1odel 000000000000000 Firm Reorganization

Macro implications

onclusion

イロト 不得 トイヨト イヨト 二日

Appendix 00000000

# Firm Organization and Information Technology: Micro and Macro Implications

Asier Mariscal U. Rovira-i-Virgili

August 30, 2023



- Emergence of information and communication technology capital (IT):
  - Dramatically changing the labor market.
  - White-collar workspace nothing like in the 60's.



• Emergence of information and communication technology capital (IT):

イロト 不得 トイヨト イヨト 二日

- Dramatically changing the labor market.
- White-collar workspace nothing like in the 60's.
- IT has changed how firms are organized.



40 years to today

• Emergence of information and communication technology capital (IT):

イロト 不得 トイヨト イヨト 二日

- Dramatically changing the labor market.
- White-collar workspace nothing like in the 60's.
- IT has changed how firms are organized.
- How do firms organize production?

- Firm organization in the model involves choosing:
  - Capital, Labor and Worker-Knowledge at each hierarchy level.
    - As suggested in Lucas (1978).

- Firm organization in the model involves choosing:
  - Capital, Labor and Worker-Knowledge at each hierarchy level.
    - As suggested in Lucas (1978).
  - The number of layers  $L \in \{2,3,4\}$  : complexity of organization.

- Firm organization in the model involves choosing:
  - Capital, Labor and Worker-Knowledge at each hierarchy level.
    - As suggested in Lucas (1978).
  - The number of layers  $L \in \{2,3,4\}$  : complexity of organization.
- Add optimal capital to Caliendo&Rossi-Hansberg, (2012):
  - Two types of capital used:
    - IT capital *only* by managers.
    - Production (non-IT) capital only by production workers.

- Firm organization in the model involves choosing:
  - Capital, Labor and Worker-Knowledge at each hierarchy level.
    - As suggested in Lucas (1978).
  - The number of layers  $L \in \{2,3,4\}$  : complexity of organization.
- Add optimal capital to Caliendo&Rossi-Hansberg, (2012):
  - Two types of capital used:
    - IT capital *only* by managers.
    - Production (non-IT) capital *only* by production workers.
  - Study effect of IT instead of international trade.

- Study wage inequality like Antràs, Garicano, and Rossi-Hansberg (2006).
  - They study international production teams in a stylized model.

- Study wage inequality like Antràs, Garicano, and Rossi-Hansberg (2006).
  - They study international production teams in a stylized model.
- Closer to Garicano&Rossi-Hansberg (2006), except here:
  - Capital adoption function of IT price, not exogenous parameters.
  - Calibration, not "illustration for maximal visibility".
  - Production function  $\rightarrow$  capital-labor elasticity, productivity, etc.
  - Change in wage *levels* as IT price falls.

- Study wage inequality like Antràs, Garicano, and Rossi-Hansberg (2006).
  - They study international production teams in a stylized model.
- Closer to Garicano&Rossi-Hansberg (2006), except here:
  - Capital adoption function of IT price, not exogenous parameters.
  - Calibration, not "illustration for maximal visibility".
  - Production function  $\rightarrow$  capital-labor elasticity, productivity, etc.
  - Change in wage *levels* as IT price falls.
  - No worker-firm assignment problem.



Model 00000000000 Firm Reorganization

Macro implications

Conclusion

Appendix 00000000

# TALK OUTLINE

- Model
- Within-firm wage reallocation when IT prices fall.
- Indirect IT capital-plant labor elasticity
- Empirical analysis
- Macro implications
- Conclusion

