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1. Introduction

Fairness and equal opportunity are of the highest importance in hiring and recruit-

ment. According to Merriam-Webster Dictionary, fair employment constitutes the

“employment of workers on a basis of equality without discrimination or segregation

especially because of race, color, or creed.” Numerous studies investigate the discrim-

ination and statistical biases that may arise when assessing candidates, as surveyed in

Bertrand and Duflo (2017) and Neumark (2018). However, there is more to fairness

than the concern for how candidates are assessed and compared. The procedure of

interviewing and selecting candidates also matters. Any fair assessment of candidates

can be undermined if the interviewing process depends not only on the candidates’ job

related attributes, but also on some of their job unrelated demographic characteristics

or the order in which they are interviewed. For instance, this can happen when the

person organizing the interviews has a hidden agenda. When not liking a candidate,

who would be chosen by the hiring committee, this person might simply decide to

interview more candidates until someone more to their liking appears. Principles of

fairness need to be formulated to avoid such behavior. In other cases, principles are

needed to even understand whether there is unfairness. For instance, a hiring com-

mittee might wish to adjust their hiring criteria after conducting several interviews

and learning about the quality of the pool of applicants from these interviews. In

fact, this form of behavior is recommended by the optimal strategy in the famous

secretary problem (Fox and Marnie, 1960). Therein, it is best to interview a certain

number of candidates without hiring any of them, and then hire the first candidate

who outperforms the initial group. It is our objective to identify whether this is fair.

In this paper we are concerned with unfairness that results from how hiring is orga-

nized. We abstract from statistical or behavioral biases by assuming that candidates

are assessed fairly. We pursue our investigation within a model of sequential search.

Counterfactual scenarios will be used to identify whether hiring is unfair. In particu-

lar, we will be looking at who will be hired if candidates would have been interviewed

in a different order. We fully characterize hiring rules that are procedurally fair. We

then discuss practical implications of procedurally fair hiring, and compute the loss

in efficiency due to fairness concerns.
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We consider the following model of sequential search.1 A searcher interviews job

candidates one by one in a given order. Each candidate has some publicly observable

characteristics and a fit to the job. The job fit is revealed during the interview. It

might be measured by the added value. It might incorporate the belonging to a

minority group if the searcher takes affirmative action. We are interested in which

hiring procedures are fair.

Clearly, procedural fairness is hardly a concern if all candidates are interviewed. How-

ever, it is often not feasible or too costly to interview all candidates. Thus, not all

candidates can be treated equally as some will be interviewed while others will not.

So, we focus our investigation on the fair treatment of those candidates who have

been interviewed and whose fit for the job has been revealed. We postulate that

interviewed candidates should not be disadvantaged due to the order in which inter-

views are conducted. Specifically, they should not be hired more likely if they swap

their observable characteristics, together with their interview slot, with someone else

(possibly, using a multilateral swap). For example, a black person who is interviewed

but not hired should not be able to argue that they would have been hired if they

had the interview slot and the CV of the white person who got hired.

Our main result is a full characterization of fair hiring procedures. Fair hiring starts

with an irrevocable commitment to a categorization of candidates according to their

job fit. This has to be done before the interviews. There are three categories: strong,

reserve, and unacceptable. The fair hiring principle dictates to hire the first strong

candidate on the spot, right after the interview. Reserve candidates can only be

hired when everyone has been interviewed and no strong candidate has been found.

In that case, any two candidates who have the same job fit must be treated equally.

Unacceptable candidates can never be hired.

An implication of procedurally fair hiring is that the hiring standards cannot be

manipulated after the interviewing process has started. All criteria that are relevant

for the job fit must be discussed and agreed upon in advance. Once the hiring

standards are announced and committed to, it is not permitted to include a hidden

agenda later. It is also not permitted to “test the waters” by interviewing several

1Within our setting, simultaneous search is a special case of sequential search. This is analogous to
Burdett and Judd (1983) in the setting of price search.
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candidates to make a clearer picture of how good the pool of candidates is, and only

then decide how strict the hiring criteria should be.

Another implication is that fair procedures are simple to evaluate and implement.

