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Abstract

We revisit the estimation of dynamic games with continuous control

variables, such as investments in R&D, quality, and capacity. We show

how to use the recursive characterization of Markov Perfect Equilibria to

develop estimators that exploit the structure of optimal policies. Our pre-

ferred estimator resembles an indirect inference estimator, albeit in a two-

step procedure that is common in the estimation of dynamic games. We

use Monte Carlo experiments based on an empirically-relevant model of

investment in R&D to compare the performance of that estimator with al-

ternatives. We find that our estimator outperforms the commonly-used

inequality estimator of Bajari, Benkard, and Levin (2007) and a non-linear

least squares estimator based on recursive equilibrium conditions.
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1 Introduction

Many questions of interest to Industrial Organization economists involve firm
choices that have persistent effects on market conditions. Such choices include
investments in research and development, the choice of productive capacity,
and the choice of product characteristics. Many other examples can be given.
Decisions of this type are inherently dynamic and are often taken in industries
with few firms. Therefore, their study necessitates the use of dynamic oligopoly
models. Furthermore, many of these choices, such as the ones above, are natu-
rally modeled as continuous variables.

This paper revisits the estimation of dynamic oligopoly models with contin-
uous controls. The estimation of such models was made feasible by the seminal
contribution of Bajari et al. (2007), henceforth BBL. Here we make the observa-
tion that the main estimator proposed by BBL does not use the full structure
of the model, in that it does not exploit the structure of equilibrium policies.
Exploiting this structure should lead to efficiency gains. We propose estima-
tors that do use the structure of equilibrium policies and conduct Monte Carlo
exercises that compare their performance to different implementations of BBL.

Our Monte Carlo exercises are based on Hashmi and van Biesebroeck (2016)
– henceforth HvB. HvB propose and estimate an equilibrium model of innova-
tion in the automobile industry. They are interested in the equilibrium relation-
ship between market structure and innovation. In their model, firms engage in
R&D – measured by firms’ patenting activity – to increase product quality. The
cost of R&D depends on the number of patents a firm files for and on an in-
vestment cost shock. We base our simulation exercises on the Hashmi and van
Biesebroeck (2016) model because it underpins an actual empirical application,
and thus accurately represents models used in practice.

The first step in our preferred estimation routine consists of estimating pol-
icy functions and state transitions from the data. This step is similar to BBL
and estimators of dynamic games with discrete controls, such as the ones pro-
posed by Aguirregabiria and Mira (2007), Pakes, Ostrovsky, and Berry (2007),
and Pesendorfer and Schmidt-Dengler (2008). We depart from BBL in the sec-
ond step. For a given guess of the structural parameters, we use the estimated
policy functions and state transitions to form and solve the maximization prob-
lem in the right-hand-side of firms’ Bellman equations. We do so at the states
observed in the data and randomly drawn investment cost shocks. We then
project these predicted investment levels onto a space spanned by basis func-

2



tions of state variables. Finally, we minimize a measure of the distance be-
tween the projections of predicted and observed investment levels onto that
space. Therefore, our estimator combines elements of the two-step estimators
that sprung from Hotz and Miller (1993) with Indirect Inference estimators à
la Gourieroux, Monfort, and Renault (1993). We refer to this estimator as the
Recursive Indirect Inference (Rec-II) estimator. We also consider a second es-
timator based on recursive equilibrium conditions. That estimator does not
apply the Indirect Inference step; rather, it minimizes a nonlinear least squares
objective. We refer to this estimator as the Recursive Nonliner Least Squares
(Rec-NLLS) estimator.

The intuition behind estimators based on recursive equilibrium conditions
is simple: under the maintained assumption that the estimated policies con-
stitute an equilibrium, solving the right-hand-side of firms’ Bellman equations
must return the same policy. This intuition underpins the Rec-II and Rec-NLLS
estimators.1

We find that the Rec-II estimator has desirable properties. In our Monte
Carlo exercise, its finite-sample bias is small and the estimator is precise. We
compare it to two implementations of BBL. The first one uses additive pertur-
bations to the estimated policy function. The second one uses multiplicative
deviations, and in HvB and recommended by Srisuma (2013). In contrast to
the Rec-II estimator, we find that both implementations of BBL have very sub-
stantial finite sample bias. In fact, the estimates are orders of magnitude away
from the true parameters. We relate these findings to the shape of the objective
functions that define each estimator. While our estimator’s objective function
attains its minimum close to the truth and has large curvature, we find the BBL
objective to be flat around the true parameters. We find that the Rec-NLLS esti-
mator performs reasonably well, but less so than the Rec-II estimator; it is also
more expensive to compute.

The Rec-II estimator enjoys at least one other benefit relative to BBL: it does
not require the econometrician to choose policy deviations. This is an advan-
tage, as the performance of the BBL estimator may very well depend on the
deviations chosen by the analyst and the literature provides little guidance on
how to choose deviations.2 This concern is substantiated by the different per-

1Other estimators could be considered. For instance, one could minimize the distance be-
tween estimated and predicted conditional expectations of investment. This would be the
continuous-control analog of the Pesendorfer and Schmidt-Dengler (2008) estimator. In results
not reported here we find that this estimator performs similarly to the Rec-NLLS estimator.

2As noted above, some guidance is provided by Srisuma (2013). He suggests that multiplicative
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formance of the two BBL alternatives we consider.
It would be remiss of us not to remind the reader that Bajari et al. (2007) do

propose a second estimator based on solving for firms’ optimal policies, though
in a way very different from what we propose in this paper. Nevertheless, the
empirical literature seems to have converged to using the estimator that BBL
discuss at greater length, based on value function inequalities. A number of
applications, including very recent ones, apply the inequality estimator. These
include Ryan (2012), Hashmi and van Biesebroeck (2016), Fowlie, Reguant, and
Ryan (2016), and Liu and Siebert (2022). An important paper that does use
firms’ first-order conditions to estimate a dynamic model is Jofre-Bonet and Pe-
sendorfer (2003). In a dynamic auction model, they show that firms’ first-order
conditions and the observed distribution of bids identify the distribution of
firms’ costs. We show that similar ideas extend to the estimation of parameters
determining firms’ flow profits. Although we consider a model in which firms
choose only investment, the ideas in this paper readily extend to models with
entry and exit.

The paper most closely related to our is Srisuma (2013). Srisuma also ob-
serves that the BBL inequalities may fail to identify the structural parameters
and proposes an estimator that makes use of agents’ optimization problems
in a two-step procedure. The main distinctions between our approach and
Srisuma’s are practical. Srisuma’s estimator is based on minimizing a distance
between the observed conditional distributions of agents’ actions and the one
implied by agents’ (pseudo) maximization problems. This has practical draw-
backs. The estimation of the implied distribution is done by simulation. A
precise estimator may require the solution of many (static) optimization prob-
lems – many more than what we have to solve. Moreover, the implied objective
is discontinuous in the structural parameters. These two features make the
estimator potentially costly and difficult to compute for the models that practi-
tioners take to data. Indeed, the Monte Carlo simulations in Srisuma (2013) are
based on simple static models.

We therefore view our contributions as threefold. First, we show how to im-
plement estimators based on recursive equilibrium conditions in an empirically
relevant setting, including shocks to firms’ marginal costs of investment. Sec-
ond, we show that these estimators can substantially outperform the commonly-
applied inequality-based estimator. Third, we compare the performance of dif-

deviations have more identifying power than additive ones. We implement both and find their
performance to be equally poor.
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ferent estimators based on recursive equilibrium conditions, including an ana-
log of an estimator known to perform well in dynamic discrete games, and find
support for an estimator based on Indirect Inference. That estimator is also
easily-adaptable to games with continuous and discrete decisions, such as en-
try and exit. Along the way we also show that one can do away with value
function simulation and can instead solve for these objects, thus eliminating
simulation error.

The rest of the paper is organized as follows. In section 2 we discuss the
Hashmi and van Biesebroeck (2016) model. In section 3 we discuss estimators
based on recursive equilibrium conditions. In section 4 we provide a brief re-
view of the main BBL estimator. In section 5 we discuss the results of our Monte
Carlo exercises. Finally, in section 6 we offer concluding remarks.