▲ロト ▲御 ト ▲ 国 ト ▲ 国 ト 二 国

Macro implications

Conclusion

Appendix 00000000

# Related Literature

- Hierarchies: Garicano, (2000), Antras et al, (2006), Antras et al, (2008), Caliendo and Rossi-Hansberg, (2012). Caliendo, Monte and Rossi-Hansberg, (2014), Fuchs et al (2015), Santamaria, (2017).
- Labor Markets: Autor et al. (2003), Autor and Dorn, (2013). Acemoglu and Restrepo, (2017,2018a&b), Hemous and Olsen (2016).
- Wage Inequality in Organizations: Akerman et al, (2015), Gaggl and Wright (2017), Bloom et al. (2017), Bloom et al. (2014), Garicano and Hubbard (2016).
- VA concentration: Autor et al (2017), De Loecker, Eeckout and Unger (2020).
- Labor Share: Karabarbournis and Neiman, (2012). Oberfield and Raval, (2014). Santaeulalia-Llopis et al, (2015), Grossman, et al, (2017). Lashkari et al. (2018).

Model •000000000 Firm Reorganization

Macro implications

onclusion

Appendix 00000000

# MODEL

▲ロト ▲御 ト ▲臣 ト ▲臣 ト 三臣



• CES demand for variety  $\omega$ :  $q(\omega) = Dp(\omega)^{-\rho} \alpha(\omega)$ 

where  $\alpha(\omega)$  is the appeal of  $\omega$ .

- $\alpha(\omega)$  is the source of heterogeneity in the cross-section of firms.
- $\alpha(\omega)$  drawn from a lognormal distribution.



- Supply labor: 1 unit inelastically. Wage rate is w.
- Workers homogenous ex-ante but different skills and occupations ex-post.
- Learning an interval of knowledge of length *z*, requires *cz* teaching time:
  - cost to agent is = wcz.
  - agent receives from firms w + wcz.
- Ex post: different occupations but same *net* compensation (w)
   → workers indifferent across occupations.



- Each entrepreneur has product with  $\alpha$ , the demand shifter. No entrepreneur entry.
- Today: Simplest model: firm with two layers (L = 2):
  - 1. Production level workers: encounter and solve problems: layer 1.
  - 2. CEO: solve problems with IT: layer 2.



- Each entrepreneur has product with *α*, the demand shifter. No entrepreneur entry.
- Today: Simplest model: firm with two layers (L = 2):
  - 1. Production level workers: encounter and solve problems: layer 1.
  - 2. CEO: solve problems with IT: layer 2.
- Intuitions are similar for more complex firms with number of layers  $L \in [2,3,4]$ :
  - Extra layers are managers and specialize in solving problems like the CEO.

Model 0000000000 Firm Reorganization

Macro implications

Chosen by firm

Conclusion

Appendix 00000000

# Firms: Production Level: Layer 1

Production workers:

- Production layer input bundle:  $y_1 \equiv \left(k_1^{\frac{\sigma_1-1}{\sigma_1}} + n_1^{\frac{\sigma_1-1}{\sigma_1}}\right)^{\frac{\sigma_1}{\sigma_1-1}}$ .
- Mass of problems equal to  $y_1$ .
- Total *potential* output is Ay<sub>1</sub>; where A is productivity.
- Workers can deal with y<sub>1</sub> problems, but can solve only a fraction: those they know.
- Realized output =  $Ay_1 * Fraction of Solved Problems$ .

Worker-Knowledge: firm choice

Model 0000000000 Firm Reorganization

Macro implications

Chosen by firm

onclusion

Appendix 00000000

# Firms: Production Level: Layer 1

Production workers:

- Production layer input bundle:  $y_1 \equiv \left(k_1^{\frac{\sigma_1-1}{\sigma_1}} + n_1^{\frac{\sigma_1-1}{\sigma_1}}\right)^{\frac{\sigma_1}{\sigma_1-1}}$ .
- Mass of problems equal to  $y_1$ .
- Total *potential* output is Ay<sub>1</sub>; where A is productivity.
- Workers can deal with y<sub>1</sub> problems, but can solve only a fraction: those they know.
- Realized output =  $Ay_1 * Fraction of Solved Problems$ .

