- 2 the bias of coverage...

▶ < ⊒ ▶

Information Manipulation

An autocrat can force the media to bias its coverage, but can't force the citizens to pay attention to coverage.

Information manipulation is a double-edged sword:

- biasing the coverage may convince some citizens...
- but citizens ignore obviously biased coverage.

Paying attention to coverage is a strategic choice that depends on

- I a citizen's attitudes about the autocrat
- 2 the bias of coverage...

which, in turn, depends on the distribution of attitudes.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Lots of Variation in Information Manipulation

Figure 3: Media freedom around the world, 1993-2016.

As a result, media freedom varies a lot across nondemocratic regimes, from levels comparable to mature democracies to that of totalitarian regimes (see Figure 3).

Figure: From Egorov and Sonin (2022). Return

Arda Gitmez (Bilkent)

Informational Autocrats, Diverse Societies

< □ > < □ > < □ > < □ > < □ > < □ > < □ >
 August 31, 2023

14 / 14

How to make sense of the commitment assumption?

 Can somehow relax it, allowing certain deviations (Lin and Liu, 2022) or embedding it in a richer setup (Titova, 2022) How to make sense of the commitment assumption?

- Can somehow relax it, allowing certain deviations (Lin and Liu, 2022) or embedding it in a richer setup (Titova, 2022)
- Think of it as committing to an editorial policy/general guidelines (Gehlbach and Sonin, 2014)

How to make sense of the commitment assumption?

- Can somehow relax it, allowing certain deviations (Lin and Liu, 2022) or embedding it in a richer setup (Titova, 2022)
- Think of it as committing to an editorial policy/general guidelines (Gehlbach and Sonin, 2014)
- Think of it as the "best case scenario": what is the ideal media landscape for the autocrat?

Return

(4) E > (4) E >

Divided Societies

< □ > < □ > < □ > < □ > < □ > < □ > < □ >
 August 31, 2023

э

Divided Societies

A single-dipped density corresponds to a divided society. Definition

û

Informational Autocrats, Diverse Societies

 μ

August 31, 2023

(4) (E) (E)

э

Divided Societies

A single-dipped density corresponds to a divided society. Definition

Proposition

If the density is single-dipped,

- the optimal strategy uses only two messages.
- 2 the good message fully reveals the good state, i.e. $\sigma^0 = 0$.

August 31, 2023

14/14

Dispersion in Divided Societies

The same argument goes for single-dipped densities and the corresponding measure of dispersion. Formally

more dispersed density \implies autocrat manipulates information less (i.e., higher σ^1)

Definition

The density $f(\mu)$ is **single-dipped** if there exists some $\tilde{\mu} \in [0, 1]$ such that $f'(\mu) < 0$ for all $\mu < \tilde{\mu}$ and $f'(\mu) > 0$ for all $\mu > \tilde{\mu}$.

Single-dipped densities \leftrightarrow societies with many extreme citizens.

Return

Definition

Consider single-dipped densities f_1 and f_2 satisfying

$$f_2(\mu) = \alpha \left(f_1(\mu) \right)$$
 for all μ ,

for some strictly increasing and convex function α .

Then, f_2 is more dispersed than f_1 and f_1 is less dispersed than f_2 .

Optimal Strategy under Divided Societies

Intuition:

- There are few citizens on the fence: autocrat has to be informative.
- If autocrat sends very informative bad news, risks losing the supporters.
- Instead, autocrat sends very informative good news \implies convince opponents without alienating supporters.

Optimal Strategy under Divided Societies

Intuition:

- There are few citizens on the fence: autocrat has to be informative.
- If autocrat sends very informative bad news, risks losing the supporters.
- Instead, autocrat sends very informative good news \implies convince opponents without alienating supporters.
- ullet \sim allow for a media source that opposes the autocrat, so that:
 - Extreme supporters do not follow it and keep supporting,
 - Rare but credible good news sway the opponents (Baum and Groeling 2009; Ladd and Lenz 2009; Chiang and Knight 2011).
 - Putin in 2012 (Sobolev, 2023), Nazarbayev in 2011 (Lewis, 2016).

Return

Dispersion and Information Manipulation: Divided Societies

Definition

Consider single-dipped densities f_1 and f_2 with the corresponding optimal strategies σ_1^1 and σ_2^1 . The autocrat **manipulates information less** given f_1 than given f_2 if $\sigma_1^1 \ge \sigma_2^1$.

Theorem

Let f_1 and f_2 be two single-dipped densities. If f_1 is more dispersed than f_2 , then the autocrat manipulates information less given f_1 than f_2 .

Putting Everything Together...

Informational Autocrats, Diverse Societies

August 31, 2023

14 / 14

(In)Consistent Patterns

Fig. 1. Inequality and media freedom (Freedom House) for democratic for countries (democracy score \geq 9); controlling for GDP per capita.

Figure: From Petrova (2008).

Arda Gitmez (Bilkent)

Informational Autocrats, Diverse Societies

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 August 31, 2023

14 / 14

э

Consistent Patterns

Fig. 2. Inequality and media freedom (Freedom House) for autocracies (democracy score \leq 1); controlling for GDP per capita.

Figure: From Petrova (2008).

Arda Gitmez (Bilkent)

Informational Autocrats, Diverse Societies

< □ > < □ > < □ > < ≥ > < ≥ >
 August 31, 2023

Return 💦