2 The Economic Model

We base our comparison of estimators on the model of innovation in the au-
tomobile industry of Hashmi and van Biesebroeck (2016). As in all dynamic
games following the Ericson and Pakes (1995) framework, there is a static part
to the model and a dynamic one. In the static part, firms play a Nash-Bertrand
pricing game, given demand and marginal cost functions. In the dynamic part,
firms invest in R&D. Investments in R&D affect the quality of firms’ products,
which in turn affects demand and production costs. There is no entry or exit.3

The timing of the model is as follows. Firms start the period with given qual-
ity levels. They simultaneously set prices, which determine the quantity sold
and flow profits. They then privately observe a shock to their investment cost.
Next, firms simultaneously decide how much to invest and pay the associated
costs. Firm investments affect the distribution of the quality of their products
in the beginning of the following period. Firms’ random quality levels realize
before the start of the new period.

We discuss the static and dynamic parts of the model in turn.

3Entry and exit are not observed in the Hashmi and van Biesebroeck (2016) data, which is why
those decisions are not included in their model. For our purposes, this simplifies the exposition
and allows us to focus on the continuous control, which is our main interest.
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2.1 Price Competition Given Demand and Costs

There are N single-product firms in the market, indexed by j = 1, 2, . . . , N .4

There is a measure M of consumers in the market, and consumers are indexed
by i. If consumer i buys firm j’s product, she obtains conditional indirect utility

uij = αpj + ξj + εij ,

where α is the marginal utility of income, pj is the price of good j, ξj is a quality
index and εij is a random shock that follows a Type 1 Extreme Value distribu-
tion. There is also an outside option, indexed by j = 0. Its non-random utility
is normalized to zero, ui0 = εi0.

As is well-known, this specification of utility yields the market share func-
tion

sj(p; ξ) =
exp(αpj + ξj)

1 +
∑

k exp(αpk + ξk)
, j = 1, . . . , N

where p = (p1, . . . , pN) and ξ = (ξ1, . . . , ξN). Prices are modeled as the outcome
of a Bertrand game. Firm j solves

max
pj

πj(pj;p−j, ξ) := (pj − µ(ξj))sj(p; ξ) ,

where µj(ξj) is firm j’s constant marginal cost of production, which depends
on its quality level, and firm j takes p−j = (p1, . . . , pj−1, pj+1, . . . , pN) as given.
The marginal cost function is specified as

µ(ξj) = exp(θc1 + θc2ξj) .

We know from Caplin and Nalebuff (1991) that this pricing game has a unique
equilibrium. Moreover, the equilibrium price vector, p∗(ξ) = (p∗1(ξ), . . . , p

∗
N(ξ)),

must satisfy the system of first-order conditions:

α(1− sj(p
∗; ξ))(p∗j − µj(ξj)) + 1 = 0, j = 1, . . . , J (1)

The equilibrium p∗(ξ) induces profits πj(ξ) := [p∗j(ξ)− µ(ξj)]sj(p
∗(ξ), ξ).

4Hashmi and van Biesebroeck (2016) estimate a demand model that accounts for the many
products sold by automakers. When setting up their dynamic game of innovation, they
(heuristically) aggregate that model to the firm level. This aggregation makes the dynamic
model tractable. Here, as our focus is on methods for estimating the dynamic parameters of
the model, we start from a model of single-product firms.
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2.2 Investment in R&D

2.2.1 Quality Transitions

Firms invest to affect the quality of their product in the next period. Firms’
qualities belong to the set Ξ = {ξmin, ξmin+δ, . . . , ξmax−δ, ξmax}. If ξmin < ξ < ξmax,
then ξ can decrease by δ, stay unchanged, or increase by δ. These transition
probabilities are parameterized as

P (ξ′|ξ, x) =



θt1[1− up(ξ, x)] if ξ′ = ξ − δ

1− θt1 − up(ξ, x)(1− 2θt1) if ξ′ = ξ

(1− θt1)up(ξ, x) if ξ′ = ξ + δ

0 otherwise

(2)

where
up(ξ, x) = e−e−θt2 log(x+1)−θt3ξ−θt4ξ

2

.

In the expressions above x denotes investment in R&D and θt = (θt1, θt2, θt3, θt4)

is a vector of parameters governing the transition probabilities. To respect the
finiteness of Ξ, we adjust these probabilities at the maximum and minimum
values of Ξ. When ξ = ξmin we set P (ξ|ξ, x) equal to the sum of the first two
cases in equation 2. When ξ = ξmax we set P (ξ|ξ, x) equal to the sum of the
second and third cases in equation 2.

The interpretation of this specification is that the quality of a product is sub-
ject to a positive and a negative shock. One can think of the negative shock
as capturing improvements in the outside option. The positive shock captures
successes in the R&D process. The negative shock occurs with probability θt1,
whereas the positive shock occurs with probability up(ξj, x). Quality falls when
the product’s quality experiences a negative shock without an offsetting posi-
tive shock. It grows when quality experiences a positive shock unmatched by
a negative shock. In all other cases, quality remains the same. Positive and
negative shocks are independent across firms, conditional on ξ and x.5

The probability of an improvement in the outside option is independent of
firms’ qualities and investments. The reasoning is that the outside option is
outside of the focal market, and the process driving its quality is unresponsive

5The independence of negative shocks across firms is at odds with its interpretation as captur-
ing improvements in the outside option. We make this assumption for two reasons. First, it
simplifies the exposition somewhat. Second, despite stating otherwise (p. 200), HvB seem to
treat the negative shocks as independent at times (see their discussion of simulation in p. 201).

7



to the conditions of the market being analyzed. The probability of an R&D suc-
cess, however, does depend on a firm’s investment and quality, but not on its
competitors’. In particular, if θt2 > 0 and θt3 < 0, the specification of up(ξj, x)
implies that the probability of success is increasing in own investment and de-
creasing in own quality. This last effect captures the notion that it is harder
to improve on a high-quality product. The sign of θt4 determines whether an
increase in quality reduces the probability of success at an increasing or de-
creasing rate.

2.2.2 The Firm’s Problem

Firms choose their investment to maximize their present-discounted stream of
profits. They trade-off better future prospects for the quality of their product
against the immediate cost of investment, c(x, ν). This cost depends on the level
of investment x and on a privately observed investment cost shock, ν. The cost
shock is assumed to be iid across firms and follows a standard normal distribu-
tion. We focus throughout on Markov Perfect Equilibria. Firms’ state variables
are the vector of qualities in the market, ξ, and their privately observed invest-
ment cost shock ν. Firm behaviour depends only on the state variables. Denote
firm j’s policy function by σj(ξ, ν) and let σ = (σ1, . . . , σN). Firm j’s problem
can then be recursively represented as

Vj(ξj, ξ−j, ν) = max
x∈R+

{
π(ξj, ξ−j)− c(x, ν) + βEσ−j

[
Vj(ξ

′
j, ξ

′
−j, ν

′|ξj, ξ−j, x)
]}

(3)

where

Eσ−j

[
Vj(ξ

′
j, ξ

′
−j, ν

′)|ξj, ξ−j, x
]
=

∑
ξ′j

∑
ξ′−j

∫
ν

Vj(ξ
′
j, ξ

′
−j, ν

′)dF (ν ′)P−j(ξ
′
−j|ξ;σ−j)Pj(ξ

′
j|ξj, x)

(4)
and

P−j(ξ
′
−j|ξ;σ−j) =

∏
k ̸=j

P (ξ′k|ξ;σk) =
∏
k ̸=j

∫
νk

P (ξ′k|ξk, σk(ξ, νk))dF (νk) . (5)

In this last expression, the terms P (ξ′k|ξk, σk(ξ, νk)) are derived from the quality
transition model discussed in section 2.2.1.
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We proceed as in Doraszelski and Pakes (2007). Define

EVj(ξ) :=

∫
νj

Vj(ξj, ξ−j, ν)dF (ν)

and
W (ξ′j|ξ;σ−j) :=

∑
ξ′−j

EV (ξ′j, ξ
′
−j)P−j(ξ

′
−j|ξ;σ−j) .