Worker-Knowledge: firm choice

Which problems are solved? = What knowledge do agents acquire?

Chosen by firm

・ロト ・ 四ト ・ 日ト ・ 日



## Firms: Production Level: Layer 1

- Problems arise from CDF:  $F(z) = 1 \exp(-\lambda z)$ .
- Law of Large Numbers: the realized distribution of problems is also F(.).
- Production workers learn how to solve interval of knowledge: [0, z<sub>1</sub>]:
  - All problems in  $[0, z_1]$  are solved; production realized:  $AF(z_1)y_1$ .

• Problems in  $[z_1,\infty)$ : passed to upper layer: CEO.



CEO:

- Specializes in solving problems:
  - Deals unsolved problems from layer 1: those above *z*<sub>1</sub>.
  - Attempts to solve all of the unsolved problems:
    - Ex ante, the CEO does not know if she knows the solution.
  - Learns interval  $[z_1, z_1 + z_2]$ : the solved problems at layer 2.
- Firm needs managerial inputs to attempt those problems...

Model 000000000000

# Firms: CEO: Layer 2

CEO:

Firm needs managerial inputs given by ...

$$\underbrace{1 + Bk_L^{\beta_L}}_{\text{CEO time + IT capital}} = \underbrace{\left(k_1^{\frac{\sigma_1 - 1}{\sigma_1}} + n_1^{\frac{\sigma_1 - 1}{\sigma_1}}\right)^{\frac{\sigma_1}{\sigma_1 - 1}}(1 - F(z_1))}_{\text{Unsolved problems at layer 1}}$$

Realized production:

$$q = AF(Z_2) \left( k_1^{\frac{\sigma_1 - 1}{\sigma_1}} + n_1^{\frac{\sigma_1 - 1}{\sigma_1}} \right)^{\frac{\sigma_1}{\sigma_1 - 1}}$$

where:

- $Z_2 \equiv z_1 + z_2$
- Note:  $F(Z_2)$  is the fraction of problems solved by organization.

Model 000000000000 Firm Reorganization

Macro implications

onclusion

Appendix 00000000

# Cost Minimization for L=2 Organization

$$C(q;\theta) \equiv \min_{\{k_l, n_l, z_l\}_{l \in 1,2}} n_1 w_1 + p_1 k_1 + w_2 + p_2 k_2$$

$$s.t. \begin{cases} q = AF(Z_2) \left( k_1^{\frac{\sigma_1 - 1}{\sigma_1}} + n_1^{\frac{\sigma_1 - 1}{\sigma_1}} \right)^{\frac{\sigma_1}{\sigma_1 - 1}} \\ 1 + Bk_2^{\beta_2} = \left( k_1^{\frac{\sigma_1 - 1}{\sigma_1}} + n_1^{\frac{\sigma_1 - 1}{\sigma_1}} \right)^{\frac{\sigma_1}{\sigma_1 - 1}} [1 - F(z_1)], \\ z_l > 0, l = 1, 2. \end{cases}$$

where:

k<sub>l</sub> price is p<sub>l</sub>.

- $n_l$  compensation is  $w_l \equiv w(cz_l + 1)$ .
- $\theta = \text{set of all prices.}$



イロト イロト イヨト イヨト 三日

Problem of  $\alpha$  firm:

$$\pi(\alpha) \equiv \max_{q(\alpha)} p(\alpha)q(\alpha) - C(q(\alpha);\theta)$$
subject to  $q(\omega) = Dp(\omega)^{-\rho}\alpha(\omega)$ ,

• D: aggregate demand shifter, taken as given.



Macro implications

Conclusion

Appendix 00000000

## **Profit Maximization**

Problem of  $\alpha$  firm:

$$\pi(\alpha) \equiv \max_{q(\alpha)} p(\alpha)q(\alpha) - C(q(\alpha); \theta)$$

subject to  $q(\omega) = Dp(\omega)^{-\rho} \alpha(\omega)$ .