First, the searcher only has to determine for each candidate whether or not they are

strong. Second, because the searcher has to commit in advance which fits for the

job are categorized as strong, she does not need to update the priors about the pool

of candidates, nor to perform optimization calculations after each interview. Third,

if the job fit is evaluated by a numerical value, a fair procedure is very simple and

is described by a single threshold that separates strong candidates from the others.

In this case, finding an optimal fair procedure only involves optimizing over a single

parameter, the threshold. This simplicity stands in contrast with the problem of

optimization without fairness constraints which is only tractable in special cases.2

As the final step, we are left to show how much efficiency is lost if the searcher is

required to follow a fair hiring procedure. Here we formally introduce the searcher’s

optimization problem. The searcher wishes to maximize her expected utility from

hiring a candidate when facing the cost of interviews, the discounting of future payoffs,

and the uncertainty about candidates. The model of uncertainty is rich in order to

add realism. There is systemic uncertainty, modeled by a state of the world that

influences the entire pool of candidates. There is also idiosyncratic uncertainty that

captures individual differences between the candidates conditional on their observable

characteristics. Our only assumption is that candidates who are interviewed earlier

are more likely to have higher values than those who are interviewed later, according

to first order stochastic dominance. We show that the loss from including the fairness

concerns in hiring is not large. Namely, the optimal payoff among all strategies is at

most twice the optimal payoff when using fair procedures.

Related Literature. This paper is related to a vast literature on inequality and

discrimination in labor markets. The taste-based theory of discrimination goes back

to Becker (1957), and the theory of statistical discrimination was founded by Phelps

(1972). The up-to-date literature includes numerous theories, empirical studies, and

laboratory and field experiments. These studies document and explain pay gaps

and other types of inequality and discrimination, propose remedies, and make policy

2An optimal search strategy is found under normal distributions with uncertain mean in DeGroot
(1968), and under Dirichlet priors in Rothschild (1974).
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recommendations. This literature is surveyed in Bertrand and Duflo (2017) and Neu-

mark (2018). Recently, the phenomenon of statistical discrimination received a surge

of attention due to the emergence of Big Data and machine learning algorithms. This

literature addresses the questions of detection of statistical biases in risk assessment,

particularly those emerging from data mining, as well as the design of mechanisms

of correction of such biases, using algorithms and machine learning (e.g., Berk, 2012;

Berk and Bleich, 2013; Brennan and Oliver, 2013; Feldman et al., 2015; Barocas and

Selbst, 2016; Chouldechova, 2017; Corbett-Davies and Goel, 2018). Unlike this entire

literature, our paper is not concerned with discrimination due to assessment biases.

In fact, we assume that interviews reveal accurate information about the candidates.

Instead, we are concerned about procedural fairness.

A major challenge that we had to overcome in this paper is how to define procedural

fairness. Labor law regulates hiring procedures, but, as highlighted by Colquitt and

Rodell (2015) and Kleinberg et al. (2016), there is no unified view in the law and

justice literature on a formal definition of fairness. In the economics literature, a

formal treatment of fairness appears in the bargaining and social choice context,

where it is captured, among others, by the conditions of envy freeness, anonymity,

and symmetry (e.g., Arrow et al., 2010; Vanderschraaf, 2023). This literature is

mostly concerned with an equitable allocation of a resource, and the correspondent

concept is called distributive or allocative fairness. It is of limited help for us. A

hiring procedure cannot be equitable ex-post as everyone wants the job but only

one gets it. It would also be unreasonable, inefficient, or even prohibited by law to

make it equitable ex-ante, by randomizing between candidates with unequal fit for

the job. Note that there is a computer science literature that allows for this kind

of randomization to achieve ex-ante fairness (e.g., Kleinberg et al., 2016; Dwork and

Ilvento, 2018). The type of fairness that we consider is of intermediate nature. The

order of candidates is given, whether it has emerged exogenously or chosen by the

searcher. We are highlighting fairness concerns that arise conditional on that order.