EV (ξ) is the expected present-discounted stream of profits when the vector of
qualities is ξ. The objectW (ξ′j|ξ;σ−j) is the expected value of landing on quality
ξ′j starting from the vector of qualities ξ. With these definitions we can write

Eσ−j

[
Vj(ξ

′
j, ξ

′
−j, ν

′)|ξj, ξ−j, x
]
=

∑
ξ′j

W (ξ′j|ξ;σ−j)Pj(ξ
′
j|ξj, x)

The first-order condition of the maximization problem on the right hand
side of the Bellman equation is then

∂c(x, ν)

∂x
= β

∑
ξ′j

W (ξ′j|ξ;σ−j)
∂Pj(ξ

′
j|ξj, x)
∂x

(6)

At the optimum level of investment, given ξ and ν, the firm equates the marginal
cost of investment to its marginal benefit. The marginal cost of investment is
an exogenous object. The marginal benefit of investment depends on how in-
vestment changes the distribution over quality levels in the following period.
It also depends on the value of starting the following period with different lev-
els of quality, ξ′j . Moreover, these future values take into account the current
quality-state. For instance, the gain in present-discounted profits from an in-
crease in quality may be smaller if a firm’s competitors all have substantially
lower quality, relative to a case in which their qualities are similar to the focal
firm’s.

It is worth noting for future reference that condition 6 can also be written as

∂c(x, ν)

∂x
= β

∂up(ξj, x)
∂x

×∆W (ξ;σ−j) (7)

where ∆W (ξ;σ−j) is given by

(1− θt1)[W (ξj + δ|ξ;σ−j)−W (ξj|ξ;σ−j)] + θt1[W (ξj|ξ;σ−j)−W (ξj − δ|ξ;σ−j)] .
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Fix a ξ and suppose that there exists ν such that σ(ξ, ν) > 0. Assume further
that ∂xc(x, ν) > 0 for all (x, ν).6 Because σ(ξ, ν) > 0, the first-order condition
must hold with equality – i.e., equation 7 must hold. Therefore, it must be the
case that ∆W (ξ;σ−j) > 0. This has two implications. First, this condition is a
restriction on the equilibrium value function and by itself provides restrictions
on the structural parameters. Second, this implies that the firm’s problem is
globally concave at that ξ for all ν. We will return to these observations when
we discuss our estimator.

In our numerical exercise, we parameterize the investment cost function as

c(x, ν) = θx1x+ θx2x
2 + θx3νx .

This is as in HvB, except that they also include a cubic term.

2.3 Equilibrium and Computation

We focus on symmetric Markov Perfect Equilibria, i.e., σj(ξ, ν) = σ(ξ, ν) for
j = 1, . . . , N . As shown by equations (4) and (5), the expectation in the Bell-
man equation (3) depends on σ(·, ·). Therefore, one can think of equation (3)
as defining an operator that maps policy and value functions into themselves:
T : Σ × V → Σ × V , where Σ denotes the set of feasible policy functions and V
the set of feasible value functions. This operators returns a firm’s best-response
to its competitors all playing a given strategy σ (given V ). A strategy profile
(σ, . . . , σ) is a symmetric Markov Perfect Equilibrium if and only if (σ, Vσ) is a
fixed-point of T , where Vσ is the expected present-discounted stream of profits
when all firms play the strategy σ.

This representation underpins the method we employ to solve for Markov
Perfect Equilibria. We start with a guess for value and policy functions. With
the policy functions we can compute the implied transition probabilities for
firms’ qualities. Having transition probabilities and the guess for the value
function, we can compute the terms W (ξ′j|ξ;σ−j). This allows us to solve firms’
first-order conditions, which yields new guesses for policy and value functions.
We iterate on these steps until both value and policy functions converge. This
is, of course, simply the Pakes and McGuire (1994) algorithm. As in Pakes and
McGuire (1994), note that the symmetry assumption implies that the state ξ =

6This fails to hold in our specification due to the full support of ν. However, in our parameteri-
zation the probability that this condition fails is small. We retain the normality assumption for
convenience.
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(ξj, ξ−j) is equivalent to ξ = (ξj, π(ξ−j)) for any permutation π of competitors’
qualities. Therefore, we need not compute value and policy functions at each ξ,
but only at a member of the equivalence class. In particular, we retain only ξ’s
such that competitors’ qualities are increasing in their index, i.e., ξ2 ≤ . . . ≤ ξN .
As shown in Pakes and McGuire (1994), this implies that the state space grows
in the number of firms not exponentially, but rather as a polynomial of order
|Ξ|. In our numerical examples below, this reduces the cardinality of the state
space from just under 760,000 to 45,900.7

3 Estimators Based on Recursive Equilibrium Con-

ditions

In this section we discuss estimators based on the Bellman Equation (3). Firstly,
by exploiting (3), these estimators make use of the structure of optimal policy
functions, i.e., the fact that optimal policy functions must solve the right-hand
side of the Bellman equation. The algorithm proposed in BBL does not make
use of this feature. Secondly, the estimators we propose free the researcher from
having to commit to a choice of policy deviations, which in practice affect the
performance of the BBL estimator. Our estimator will therefore have economet-
ric and practical advantages relative to BBL.8

Suppose that we have estimates of the ex-ante value function EV (ξ; θ) :=∫
V (ξ, ν;σ, σ, θ)dF (ν). Denote these estimates by ÊV (ξ; θ). These estimates

could be obtained by forward simulation, as in Bajari et al. (2007). We dis-
cuss an alternative below, but for now let us focus on the main point of differ-

7One can alternatively view equation 3 as an operator T̃ : Σ → Σ defined in two steps. First,
compute the value function implied by σ, i.e.,

V (ξ, ν;σ) = π(ξ)− c(σ(ξ, ν), ν) + βEσ [V (ξ′, ν′)|ξ,σ(ξ, ν)] .

Next, solve the right-hand-side of equation 3 to obtain T̃ σ. A symmetric strategy profile
(σ, . . . , σ) is a symmetric MPE if and only if it is a fixed point of T̃ . One can thus solve for
an MPE by iterating on these two steps.

8Another important point of comparison is computational cost. As will become clear as we
discuss our estimator, there is a trade-off. On the one hand, estimator requires simulating
or solving for value functions only once, whereas the Bajari et al. (2007) estimator requires
doing so for all pairs (σ′, σ) that enter the objective function. On the other hand, our estimator
requires solving at least as many static optimization problems as observations in the data. In
the Monte Carlo experiments we perform in section 5 this computational trade-off is resolved
in BBL’s favor. The runtimes reported in table 3 are not entirely comparable, though. Our
BBL implementation fully exploits the parallelism of the estimation problem. Our current
implementation of the recursive estimators does not; doing so is work in progress.
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ence between our estimator and BBL. Suppose that we also have estimates of
P (ξ′j | ξj, x) and P(ξ′j | ξ) =

∫
P (ξ′j | ξj, σ(ξ, ν))dF (ν). Let Φ̂ := (ÊV (θ), P̂ , P̂)

Using Φ̂, we can setup and solve the right-hand side of the Bellman Equation
(3):

max
x∈R+

{
π(ξj, ξ−j)− c(x, ν; θ) + βEP̂ ,P̂

[
ÊV (ξ′j, ξ

′
−j; θ)|ξj, ξ−j, x

]}
. (8)

Solving problem (8) at some (ξ, ν) yields a new predicted level of investment
at that state, which depends on the parameters θ. We denote these predicted
investment levels by Tθ(ξ, ν; Φ̂).

We can consider different estimators of θ that use the predicted levels of
investment Tθ(ξ, ν; Φ̂). Our preferred approach is akin to indirect inference. We
estimate E[σ(ξ, ν) | ξ] by projecting observed levels of investment onto a set of
basis functions {Ψk}Bk=1:

xi =
B∑

k=1

γkΨk(ξi) + ηi (9)

Let γ̂ :=
[
γ̂1, . . . , γ̂B, Ŝη

]
, where Ŝη = (N − B)−1

∑N
i=1(xi −

∑B
k=1 γ̂kΨk(ξi))

is an estimate of the standard deviation of ηi. We solve the problem (8) for
each ξ observed in the data and a randomly drawn ν ∼ N(0, 1), which yields
{Tθ(ξi, νi; Φ̂)}Ni=1.9 Next, we estimate

Tθ(ξi, νi; Φ̂) =
B∑

k=1

λkΨk(ξi) + ζi , (10)

which yields λ̂(θ; Φ̂) :=
[
λ̂1(θ; Φ̂), . . . , λ̂B(θ; Φ̂), Ŝζ(θ; Φ̂)

]
. Finally, for some positive-

definite weight matrix W , we define our estimator to be10

θ̂II := argmin
θ

Q(θ;W , Φ̂) =
[
λ̂(θ; Φ̂)− γ̂

]′
W

[
λ̂(θ; Φ̂)− γ̂

]
. (11)

We refer to this estimator as the Recursive Indirect Inference estimator, or Rec-II
for short.