Solution:

•  $p(\alpha) = mMC(q(\alpha); \theta)$ 

where m is the markup.



# Organization, Knowledge Reallocation, and IT price

#### **Optimal Knowledge:**

• Trade-off between layers 1 and 2 knowledge:



Organization, Knowledge Reallocation, and IT price

### **Optimal Knowledge:**

• Trade-off between layers 1 and 2 knowledge:



#### Proposition 3: Optimal Reorganization of Knowledge:

- A reduction in  $p_2$  (IT price) makes layer 2 relatively cheaper ightarrow
  - in layer 1: decrease knowledge and wages: supported by empirics.
  - in layer 2: increase knowledge and wages.

del 2000000000 Firm Reorganization

Macro implications

onclusion

Appendix 00000000

# IT Capital and Production Labor Elasticity

DEFINITION: The IT capital-to-production-labor elasticity for **layers** l > 1, when  $p_{lT}$  changes is:

$$arepsilon_{n_1,k_l} \equiv -rac{d\log\left(rac{k_l}{n_1}
ight)}{d\log\left(rac{p_2}{w_1}
ight)}igg|_{q=\overline{q}}$$

for fixed output  $\overline{q}$ , when all other inputs are allowed to adjust.

- Captures reorganization.
- A long-run elasticity:
  - Calibrated to 1980-2015.
  - Calibrated using long-run  $\sigma_l$ , the within layer elasticity.
- I obtain  $\varepsilon_{n_1,k_2} > 1$ : Substitution,  $\forall L = 2,3,4$ .

イロト 不得 トイヨト イヨト 二日

## Indirect Substitution of IT Capital and Production Labor

- IT capital and production labor are substitutes:
  - Despite capital-labor complementarity in each layer:  $0 < \sigma_l < 1$

Appendix 00000000

# Indirect Substitution of IT Capital and Production Labor

- IT capital and production labor are substitutes:
  - Despite capital-labor complementarity in each layer:  $0 < \sigma_l < 1$
  - Not a parametric assumption about substitution.

# Indirect Substitution of IT Capital and Production Labor

- IT capital and production labor are substitutes:
  - Despite capital-labor complementarity in each layer:  $0 < \sigma_l < 1$
  - Not a parametric assumption about substitution.
  - Endogenous substitution is due to knowledge reallocation:  $\frac{\partial z_1}{\partial p_2} > 0$ 
    - Test in the data using wage impact of IT price!
    - Existing evidence is in line with decline in  $w_1$  when  $p_{IT}$  falls.
- Firm organization matters for factor substitution inference.

lel 000000000 Firm Reorganization

 $\substack{\text{Macro implications}\\\bullet00000}$ 

onclusion

Appendix 00000000

# Problem for any organization complexity, $L \in 2,3,4$

$$\pi(\alpha) \equiv \max_{q(\alpha)} p(\alpha)q(\alpha) - C(q(\alpha);\omega)$$

where

$$C(q(\alpha)) \equiv \min_{2 \leq L \leq 4} C_L(q(\alpha); \omega)$$
 NEW: L Choice

1

and

$$C_{L}(q(\alpha);\omega) \equiv \min_{\{k,n,z\}_{l=1}^{L}} \sum_{l=1}^{L} (n_{l}w(cz_{l}+1)+p_{l}k_{l})$$

$$s.t. \begin{cases} q(\alpha) = AF(Z_{L}) \left(k_{1}^{\frac{\sigma_{l}-1}{\sigma_{1}}} + n_{1}^{\frac{\sigma_{l}-1}{\sigma_{1}}}\right)^{\frac{\sigma_{l}}{\sigma_{l}-1}} \\ \left(k_{l}^{\frac{\sigma_{l}-1}{\sigma_{l}}} + n_{l}^{\frac{\sigma_{l}-1}{\sigma_{l}}}\right)^{\frac{\sigma_{l}}{\sigma_{l}-1}} = \left(k_{1}^{\frac{\sigma_{l}-1}{\sigma_{1}}} + n_{1}^{\frac{\sigma_{l}-1}{\sigma_{1}}}\right)^{\frac{\sigma_{l}}{\sigma_{l}-1}} [1 - F(Z_{l-1})], L > l > 1 \end{cases}$$