We model the process of hiring as sequential search. Sequential search was introduced

by Stigler (1962) and McCall (1970), and it has been a tool in an economist’s toolkit

ever since. Yet the underlying optimization problem, with uncertainty about the pool

of candidates and correlation between their values, is complex. Only several special

cases have closed form solutions (DeGroot, 1968; Rothschild, 1974; Gastwirth, 1976).
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In this paper, when comparing search using fair procedures to general search, we

circumvent the complexity of the general search problem by establishing tight bounds

for the worst case.

A close relative of sequential search is the secretary problem of Fox and Marnie (1960).

The main distinction is that the secretary problem makes no distributional assump-

tions about the values of candidates. The subsequent literature covers various exten-

sions of this problem as surveyed in Freeman (1983) and Ferguson (1989). More re-

cent papers include adaptations of the secretary problem to online auctions (Babaioff

et al., 2008) and to consumer search for products (Parakhonyak and Sobolev, 2015;

Schlag and Zapechelnyuk, 2021). Following Babaioff et al. (2008) and Schlag and

Zapechelnyuk (2021), we assess the relative cost of fair hiring using the worst-case

ratio method, also known as the competitive ratio (Sleator and Tarjan, 1985).

The paper is organized as follows. In Section 2 we introduce the model of hiring

as sequential search. In Section 3 we postulate fairness conditions on the hiring

procedure, characterize fair procedures, and discuss the insights. In Section 4 we

investigate fairness in the special case in which each candidate is given a value. In

Section 5 we compute the costs of restricting attention to fair procedures. Section 6

concludes. The proofs are relegated to the online appendix.

2. Model

We use the model of sequential search to formalize a hiring procedure. A searcher

interviews job candidates one by one in a given order. Each candidate has some pub-

licly observable characteristics and a fit to the job. The job fit is revealed during the

interview. It might be measured by the added value. It might incorporate the be-

longing to a minority group if the searcher takes affirmative action. We are interested

in which hiring procedures are fair.

Specifically, consider a searcher (she) who wishes to hire a candidate (he) from a pool

of n job candidates, where n ≥ 2 (n =∞ is also allowed). The searcher sequentially

interviews the candidates, in a given order. The process of conducting interviews and

the delay in hiring are costly to the searcher.

Each candidate is identified by his position i = 1, 2, ..., n in the order of interviews,

a profile of observable characteristics xi, and a profile of attributes θi. The profile of
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observable characteristics xi captures demographics, education, job experience, and

other information known about the candidate before the interview. The profile of

attributes θi captures the fit for the job of candidate i. It only becomes known once

the candidate is interviewed. It includes all the information relevant for the searcher’s

hiring decision, such as productivity, collegiality, and knowledge of the job. We will

refer to xi as candidate i’s CV and to θi as his type. Let Θ̄ be a set of possible types.

A profile X = (x1, ..., xn) of CVs of all the candidates is given. The order in which

candidates are interviewed is also given. There could be different interpretations how

this order might have emerged. This could be an exogenous order in which candidates

arrive. This could be an order by which the searcher has pre-selected the candidates

according to their observable characteristics, possibly based on preference or concerns

to improve the outcome. Although the order is given, the possible reasons for this

order will later play a role in the interpretation of our fairness criterion.

The type θi of candidate i is discovered when this candidate is interviewed. From

the searcher’s point of view, θi is a realization of a random variable conditional on

the CV xi. In addition to this idiosyncratic uncertainty about hidden attributes of

the candidates, the searcher has a systemic uncertainty about the pool of candidates

as a whole. So the types can be correlated. Our main result does not require any

structural assumptions about this uncertainty, so we postpone its formalization until

Section 5 where more structure will be needed. Here we only assume that the types

of all the candidates are discrete random variables with common support Θ, where

Θ ⊂ Θ̄. The assumption of discreteness is for clarity of exposition, whereas the

assumption of common support is substantive. The implication of the latter is that

interviews are valuable. The CVs may provide information about the types of the

candidates, but this information is not enough to determine the hidden attributes

with certainty. No candidate can be eliminated solely based on his CV.