The intuition for the estimator above is the following.11 If the policy ob-
served in the data, σ̂, is a Markov Perfect Equilibrium, it must satisfy the re-

9We can also consider multiple draws of ν per observation, which can potentially increase the
precision of the estimator.

10As always, having the analytical gradient of the objective (11) significantly accelerates the
calculation of the optimum. In appendix B we perform the relevant calculations.

11As discussed in the introduction, this intuition underpins not only the Rec-II estimator but all
estimators based on the recursive equilibrium conditions.
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cursive equilibrium conditions (3). Therefore, if we solve the right-hand side
of the Bellman Equation using transitions and value functions implied by σ̂,
we must obtain σ̂ back. One could try to estimate the structural parameters by
matching Tθ(·; Φ̂) and σ̂. Srisuma (2013) proposes matching the conditional dis-
tribution of investment observed in the data and that implied by Tθ(·; Φ̂), which
is a closely related idea. Unfortunately, computing the conditional distribution
of investment implied by Tθ(·; Φ̂) is computationally very costly. We instead
match features of those distributions. We find that the resulting estimators are
sufficiently cheap to compute and perform better than existing alternatives.

One could use the predicted levels of investment Tθ(ξ, ν; Φ̂) in other ways.
For instance, one can consider a nonlinear least squares estimator:12

θ̂NLLS := argmin
θ

N∑
i=1

(
xi − Eν [Tθ(ξi, ν; Φ̂) | ξ]

)2

(12)

where we compute Eν [Tθ(ξi, ν; Φ̂) | ξ] by quadrature. Yet another alternative
would be to minimize a distance between the estimated expectation of invest-
ment conditional on ξ and its model-predicted equivalent. That would amount
to substituting the fitted values of equation (9) for the xi in equation (12). This is
be the continuous-control analog of Pesendorfer and Schmidt-Dengler (2008).

Our preferred estimator is θ̂II . There are two reasons for that. First, it
is computationally cheaper than θ̂NLLS , as it requires only one evaluation of
Tθ(ξi, νi; Φ̂) – i.e., the numerical solution of a static maximization problem – per
observation, rather than as many evaluations as quadrature nodes. Second, θ̂II
is readily-adaptable to models with entry and exit decisions. In such models, in
addition to (9), we would estimate descriptive models for the entry and exit de-
cisions. We would then compute optimal entry-exit decisions implied by struc-
tural parameters θ and re-run the aforementioned models using the simulated
decisions as the dependent variable. Finally, we would estimate our structural
parameters combining the estimates of (9) and the estimates of the descriptive
entry-exit models.

3.1 Estimating EV

Let EV (ξ) =
∫
V (ξ, ν)dF (ν) denote the ex-ante value function and let EV =

[EV (ξ1), . . . , EV (ξ|Ξ|)] be a vector stacking the value function at each state in

12We thank Dennis Kristensen for the suggestion.
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the state space.13 We show in appendix A that EV satisfies 14

EV = W (π, σ)[1,−θ′
x]

′ + βM (P )EV (13)

or
EV (σ,P ;π, β,θx) = [I − βM (P )]−1W (π, σ)[1,−θ′

x]
′ , (14)

where the ξ-th row of W (π, σ), which we denote W (ξ;π, σ), is a vector of the
expected flow-profit covariates at state ξ and M (P ) is the transition matrix
implied by the policy function σ. Specifically,

W (ξ;π, σ) =
[
π(ξ) E[σ(ξ, ν)|ξ] E[σ(ξ, ν)2|ξ] E[σ(ξ, ν)ν|ξ]

]
, (15)

and

M(P ) =


P(ξ1|ξ1) . . . P(ξ|Ξ||ξ1)

... . . . ...
P(ξ1|ξ|Ξ|) . . . P(ξ|Ξ||ξ|Ξ|)

 (16)

where

P(ξ′|ξ) =
N∏
j=1

P(ξ′j | ξ) =
N∏
j=1

∫
P(ξ′j | ξj, σ(ξ, ν))dF (ν) . (17)

Observe that although we write W (π, σ), W does not depend on the policy
function per se, but only on conditional expectations of functions of investment
and the covariance between the policy function and the investment cost shock.

Equations (14) to (17) imply that we can estimate EV by estimating the con-
ditional expectations in (15) and P(ξ′j | ξ). The objects E[σ(ξ, ν) | ξ], E[σ(ξ, ν)2 |
ξ], and P (ξ′j | ξ) are readily identified from the data. The BBL argument for
identification of the policy function implies, in the case in which σ(ξ, ν) is de-
creasing in ν, that

σ(ξ, ν) = F−1
X (1− Φ(ν) | ξ) , (18)

where FX(x | ξ) is the distribution of investment conditional on ξ, which is
identified, and Φ is the standard normal cumulative distribution function. That
is, the policy function is identified as the quantiles of the conditional distribu-
tion of investment. Using this, E[σ(ξ, ν)ν | ξ] can be approximated by Gauss
Hermite quadrature as π−1/2

∑N
i=1 ωiF

−1
X (1 − Φ(

√
2νi) | ξ)

√
2νi, for judiciously

chosen weights ωi and nodes νi. Therefore, all that is needed to estimate E[σ(ξ, ν)ν |
13More precisely, at each element of the set of equivalence classes induced by the symmetry

restrictions.
14Related calculations appear e.g. in Jofre-Bonet and Pesendorfer (2003).
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ξ] is identified in the data. Note however that in principle the above argument
requires estimating investment quantiles at each element of ξ – a daunting task
if many such elements are seldom observed. As an alternative, we propose ap-
proximating F−1

X (1−Φ(x) | ξ) by quantile regression of investment on features
of ξ.

4 A Brief Review of BBL

In this section we briefly review the main estimator proposed by Bajari et al.
(2007), which is the main point of comparison for the estimator we propose in
Section 3.

The expected present-discounted stream of profits of a firm when it plays a
strategy σj and all its competitors play the strategy σ is given by

V (ξ, ν;σj, σ) = E

{
∞∑
t=0

βt [π(ξjt, ξ−j,t)− c(σj(ξt, νjt), νjt)]

∣∣∣∣ξ0 = ξ, νj0 = ν

}

where, letting P (ξ, x) denote the probability mass function defined in Equation
(2), ξj,t+1 ∼ P (ξj,t, σj(ξt, νjt)) and for k ̸= j, ξk,t+1 ∼ P (ξk,t, σ(ξt, νkt)).

By definition, a symmetric strategy profile (σ, . . . , σ) is a Markov Perfect
Equilibrium if

V (ξ, ν;σ, σ) ≥ V (ξ, ν;σ′, σ) ∀ ξ, ν, σ′ (19)

Bajari et al. (2007) base their estimator on the equilibrium conditions (19). De-
fine

g(ξ, ν, σ′;σ, θ) := V (ξ, ν;σ, σ, θ)− V (ξ, ν;σ′, σ, θ)

where we have made the dependence on the structural parameters θ explicit.
Let H be a distribution over the space of tuples of the form (ξ, ν, σ′). Define

Q(θ, σ) :=

∫ (
min

{
g(ξ, ν, σ′;σ, θ), 0

})2

dH(ξ, ν, σ′) (20)

Let E(θ) be the set of MPE when the parameters of the model are given by
θ and let θ0 denote the true parameter value. If σ ∈ E(θ0), the equilibrium
conditions above imply that Q(θ0, σ) = 0.

Assumption 1 (ID). For any θ, θ′ ∈ Θ, E(θ) ∩ E(θ′) = ∅.