$$NEW: Intermediate Layers$$

$$1 + Bk_{L}^{\beta_{L}} = \left(k_{1}^{\frac{\sigma_{l}-1}{\sigma_{1}}} + n_{1}^{\frac{\sigma_{l}-1}{\sigma_{1}}}\right)^{\frac{\sigma_{l}}{\sigma_{l}-1}} [1 - F(Z_{L-1})],$$

$$n_{L} = 1$$

$$z_{l} > 0, \forall l \ge 1$$

odel 0000000000 Firm Reorganization

Macro implications

Conclusion

Appendix 00000000

# Links to Macro Trends

The trends in the data:

- 1. Aggregate labor share decline. Karabarbounis and Neiman, (2012), Autor et al, (2017), Oberfield and Raval, (2019), Santaeulalia et al (2020), Grossman et al. (2018)
- Labor share of routine (nonroutine) occupations is declining (rising), IMF (2017).
- 3. Value added increasingly concentrated in large firms. Autor et al, (2020).
- 4. Increasing aggregate mark-up: due to large firms, De Loecker, Eeckout and Unger (2020).

odel 0000000000 Firm Reorganization

Macro implications

Conclusion

Appendix 00000000

# Links to Macro Trends

The trends in the data:

- 1. Aggregate labor share decline. Karabarbounis and Neiman, (2012), Autor et al, (2017), Oberfield and Raval, (2019), Santaeulalia et al (2020), Grossman et al. (2018)
- Labor share of routine (nonroutine) occupations is declining (rising), IMF (2017).
- 3. Value added increasingly concentrated in large firms. Autor et al, (2020).
- 4. Increasing aggregate mark-up: due to large firms, De Loecker, Eeckout and Unger (2020).

The question:

- What are the implications of firm organization with IT for these trends?
  - Production side discipline is required for inference about demand elasticity.



Conclusion

Appendix 00000000

# Calibration for 1980-2015

Observed macro trends require two changes:

- 1. Lower IT price: today 1/3 of price in 1980 (BEA).
- 2. Lower demand elasticity: consistent with De Loecker, Eeckout and Unger (2020).

## Counterfactual exercises

- A IT price decline produces :
  - Micro: decline of production workers' wage in large firms (Song et al at QJE)
  - Macro: decline in wage bill share of routine, along with increase of non-routine share (IMF).
- B Lower demand elasticity causes:
  - Macro: labor share decline
  - Macro: VA concentration in large firms
  - Macro: Rising markup

# Empirical predictions (II): Data match on IT price

Table reports the sign of variable change due IT price decline:

|                                                                           |               | Mo | odel |           |       |       | Da | ata |     |
|---------------------------------------------------------------------------|---------------|----|------|-----------|-------|-------|----|-----|-----|
|                                                                           |               |    |      | A. Firm-L | Layer | Level |    |     |     |
|                                                                           |               | La | yer  |           |       |       | La | yer |     |
|                                                                           | 1             | 2  | 3    | CEO       |       | 1     | 2  | 3   |     |
| Moments                                                                   |               |    |      |           | _     |       |    |     |     |
| WI                                                                        | -*            | -  | +    | +         |       | -     | +  | +   |     |
| $\frac{n_l}{\sum\limits_{j=1}^L n_j}$                                     | -             | +  | +    | -         |       | -     | +  | +   |     |
| $\frac{\frac{w_l n_l}{L}}{\sum\limits_{j=1}^{L} w_j n_j}$                 | -             | +  | +    | -         |       | -     | +  | +   |     |
|                                                                           | B. Firm Level |    |      |           |       |       |    |     |     |
| $\frac{\sum_{l=2}^{L} k_l}{n_1}$                                          |               | -  | ÷    |           |       |       | -  | ł   |     |
| $Z_L$                                                                     | +*            |    |      |           | +     |       |    |     |     |
| $\frac{\sum_{i=1}^{p_i \times j} p(\alpha)q(\alpha)}{p(\alpha)q(\alpha)}$ |               | -  | +    |           |       |       | -  | +   |     |
| <i>L</i><br>*: result is a proposi                                        | ition         | -  | +    |           |       | 4     | -  | +   | . = |