The searcher has an outside option that can be chosen instead of hiring any candi-

date. The outside option is available from the beginning, before the first candidate is

interviewed, and remains available throughout the hiring process. It is labeled i = 0

and identified with a known type θ0.

The search proceeds in rounds t = 0, 1, ..., n. At the outset, in round 0, a type θi is

drawn for each candidate i = 1, ..., n. The searcher (who does not observe the types)

decides whether to walk away with the outside option, or to begin the search. In each
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round i = 1, ..., n− 1, the searcher decides whether to stop or to continue the search.

In round n the search must stop. If the search stops, then the searcher hires one of

the interviewed candidates, or chooses the outside option. If the search continues,

then the next candidate in the order is interviewed, and so on.

Here we assume that a candidate who is selected to be hired always accepts the job

offer. This is for simplicity of exposition. Our main results are not affected if the

candidate rejects the offer with a probability that potentially depends on his type.

A hiring strategy prescribes when to stop the search and whom to hire after the search

has stopped. It is given by a pair s = (σ, ϕ). Let ht = (θ1, ..., θt) be a history of types

of interviewed candidates up to round t = 1, ..., n, and let h0 be the empty history.

For each round t = 0, 1, ..., n, and each possible history ht in that round, consider the

following notation. Let σ(ht) denote the probability of stopping the search in round t.

When t = n, the search must stop, so set σ(hn) = 1. Conditional on stopping in round

t, for i = 1, ..., t let ϕi(ht) denote the probability of hiring candidate i, and let ϕ0(ht)

denote the probability of choosing the outside option, such that
∑t

i=0 ϕi(ht) = 1.

Note that there is free recall, that is, any of the interviewed candidates can be hired.

Moreover, our model includes simultaneous search as a special case. Namely, when

the searcher decides to interview k < n candidates and then decides which of these

to hire, this is as if the searcher interviews these candidates simultaneously.

In what follows, we allow for almost any hiring strategy. In particular, we do not mo-

tivate what kind of a strategy the searcher will choose. Hence, we need not introduce

any objectives of the searcher at this point of the paper. This allows for a char-

acterization of fairness that is not dependent on the searcher’s beliefs or intentions.

The only assumption that we make is that there is a candidate who is impossible to

beat. Consequently, whenever such a candidate is interviewed, the searcher stops the

interviewing process and hires this candidate. Formally, we assume that there exists

a type θ̄ ∈ Θ such that if a candidate with type θ̄ is interviewed, then the search must

stop immediately and this candidate must be hired, so

if θt = θ̄, then σ(θ1, ...θt) = 1 and ϕt(θ1, ...θt) = 1. (A)

We will refer to a candidate with type θ̄ as the ideal candidate.
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3. Fair Hiring

3.1. Fairness. We introduce considerations for procedural fairness to our model of

hiring. Observable characteristics may contain information about the likelihood of

types of the respective candidates prior to their interviews. This information may

influence whether a certain candidate will be interviewed. However, once a candidate

is interviewed, then we postulate that this candidate must not be disadvantaged by

the observable characteristics and the order of interviews.

To formally define fairness, we compare hiring probabilities when candidates are put

in a different order. Thereby, each candidate takes over the CV and the interview

slot of the candidate he replaces, and only retains his own type. Changes in orders

will be described using permutations or multilateral swaps. Put simply, a swap of

two candidates i and j means that candidate i with type θi and candidate j with

type θj swap their CVs and their positions in the order (as if pretending to be each

other), while keeping their types. Thus, after the swap, in round i the candidate with

CV xi is interviewed and reveals type θj, and in round j the candidate with CV xj is

interviewed and reveals type θi. A combination of bilateral swaps is a permutation.

Formally, a permutation function π : {1, ..., n} → {1, ..., n} is a bijection that maps

each candidate i ∈ {1, ..., n} to a candidate j = π(i) ∈ {1, ..., n}. Let Π be the set

of all permutation functions. Given a permutation π ∈ Π, we denote by π(i) the

position of candidate i after the permutation is applied. The outside option always

remains in the position 0. For notational convenience, let π(0) = 0.