If assumption 1 holds, σ ∈ E(θ0), θ′ ̸= θ0, and H is chosen judiciously, then
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Q(θ′, σ) > 0: assumption 1 implies that σ /∈ E(θ′), so that g(ξ, ν, σ′;σ, θ′) < 0 for
some (ξ, ν, σ′, σ).15

Bajari et al. (2007) propose estimating the structural parameters of the model
by minimizing a sample analog of (20). In particular, for some set of (ξ, ν, σ′)

tuples, indexed by i = 1, . . . , nI , they propose minimizing

Q̂(θ, σ̂) :=
1

nI

nI∑
i=1

(
min

{
g(ξi, νi, σ

′
i; σ̂, θ), 0

})2

where σ̂ is the strategy profile estimated in a first step. Evaluating this objec-
tive requires estimates of the value function V under the estimated policies and
under the deviations. Bajari et al. (2007) propose obtaining these estimates by
forward simulation. As they note, linearity of flow profits significantly reduces
the computational burden of forward simulation. Linearity implies that there
exists a function Λ(ξ, ν;σ′, σ) such that V (ξ, ν;σ′, σ, θ) = Λ(ξ, ν;σ′, σ)θ. There-
fore, the forward simulation needs to be performed only once for each pair
(σ′, σ) to obtain Λ(ξ, ν;σ′, σ). Linearity of flow profits does apply to the Hashmi
and van Biesebroeck (2016) model.

5 Monte Carlo Simulations

We now discuss the performance of the estimators discussed in Sections 3 and
4 for the model presented in Section 2.16 We consider a rather data-rich en-
vironment, with data from 100 separate markets recorded for 40 periods. 5
firms compete in each market.17 Firms have marginal cost parameters θc1 =

2.47, θc2 = 0 – i.e. constant marginal cost mc = exp(2.47); unobserved product
quality goes from -1.4 to 1.4 in increments of .2. There is a substantial probabil-

15To be more precise, we require that g(ξ, ν, σ′;σ, θ′) < 0 on a set of positive H-measure for
all θ′ ̸= θ0. We can attach this condition to our definition of MPE. Given a measure µ on
the set of tuples (ξ, ν, σ′), say that (σ, . . . , σ) is a symmetric MPE if g(ξ, ν, σ′;σ, θ0) < 0 with
zero µ-measure. Then choose H such that µ is absolutely continuous with respect to H . If
θ′ ̸= θ0, assumption 1 implies that g(ξ, ν, σ′;σ, θ′) < 0 with positive µ-measure. This implies
that g(ξ, ν, σ′;σ, θ′) < 0 with positive H-measure, otherwise absolute continuity of µ with
respect to H would be violated.

16While we eventually intend to consider multiple parameterisations of the model, for the mo-
ment we only discuss one such parameterisation.

17For comparison, Hashmi and van Biesebroeck (2016) aggregate data to have a single market
with 14 firms for the 1982-2006 period. Ryan (2012) collected a total of 517 market-year pairs
(an unbalanced panel of 27 markets over 19 years), with the number of firms in a market-year
ranging from 1 to 20. We repeat the estimator comparison for a data structure akin to the one
in Ryan (2012) in Appendix C.
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ity of quality downgrade shocks (θt1 = 0.547), and the probability of a quality
upgrading shock is increasing in own investment (θt2 = 0.062) but decreasing
(at a decreasing rate) in own quality level (θt3, θt4 < 0). Investment costs are
convex (θx1, θx2 > 0) in investment and increasing in the ‘shock’ term (θx3 > 0).
We outline all parameters in Table 1.

We compare the performance of four estimators:

1. The II estimator proposed in Section 3, Equation 11;

2. A BBL estimator that uses multiplicative shifts of the candidate policy
function to compute deviations: σ′(ξ, ν) = ισ(ξ, ν) for ι ∈ {.90, .95, 1.05, 1.10}
(Hashmi and van Biesebroeck (2016)’s estimator);

3. A BBL estimator computing σ′(ξ, ν) =
∑B

k=1 γ̃kΨk(ξi), where γ̃ ∼ N(γ̂, Σ̂γ)

and γ̂, Σ̂γ are estimated from the data (BBL estimator);

4. The NLLS estimator defined in Equation 12.

Table 2 describes the performance of the four estimators. It lists true param-
eter values, along with estimate average and confidence intervals for the four
estimators over 125 simulations.
Because the BBL and HvB estimators are defined by inequalities, it is in princi-
ple possible for them to return parameter interval estimates rather than point
estimates.18 We allow for this possibility and present average lower and upper
bound for each estimated set.19 In practice, we find these estimators always re-
turn point estimates.
In order to present confidence intervals that are sensible for both point- and set-
identified parameters, we display the shortest intervals containing 95 percent of
estimated intervals/points, as defined for example in Manski and Tamer (2002).

Of the four estimators, the II estimator evidently performs the best: averages
are close to the true parameters, with small confidence intervals. BBL estima-
tors and the NLLS estimator display substantial bias and very large confidence
18Aguirregabiria, Collard-Wexler, and Ryan (2021): “[. . . ] in most applications of the BBL

method, the relatively small set of alternative CCPs selected by the researcher does not pro-
vide enough moment inequalities to achieve point identification such that the BBL method
provides set estimation of the structural parameters.”

19Because each inequality are linear in θ, the entire list of inequalities defines a polyhedron. We
first check whether such polyhedron is non-empty. If it is not, we compute parameter sets
as the projections of the polyhedron on each parameter’s axis. If it is, we minimise the BBL
objective.
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Table 1: Exercise Parameters

Parameter Value

Data Structure
Number of Firms 5
Number of Markets 100
Number of Periods 40
Number of Households 1.00E+08
Model
State Space -1.4:0.2:1.4
Discount Factor 0.925
Marginal Utility of Income -0.222
Marginal Cost Parameters [2.47 0.0]
Investment Cost Parameters [2.625 1.624 0.5096]
Transition Probability Parameters [0.547 0.072 -0.884 -0.285]
II Estimator
Number of II Simulations 5
BBL Estimators
BBL: Number of Inequalities 1000
BBL: Number of Simulated Paths 500
BBL: Simulation Horizon 80
BBL: Vector of Scalar Deviations [0.9 0.95 1.05 1.1]

This table reports parameters used in our Monte Carlo exercise. The parameters labeled BBL
relate to our implementation of the BBL estimator. Number of inequalities is the number of
equilibrium conditions included in the BBL objective. Number of simulated paths is the num-
ber of paths used in estimating value functions via simulation. Simulation horizon is how far
the paths are simulated. The vector of scalar deviations defines the HvB deviations discussed
in the text. The following set of parameters relate to the HvB model discussed above. Number
of II simulations is the number of ν draws per observation in the data used in the II estimator.
The number of markets and periods pertain to the size of the dataset used in the Monte Carlo
simulations. State space is the set of possible qualities for a firm; the notation −1.4 : 0.2 : 1.4
indicates that quality can be as low as -1.4 and as high as 1.4, growing in increments of 0.2.
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intervals. Figures 1, 2, 3, and 4 present the distribution of parameter estimates
for each algorithm; vertical dotted lines represent true parameter values. II esti-
mates are correctly centered around the true values, displaying minor bias and
little skewness in the distribution of the estimates. On the other hand, HvB and
BBL estimators are centered around wrong values, displaying a bias that can be
orders of magnitude larger than the parameter to be estimated. The finite sam-
ple bias of the NLLS estimator is smaller than that of the BBL implementations,
but it is still substantial compared to that of the II estimator. It is interesting to
note that all estimators but II present substantial skewness in the estimates of
θx3, in our experience the more complicated parameter to pin down.