- A firm organization theory with a well-specified role for IT.
- Implications for:
  - 1. Rising (within-firm) wage inequality due to IT adoption.



- A firm organization theory with a well-specified role for IT.
- Implications for:
  - 1. Rising (within-firm) wage inequality due to IT adoption.
  - 2. An *indirect* IT capital-production labor elasticity: *substitution*.



A firm organization theory with a well-specified role for IT.

1. Rising (within-firm) wage inequality due to IT adoption.

An *indirect* IT capital-production labor elasticity: *substitution*.
 TFP effects of IT, which are still insufficiently understood.

イロト 不得 トイヨト イヨト 二日

Implications for:



## Conclusion

- A firm organization theory with a well-specified role for IT.
- Implications for:
  - 1. Rising (within-firm) wage inequality due to IT adoption.
  - 2. An *indirect* IT capital-production labor elasticity: *substitution*.
  - 3. TFP effects of IT, which are still insufficiently understood.
  - 4. Macro implications: factor shares, value-added reallocation to large firms, rising markup.



## Conclusion

- A firm organization theory with a well-specified role for IT.
- Implications for:
  - 1. Rising (within-firm) wage inequality due to IT adoption.
  - 2. An *indirect* IT capital-production labor elasticity: *substitution*.
  - 3. TFP effects of IT, which are still insufficiently understood.
  - 4. Macro implications: factor shares, value-added reallocation to large firms, rising markup.

/lodel

Firm Reorganization

Macro implications

Conclusion

Appendix •0000000

# APPENDIX

◆□ → ◆□ → ◆三 → ◆三 → 三三

/lodel

Firm Reorganization

Macro implications

Conclusion

Appendix 0000000

# Calibration

| Parameter                 | Value        | Description                                            | Source/Target                                    |  |  |  |  |  |
|---------------------------|--------------|--------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|
|                           |              |                                                        |                                                  |  |  |  |  |  |
| Calibrated Externally     |              |                                                        |                                                  |  |  |  |  |  |
| $\hat{\Delta} p_1$        | 0            | Change in capital price at layer $l=1$                 | Eden&Gaggl (2018)                                |  |  |  |  |  |
| $\hat{\Delta} p_I, I > 1$ | -2/3         | Change in capital price at layers $I \; \forall I > 1$ | Eden&Gaggl (2018)                                |  |  |  |  |  |
| $\sigma_1$                | 0.87         | Capital-labor elasticity at layer $l = 1$              | Raval (2010)                                     |  |  |  |  |  |
| $\sigma_l, l > 1$         | 0.36         | Capital-labor elasticity at layers $1 < l < L$         | Raval (2010)                                     |  |  |  |  |  |
|                           |              |                                                        |                                                  |  |  |  |  |  |
|                           |              | Calibrated Internally                                  | /                                                |  |  |  |  |  |
| 2                         | markun tabla | Demand electicity distribution                         | Labor share of VA, top firms' average, 1980&2015 |  |  |  |  |  |
| P                         | markup table | Demand elasticity, distribution                        | Slope(log(Markup),log(TFP)), 1980&2015           |  |  |  |  |  |
| $\beta_L$                 | 0.51         | Capital exponent at layer L                            | Slope(log(FC),log(VA))                           |  |  |  |  |  |
| В                         | 5            | TFP of CEO IT capital                                  | P75/P25 FC distribution                          |  |  |  |  |  |
| с                         | 0.1          | Employee training cost                                 | Labor share of cost, average                     |  |  |  |  |  |
| λ                         | 1            | Mean of problem CDF, $F(.)$                            | Slope(log(Capital-Labor Ratio),log(VA))          |  |  |  |  |  |
| A                         | 5            | TFP                                                    |                                                  |  |  |  |  |  |
| $\mu_{lpha}$              | 5            | Mean of $\alpha$                                       |                                                  |  |  |  |  |  |
| ξα                        | 2.4          | Standard deviation of $lpha$                           | Employment chore by firm cize (7 bins)           |  |  |  |  |  |
| w                         | 2            | Wage rate                                              | Employment share by firm size (7 bins)           |  |  |  |  |  |
| $\rho_1$                  | 0.001        | Production-level capital price                         |                                                  |  |  |  |  |  |
| <i>p</i> <sub>2</sub>     | 25           | IT capital price                                       |                                                  |  |  |  |  |  |
|                           | L<br>S = k   |                                                        |                                                  |  |  |  |  |  |