Table 2: Summary of Parameter Estimates

Value II BBL HvB NLLS

θx1 2.625 2.533 [38.589, 38.589] [0.0, 0.0] 3.007
(1.944, 3.197) (0.0, 119.943) (0.0, 0.0) (1.659, 5.451)

θx2 1.624 1.642 [46.225, 46.225] [3.613, 3.613] 1.538
(1.143, 2.18) (0.0, 72.004) (2.274, 4.769) (0.713, 2.33)

θx3 0.5096 0.503 [4.858, 4.858] [2.926, 2.926] 1.214
(0.379, 0.609) (0.0, 17.633) (0.0, 15.06) (0.0, 3.784)

This table summarizes the results of our Monte Carlo experiment. The first column shows the
value of the parameters of the investment cost function in the data generating process. Each
subsequent column shows the mean and shortest 95% interval for estimates across Monte Carlo
replications. The column labeled “II” shows the results of the estimator we propose in this pa-
per. The column labeled “BBL” shows the results of the BBL estimator with random deviations.
The column labeled “HvB” shows the results of the BBL estimator with HvB deviations. The
column labeled “NLLS” shows the results of the estimator defined by the program ??.
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Figure 1: II Estimator Parameter Estimates

This figure plots the distribution of parameter estimates obtained using the indirect inference
estimator defined in Equation 11 over 125 Monte Carlo replications. The vertical dashed red
line indicates the value of the corresponding parameter in the data generating process.

Figure 2: HvB Estimator Parameter Estimates

This figure plots the distribution of parameter estimates obtained using the BBL estimator with
HvB deviations over 125 Monte Carlo replications. The vertical dashed red line indicates the
value of the corresponding parameter in the data generating process.
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Figure 3: BBL Estimator Parameter Estimates

This figure plots the distribution of parameter estimates obtained using the BBL estimator with
random deviations over 125 Monte Carlo replications. The vertical dashed red line indicates
the value of the corresponding parameter in the data generating process.

Figure 4: NLLS Parameter Estimates

This figure plots the distribution of parameter estimates obtained using the estimator defined
by the problem ?? over 125 Monte Carlo replications. The vertical dashed red line indicates the
value of the corresponding parameter in the data generating process.
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The relative performance of the different estimators is a consequence of
the differences in the objective functions that define them. We illustrate this
by analysing the shape of each objective function in a neighbourhood of the
true parameters for a particular simulated dataset. To do so, we plot two-
dimensional slices of the objective function by varying one parameter at a time
while holding the others fixed at their true values. To render the shape of dif-
ferent objective functions comparable, we normalise objective values on the pa-
rameter grid by dividing each by the objective value at the true parameter.
Figures 5 to 8 display the results. Vertical lines represent true parameter values.

Figure 5 shows that the objective function of the II estimator features pro-
nounced local convexity around each true parameter, with minimal distance
between the local objective minimum and the objective value at the true pa-
rameter. This is reflected in the good performance of the estimator. The picture
is very different for the HvB and BBL estimators: they are approximately flat
around the true parameter, and zooming in reveals that they display no con-
vexity at all for the considered grid – they are almost linear around the correct
parameter values. This is consistent with the large bias displayed in Figures
2 and 3: the objective is convex around parameter values that are wrong by
orders of magnitude.

Finally, objective plots for the NLLS estimator are informative about its im-
precision. Objective function minima are not far from the minima at the true pa-
rameter value (lower bias) for θx1, θx2, but the NLLS objective function is much
less convex around local minima than the II objective function is. On the other
hand, the objective function is evidently not centered around the true param-
eter objective value for θx3, which again speaks to the complications arising in
precisely estimating the parameter.
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Figure 5: II Estimator Objective

This figure plots the value of the II estimator objective function varying one parameter at a
time while holding the other two parameters fixed at their true values. Values are scaled by the
value of the objective at the true parameters.

Figure 6: HvB Estimator Objective

This figure plots the value of the objective function of the BBL estimator with HvB deviations
varying one parameter at a time while holding the other two parameters fixed at their true
values. Values are scaled by the value of the objective at the true parameters.
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Figure 7: BBL Estimator Objective

This figure plots the value of the objective function of the BBL estimator with random devi-
ations varying one parameter at a time while holding the other two parameters fixed at their
true values. Values are scaled by the value of the objective at the true parameters.

Figure 8: NLLS Estimator Objective

This figure plots the value of the objective function of the estimator defined by program ??
varying one parameter at a time while holding the other two parameters fixed at their true
values. Values are scaled by the value of the objective at the true parameters.
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Table 3: Exercise Timings

Call Average Time Average Allocation

Overall
Preliminaries 30.7s 36.8GiB
Simulation 124ms 26.2MiB
Step 1: Estimating Transition Parameters 132ms 2.66MiB
Computing EVF Covariates 196ms 4.43MiB
Computing Projection Objects 19.1ms 21.3MiB
Step 2: II Estimator 55.9s 23.4GiB
Step 2: NLLS Estimator 226s 86.3GiB
Step 2: BBL Policy Covariates 15.1ms 14.4MiB
Step 2: BBL Estimator 1.69s 15.3MiB

Simulation 1.63s 2.60MiB
Optimisation 57.5ms 12.7MiB

Step 2: HvB Estimator 1.59s 12.5MiB
Simulation 1.58s 1.82MiB
Optimisation 10.7ms 10.6MiB

This table reports the computation time and memory allocation associated with each step in the
computation of the four estimators discussed above. Note that the memory allocation reported
here is not the amount of memory required to compute these estimators, but rather the total
size of objects that are written to memory throughout the course of estimation. “Preliminaries”
include the calculation of descriptors of flow profits, objects describing the state space of the
game, and solving for a MPE. “Simulation” is the simulation of the data. “Computing EVF
Covariates” refers to the calculation of EV (·) in Equation (14). “Computing Projection Objects”
refers to the calculation of objects used in the implementation of the II estimator that need to be
computed only once. The other items refer to the different estimators.

We conclude this section with an overview of the computational costs of
each estimator. Table 3 displays run time and memory allocation for the dif-
ferent steps of our simulation, averaged over 125 runs.20 As expected Step 1 –
shared by all the algorithms considered – is fast, as it only entails estimating
transition parameters by maximum likelihood and policy function parameters
by linear regression.

On the other hand, there is substantial variation in the time and memory
costs of various Step 2 algorithms. BBL-type estimators are the fastest, with
both the HvB and BBL estimator taking less than 2 seconds between simula-

20‘Preliminaries’ are objects that only need to be computed once to set up multiple simulations.
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tion and optimisation.21 The II estimator is substantially slower: taking ap-
proximately 56s to return an estimate. Estimation time will be increasing in
the number of datasets generated for indirect inference, which we set to 5. Fi-
nally, the NLLS estimator takes the most time of all, clocking at approximately
4 minutes (with very substantial dispersion, not documented in the table). The
reason for this substantial cost is that evaluation of its objective and gradient
requires solving a large number of static optimisation problems, whereas the
gradient of the II estimator is readily computed analytically (see Appendix B).

6 Conclusion

We have revisited the estimation of dynamic games with continuous controls.
We note that the commonly applied inequality estimator of Bajari et al. (2007)
does not fully exploit the structure of optimal policies and propose an estima-
tor that does so. Our estimator combines two-step methods that are common
in the estimation of dynamic models with indirect inference ideas. We conduct
a Monte Carlo experiment based on an empirically-relevant model and find
that the estimator we propose significantly outperforms available alternatives
in terms of precision. Bajari et al. (2007) themselves propose an estimator that
does use the structure of optimal policies. However, the empirical literature has
converged to applying exclusively their inequality estimator. We hope that by
providing clear implementation details and documenting the substantial ad-
vantages of fully exploiting the structure of the model, our contribution will
steer the literature towards doing so whenever feasible.

21In earlier drafts, we had found BBL-type estimators to be much slower. Substantial code
optimization exponentially cut computation time.
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Appendices

Appendix A Characterizing EV

This section derives equation (14). We start from equations (3) to (5), repeated
here for the reader’s convenience:

Vj(ξj, ξ−j, ν) = max
x∈R+

{
π(ξj, ξ−j)− c(x, ν) + βEσ−j

[
Vj(ξ

′
j, ξ

′
−j, ν

′|ξj, ξ−j, x)
]}

(3)

where

Eσ−j

[
Vj(ξ

′
j, ξ

′
−j, ν

′)|ξj, ξ−j, x
]
=

∑
ξ′j

∑
ξ′−j

∫
ν

Vj(ξ
′
j, ξ

′
−j, ν

′)dF (ν ′)P−j(ξ
′
−j|ξ;σ−j)Pj(ξ

′
j|ξj, x)

(4)
and

P−j(ξ
′
−j|ξ;σ−j) =

∏
k ̸=j

P (ξ′k|ξ;σk) =
∏
k ̸=j

∫
νk

P (ξ′k|ξk, σk(ξ, νk))dF (νk) . (5)

Plugging in the equilibrium policy into the right-hand side of (3) and using
(4), (5), and the definition of EV (ξ), we have

V (ξ, ν) = π(ξ)− c(σ(ξ, ν);θx) + β
∑
ξ′

EV (ξ′)
∏
k ̸=j

P(ξ′k|ξ)P(ξ′j | ξj, σ(ξ, ν)) .

Integrating both sides of this equation yields

EV (ξ) = π(ξ)−
∫
c(σ(ξ, ν);θx)dF (ν) + β

∑
ξ′

EV (ξ′)
∏
k ̸=j

P(ξ′k|ξ)
∫

P(ξ′j | ξj, σ(ξ, ν))dF (ν)

= π(ξ)− θx ·
∫
wx(σ(ξ, ν), ν)dF (ν) + β

∑
ξ′

EV (ξ′)
N∏
k=1

P(ξ′k|ξ) ,

where wx(x, ν) =
[
x x2 νx

]
is the vector of cost covariates, and the second

equality uses the linearity of the cost of investment and the definition of P(ξ′j |
ξ) =

∫
P(ξ′j | ξj, σ(ξ, ν))dF (ν). Therefore,

EV (ξ) = W (ξ;π, σ) · [1,−θ′
x]

′ + βM(ξ,P )EV
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where W (ξ;π, σ) is the expectation of flow-profit covariates given ξ, as defined
in equation (15), and M(ξ,P ) is the ξ-th row of the matrix M (P ) defined in
equation (16).
Stacking the last equation for all ξ and solving for EV gives equation (14). To
see that I − βM (P ) is indeed invertible, assume it is not. Then there exists x ∈
R|Ξ| such that [I − βM (P )]x = 0, or x = βMx. This implies ∥x∥∞ = ∥βMx∥∞.
However, letting (Mx)i denote the i-th coordinate of Mx, we have

|(Mx)i| =

∣∣∣∣∣∣
|Ξ|∑
j=1

Mijxj

∣∣∣∣∣∣ ≤
|Ξ|∑
j=1

Mij|xj| ≤ ∥x∥∞
|Ξ|∑
j=1

Mij = ∥x∥∞ ,

where we have used that M is a stochastic matrix. Therefore ∥x∥∞ = ∥βMx∥∞ =

β∥Mx∥∞ ≤ β∥x∥∞, a contradiction.

Appendix B The Gradient of Q(θ)

We have
∇Q(θ) = 2[λ̂(θ)− γ̂]

1×(k+1)

′
W

(k+1)×(k+1)
Dθλ̂(θ)
(k+1)×J

where Dθλ̂(θ) is the derivative (i.e., the Jacobian) of λ̂(θ) and we have made
the dimensions explicit for clarity. The symbols k and J represent, respectively,
the number of covariates in the empirical policy function and the number of
structural parameters to be estimated. These objects have dimension (k + 1)

rather than k because we include the estimated standard deviation in our ob-
jective function.

From the above, all that is left to calculate is Dθλ̂(θ). Remember that λ̂(θ) =
(λ̂1(θ), . . . , λ̂k(θ), Sζ(θ)). Therefore

Dθλ̂(θ)
(k+1)×J

=

Dθλ̂(θ)
k×J

∇θSζ(θ)
1×J


The object λ̂(θ) is an OLS estimate, and thus satisfies

(X ′X)λ̂(θ) = X ′Tθ(σ̂)
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where X is the matrix of features

X =


ψ1(ξ1) . . . ψk(ξ1)

... . . . ...
ψ1(ξN) . . . ψk(ξN)


and22

Tθ(σ̂) =


Tθ(σ̂)(ξ1, ν1)

...
Tθ(σ̂)(ξN , νN)

 ,

where Tθ(σ̂)(ξi, νi) is the optimal level of investment when the parameters are
θ, future behavior is given by σ̂, and the state is (ξi, νi). Therefore,

(X ′X)Dθλ̂(θ) = X ′DθTθ(σ̂) (21)

where

DθTθ(σ̂) =


∇θTθ(σ̂)(ξ1, νi)

...
∇θTθ(σ̂)(ξN , νN)


By the Implicit Function Theorem, the gradients in this matrix are given by

∇θTθ(σ̂)(ξi, νi) = −
[
∂f

∂x
(x∗, ξi, νi; θ, σ̂)

]−1

∇θf(x
∗, ξi, νi; θ, , σ̂)

where x∗ = Tθ(σ̂)(ξ, ν) and f(x, ξ, ν; θ, σ̂) is the investment first-order condition.
We can then solve for Dθλ̂ from equation 21.

Next, we need ∇θSζ(θ). We have

S(θ) =

{
1

n− k

n∑
i=1

[Tθ(σ̂)(ξi, νi)− x(ξi)
′λ̂(θ)]2

} 1
2

where x(ξi) := (ψ1(ξi) . . . ψk(ξi))
′. Therefore,

∇θSζ(θ) =
1

2
{·}−

1
2 × 2

n− k

n∑
i=1

[Tθ(σ̂)(ξi, νi)− x(ξi)
′λ̂(θ)]

{
∇θTθ(σ̂)(ξi, νi)−∇θ[x(ξi)

′λ̂(θ)]
}

=
1

Sζ(θ)(n− k)

n∑
i=1

[Tθ(σ̂)(ξi, νi)− x(ξi)
′λ̂(θ)]

{
∇θTθ(σ̂)(ξi, νi)−∇θ[x(ξi)

′λ̂(θ)]
}

22We draw the νi shocks once and store them in memory so that all parameter values use the
same νi shocks.
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The first gradient in these expressions has already been characterized. The sec-
ond gradient is

∇θ[x(ξi)
′λ̂(θ)] = x(ξi)

′Dθλ̂(θ)

and Dθλ̂(θ) has just been characterized.

Appendix C Simulating data as in Ryan (2012)

In this section we compare performance of the estimators presented in Section
5 for simulated datasets with sample size in line with Ryan (2012). We consider
data for 27 separate markets recorded for 20 periods. 5 firms compete in each
market.23

Firms have marginal cost parameters θc1 = 2.47, θc2 = 0 – i.e. constant
marginal cost mc = exp(2.47); unobserved product quality goes from -1.4 to
1.4 in increments of .2. There is a substantial probability of quality downgrade
shocks (θt1 = 0.547), and the probability of a quality upgrading shock is increas-
ing in own investment (θt2 = 0.062) but decreasing (at a decreasing rate) in own
quality level (θt3, θt4 < 0). Investment costs are convex (θx1, θx2 > 0) in invest-
ment and increasing in the ‘shock’ term (θx3 > 0). We outline all parameters in
Table 4.

We compare the performance of the four estimators presented in Section 5.
Table 2 lists true parameter values along with estimate average and standard
deviation for the four estimators over 125 simulations. Of the four estimators,
the II estimator evidently performs the best, though with more finite sample
bias and larger uncertainty than in Section 5. The NLLS estimator and, in par-
ticular, BBL estimators display substantial bias and larger standard deviation
than the II estimator. Figures 9, 10, 11, and 12 present the distribution of param-
eter estimates for each algorithm; vertical dotted lines represent true parameter
values. II estimates are correctly centered around the true values and present
low skewness. HvB and BBL estimators are centered around wrong values, dis-
playing a bias that can be orders of magnitude larger than the parameter to be
estimated. The finite sample bias of the NLLS estimator is smaller than that of
the BBL implementations, but it is still substantial.