NOTE: 
$$FC \equiv \frac{\sum p_{i} p_{i} x_{i}}{\sum \substack{l=1 \\ i \\ l=1}} n_{l} w_{l}$$
, VA= value-added,  $\hat{\Delta}_{x} = (x_{t} - x_{t-1})/x_{t-1}$ 



Calibration of demand elasticity: production-side discipline



- 1. Cross-section:
  - Markup *m* rises with size (De Loecker&Warczinsky 2012; Autor et al 2020).
  - Labor share of value added falls with size (Autor et al 2020).
- 2. Over time:
  - Markups increase more for higher percentiles (De Loecker, Eeckout and Unger 2020).
  - Labor share in large firms falls over time (Autor et al 2020).

Model 00000000000 Firm Reorganization

Macro implications

Conclusion

Appendix 00000000

# Markups in calibration

Consistent with De Loecker, Eeckout and Unger (2020)

|     | DEU    |      |          | Calibration |      |          |  |                   |      |
|-----|--------|------|----------|-------------|------|----------|--|-------------------|------|
|     | Markup |      |          | Markup      |      |          |  | Elasticity, $ ho$ |      |
|     | 1980   | 2014 | % Change | 1980        | 2015 | % Change |  | 1980              | 2015 |
| Min |        |      |          | 1.33        | 1.4  | 5.00     |  | 3.81              | 2.47 |
| P50 | 1.2    | 1.2  | 0.00     | 1.33        | 1.48 | 10.84    |  | 3.97              | 3.04 |
| P75 | 1.28   | 1.50 | 17.18    | 1.34        | 1.51 | 12.67    |  | 3.94              | 3.15 |
| P90 | 1.5    | 2.5  | 66.66    | 1.35        | 1.54 | 14.44    |  | 3.95              | 3.26 |
| Max |        |      |          | 1.36        | 1.68 | 23.81    |  | 4.01              | 3.5  |

Model 000000000000 Firm Reorganization

Macro implications

Conclusion

Appendix 00000000

## Calibrated moments

| Moment                                      | Model | Data | Data Source                     |
|---------------------------------------------|-------|------|---------------------------------|
| Labor share of VA, top firms' average, 1980 | 0.52  | 0.51 | ADKPV                           |
| Labor share of VA, top firms' average, 2015 | 0.43  | 0.43 | ADKPV                           |
| Slope(log(Markup),log(TFP)), 1980           | 0.37  | 0.3  | De Loecker and Warzynski (2012) |
| Slope(log(Markup),log(TFP)), 2015           | 3.76  | 3    | Imputed                         |
| Slope(log(FC),log(VA))                      | 0.07  | 0.02 | Raval (2019)                    |
| P75/P25 of factor cost distribution         | 1.20  | 2.1  | Raval (2019)                    |
| Labor share of cost, average                | 0.73  | 0.7  | Imputed                         |
| Slope(log(Capital-labor ratio),log(VA))     | 0.07  | 0.15 | Raval (2010)                    |
| Employment share by firm size (7 bins)      |       | 0.76 | BLS                             |

Model 000000000000 Firm Reorganization

Macro implications

Conclusion

Appendix 000000000

# **Untargeted Moments**

| Moment                                                         | Model  | Data   | Data Source               |
|----------------------------------------------------------------|--------|--------|---------------------------|
| Panel A.Aggregate moments                                      |        |        |                           |
| Revenue concentration, CR4 % change                            | 28     | 10.25  | ADKPV                     |
| Slope(log(CR20),log(Aggregate labor share))                    | -0.43  | -0.9   | ADKPV                     |
| Aggregate labor share, % change                                | -10.06 | -28.69 | Kehrig and Vincent (2014) |
| Aggregate markup, % change                                     | 10.99  | 16.13  | DEU                       |
| Routine aggregate share of wage bill, % change                 | -0.21  | -30.36 | Eden and Gaggl (2018)     |
| Nonroutine aggregate share of wage bill, % change              | 16.32  | 10.83  | Eden and Gaggl (2018)     |
| Panel B. Firm-level moments                                    |        |        |                           |
| P50 Real wage, % change in firms with 100 to 1000 employees    | 4.86   | 31     | Song et al (2019)         |
| P50 Real wage, $\%$ change in firms with 10,000+ employees     | -2.81  | -7     | Song et al (2019)         |
| P75 Real wage, $\%$ change in firms with 10,000+ employees     | 17.29  | 64     | Song et al (2019)         |
| Highest real wage, $\%$ change in firms with 10,000+ employees | 12.02  | 137    | Song et al (2019)         |



Model ooooooooooo onclusion

Appendix 00000000

# Counterfactuals: IT vs Demand Elasticity

Λ/

| Table values relative to the baseline in %:                    |          |                   |
|----------------------------------------------------------------|----------|-------------------|
| Moment                                                         | IT Price | Demand Elasticity |
| Panel A. Targeted moments                                      |          |                   |
| Labor share of VA, top firms' average, 2015                    | 121      | 99                |
| Panel B. Untargeted moments: Aggregate                         |          |                   |
| Revenue concentration, CR4 % change                            | 14       | 94                |
| Slope(log(CR20),log(Aggregate labor share))                    | -11      | 106               |
| Aggregate labor share, % change                                | -2       | 100               |
| Routine aggregate share of wage bill, % change                 | 211      | -177              |
| Nonroutine aggregate share of wage bill, % change              | 211      | -177              |
| Panel C. Untargeted moments: Firm-level                        |          |                   |
| P50 Real wage, % change in firms with 100 to 1000 employees    | -74      | 174               |
| P50 Real wage, $\%$ change in firms with 10,000 $+$ employees  | 212      | -112              |
| P75 Real wage, $\%$ change in firms with 10,000 $+$ employees  | 43       | 71                |
| Highest real wage, $\%$ change in firms with 10,000+ employees | 42       | 49                |



Macro implicatio

Conclusion

Appendix 00000000

Sales reallocation with lower demand elasticity?

 $\varepsilon_{r,\rho} \equiv \frac{\partial \log(r)}{\partial \log(\rho)}$ 

|                        | Organization |       |              |  |  |  |
|------------------------|--------------|-------|--------------|--|--|--|
|                        | <i>L</i> = 2 | L = 3 | <i>L</i> = 4 |  |  |  |
| $\varepsilon_{r,\rho}$ | -5.7         | -4.4  | -3.5         |  |  |  |

Lesson: Reallocation of sales to large firms due to their larger decline in  $\rho$ .