23Ryan (2012) collected a total of 517 observations (an unbalanced panel of 27 markets over 19
years), with the number of firms per observation ranging from 1 to 20 (mean 4.7).
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Table 4: Exercise Parameters

Parameter Value

Data Structure
Number of Firms 5
Number of Markets 27
Number of Periods 20
Number of Households 1.0e8
Model
State Space -1.4:0.2:1.4
Discount Factor 0.925
Marginal Utility of Income -0.222
Marginal Cost Parameters [2.47 0.0]
Investment Cost Parameters [2.625 1.624 0.5096]
Transition Probability Parameters [0.547 0.072 -0.884 -0.285]
II Estimator
Number of II Simulations 5
BBL Estimators
BBL: Number of Inequalities 1000
BBL: Number of Simulated Paths 500
BBL: Simulation Horizon 80
BBL: Vector of Scalar Deviations [0.9 0.95 1.05 1.1]

This table reports parameters used in our Monte Carlo exercise. The parameters labeled BBL
relate to our implementation of the BBL estimator. Number of inequalities is the number of
equilibrium conditions included in the BBL objective. Number of simulated paths is the num-
ber of paths used in estimating value functions via simulation. Simulation horizon is how far
the paths are simulated. The vector of scalar deviations defines the HvB deviations discussed
in the text. The following set of parameters relate to the HvB model discussed above. Number
of II simulations is the number of ν draws per observed observation used in the II estimator.
The number of markets and periods pertain to the size of the dataset used in the Monte Carlo
simulations. State space is the set of possible qualities for a firm; the notation −1.4 : 0.2 : 1.4
indicates that quality can be as low as -1.4 and as high as 1.4, growing in increments of 0.2.
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Figure 9: II Estimator Parameter Estimates

This figure plots the distribution of parameter estimates obtained using the II estimator de-
scribed in Equation 11 over 125 Monte Carlo replications. The vertical dashed red line indicates
the value of the corresponding parameter in the data generating process.

Figure 10: HvB Estimator Parameter Estimates

This figure plots the distribution of parameter estimates obtained using the BBL estimator with
HvB deviations over 125 Monte Carlo replications. The vertical dashed red line indicates the
value of the corresponding parameter in the data generating process.

34



Figure 11: BBL Estimator Parameter Estimates

This figure plots the distribution of parameter estimates obtained using the BBL estimator with
random deviations over 125 Monte Carlo replications. The vertical dashed red line indicates
the value of the corresponding parameter in the data generating process.

Figure 12: NLLS Estimator Parameter Estimates

This figure plots the distribution of parameter estimates obtained using the NLLS estimator
over 125 Monte Carlo replications. The vertical dashed red line indicates the value of the corre-
sponding parameter in the data generating process.
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Table 5: Summary of Parameter Estimates

Parameter Value II BBL HvB NLLS

θx1 2.625 2.171 [11.404, 11.404] [0.0, 0.0] 3.51
(0.0, 3.514) (0.0, 30.195) (0.0, 0.0) (0.0, 9.992)

θx2 1.624 1.838 [9.877, 9.877] [3.521, 3.521] 1.584
(0.339, 3.328) (0.0, 19.308) (1.382, 5.288) (0.072, 3.266)

θx3 0.5096 0.459 [4.447, 4.447] [3.757, 3.757] 1.885
(0.0, 0.737) (0.0, 19.666) (0.0, 17.224) (0.0, 6.786)

This table summarizes the results of our Monte Carlo experiment. The first column shows the
value of the parameters of the investment cost function in the data generating process. Each
subsequent column shows the mean and standard error of estimates across Monte Carlo repli-
cations. The column labeled “II” shows the results of the estimator we propose in this paper.
The column labeled “BBL” shows the results of the BBL estimator with random deviations. The
column labeled “HvB” shows the results of the BBL estimator with HvB deviations. The col-
umn labeled “NLLS” shows the results of the estimator defined by the program ??.

The relative performance of the different estimators is a consequence of
the differences in the objective functions that define them. We illustrate this
by analysing the shape of each objective function in a neighbourhood of the
true parameters for a particular simulated dataset. To do so, we plot two-
dimensional slices of the objective function by varying one parameter at a time
while holding the others fixed at their true values. To render the shape of dif-
ferent objective functions comparable, we normalise objective values on the pa-
rameter grid by dividing each by the objective value at the true parameter.
Figures 13 to 16 display the results. Vertical lines represent true parameter val-
ues.

Figure 13 shows that the objective function of the II estimator features pro-
nounced local convexity around each true parameter, with minimal distance
between the local objective minimum and the objective value at the true pa-
rameter. This is reflected in the good performance of the estimator, both in
terms of short 95% intervals and small bias.

The picture is very different for the HvB and BBL estimators. They are ap-
proximately flat around the true parameter, and zooming in reveals that they
display no convexity at all for the considered grid – they are almost linear
around the correct parameter values. This is consistent with the large bias dis-
played in Figures 10 and 11: the objective is convex around parameter values
that are wrong by orders of magnitude.
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Finally, objective plots for the NLLS estimator are informative about its im-
precision. Objective function minima are not far from the minima at the true
parameter value (low bias) for θx1, θx2, but the NLLS objective function is much
less convex around local minima than the II objective function is. On the other
hand, the objective function is not centered around the true parameter objective
value for θx3.

Figure 13: II Estimator Objective

This figure plots the value of the II estimator objective function varying one parameter at a
time while holding the other two parameters fixed at their true values. Values are scaled by the
value of the objective at the true parameters.
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Figure 14: HvB Estimator Objective

This figure plots the value of the objective function of the BBL estimator with HvB deviations
varying one parameter at a time while holding the other two parameters fixed at their true
values. Values are scaled by the value of the objective at the true parameters.

Figure 15: BBL Estimator Objective

This figure plots the value of the objective function of the BBL estimator with random devi-
ations varying one parameter at a time while holding the other two parameters fixed at their
true values. Values are scaled by the value of the objective at the true parameters.
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Figure 16: NLLS Estimator Objective

This figure plots the value of the objective function of the estimator defined by program ??
varying one parameter at a time while holding the other two parameters fixed at their true
values. Values are scaled by the value of the objective at the true parameters.

We end this section by again providing an overview of the computational
costs of each estimator. Table 6 displays run time and memory allocation for
the different steps of our simulation, averaged over 125 runs. As expected Step
1 – shared by all the algorithms considered – is fast, as it only entails estimating
transition parameters by maximum likelihood and policy function parameters
by linear regression.

On the other hand, there is substantial variation in the time and memory
costs of various Step 2 algorithms. BBL-type estimators are the fastest, with
both the HvB and BBL estimator taking less than 2 seconds between simula-
tion and optimisation. Note that simulation time is remarkably similar for this
smaller dataset and the larger dataset in Section 5, so BBL costs do not scale
with sample size in the same way as costs for recursive estimators do. This
suggests a trade-off between precision and computational time that could lead
to favor BBL in larger data sets.
The II estimator is substantially slower, taking approximately 10s to return an
estimate. Estimation time will be increasing in the number of datasets gener-
ated for indirect inference, which again we set to 5. Finally, the NLLS estimator
takes the most time of all, clocking at approximately 25 seconds.
The reason for this substantial cost is that evaluation of its objective and gra-
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Table 6: Exercise Timings

Call Average Time Average Allocation

Overall
Preliminaries 30.7s 36.8GiB
Simulation 84.7ms 6.16MiB
Step 1: Estimating Transition Parameters 35.7ms 2.52MiB
Computing EVF Covariates 197ms 4.43MiB
Computing Projection Objects 7.96ms 3.40MiB
Step 2: II Estimator 10.0s 3.81GiB
Step 2: NLLS Estimator 25.7s 9.66GiB
Step 2: BBL Policy Covariates 13.8ms 14.4MiB
Step 2: BBL Estimator 1.78s 16.2MiB

Simulation 1.72s 2.60MiB
Optimisation 59.0ms 13.6MiB

Step 2: HvB Estimator 1.74s 12.0MiB
Simulation 1.73s 1.82MiB
Optimisation 11.7ms 10.2MiB

This table reports the computation time and memory allocation associated with each step in the
computation of the four estimators discussed above. Note that the memory allocation reported
here is not the amount of memory required to compute these estimators, but rather the total
size of objects that are written to memory throughout the course of estimation. “Preliminaries”
include the calculation of descriptors of flow profits, objects describing the state space of the
game, and solving for a MPE. “Simulation” is the simulation of the data. “Computing VF Co-
variates” refers to the calculation of XEV (ξ;σ) discussed in section ??. “Computing Projection
Objects” refers to the calculation of objects used in the implementation of the II and NLLS esti-
mators that need to be computed only once. The other items refer to the different estimators.

dient requires solving a large number of static optimisation problems, whereas
the gradient of the II estimator is readily computed analytically (see Appendix
B).
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