Given a hiring strategy s = (σ, ϕ), a profile of types rt = (θ̂1, ..., θ̂t) is called a run if,

with a strictly positive probability under s, the search reaches round t, the realized

types are (θ̂1, ..., θ̂t), and the search stops in round t, so

(θ̂1, ..., θ̂t) ∈ Θt and
(∏t−1

i=0
(1− σ(θ̂1, ..., θ̂i))

)
σ(θ̂1, ..., θ̂t) > 0.

Let Rs be the set of all runs under strategy s.

Given a permutation π ∈ Π and a run rt ∈ Rs, let us consider a candidate i who is

interviewed in this run, so i ≤ t. We fix the profile of types rt = (θ̂1, ..., θ̂t) revealed

in this run, and determine the ex-ante probability that candidate i is hired under s

conditional on the information about the revealed types. Denote this probability by

qi(s|rt). We compare qi(s|rt) with the probability that the same candidate is hired
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under s conditional on the same information about candidates’ types, but after the

candidates are permuted according to π. So, i moves to position π(i), and for each

j = 1, ..., t , the type θ̂j is now revealed in round π(j). Denote the permuted profile of

types by π(rt). The ex-ante probability that candidate in position π(i) is hired under

s conditional on π(rt) is qπ(i)(s|π(rt)).

Definition 1. A hiring strategy s = (σ, ϕ) is fair if for every run rt ∈ Rs, no

permutation of candidates can increase the ex-ante probability that any interviewed

candidate is hired or that the outside option is retained:

qi(s|rt) ≥ qπ(i)(s|π(rt)) for each π ∈ Π and each i ∈ {0, 1, ..., t}. (B)

Observe that condition (B) applies not only to each interviewed candidate i = 1, ..., t,

but also to the outside option i = 0. To interpret this, briefly assume that the

outside option as a current employee whose contract has come to an end but can be

extended. Thus, condition (B) requires that the current employee cannot increase

the ex-ante probability of retention by influencing the order in which the candidates

are interviewed.

Our theorem below shows that the only hiring strategies that satisfy this fairness

criterion are the partition strategies as we now define.

A partition strategy specifies a subset of the possible types of candidates. Candidates

whose types are in this subset are called strong. Hiring under a partition strategy

proceeds as follows. Candidates are sequentially interviewed until either a strong

candidate is found, or all candidates have been interviewed. When a strong candidate

is found, then interviews stop immediately, and this candidate is hired on the spot.

A partition strategy has two additional defining properties when all candidates have

been interviewed but none of them were strong. First, the choice of whom to hire

must not depend on the order in which the candidates were interviewed. Second,

candidates who have the same type must be hired with the same probability.

Definition 2. A hiring strategy s = (σ, ϕ) is called a partition strategy if there exists

a subset of types ΘS ⊂ Θ, with θ̄ ∈ ΘS, such that:
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(i) For each t = 1, ..., n− 1 and each ht ∈ Θt,

σ(ht) =

1 if θt ∈ ΘS,

0 if θt 6∈ ΘS,

ϕt(ht) = 1.

(ii) For each hn ∈ Θn,

if θn ∈ ΘS then ϕn(hn) = 1,

for each i, j ∈ {1, ..., n}, if θi = θj then ϕi(hn) = ϕj(hn),

for each i ∈ {1, ..., n} and each π ∈ Π, ϕi(hn) = ϕπ(i)(π(hn)).

For interpretation, we further divide the candidates who are not strong into reserve

candidates and unacceptable candidates. Reserve candidates are the candidates who

may be hired with positive probability after seeing all candidates, depending on what

other types have been revealed during the interviews. Unacceptable candidates are

never hired.3 Thus, when following a partition strategy, the searcher can ask reserve

candidates to wait until the search is concluded, whereas she can reject unacceptable

candidates on the spot whenever any such candidate is found.

We now present the main result of this paper.

Theorem 1. A hiring strategy is fair if and only if it is a partition strategy.

The proof is in Appendix A.1. Here we outline the arguments on an intuitive level.

It is easy to see that every partition strategy is fair. Suppose that an interviewed

candidate is strong. Then the search stops and this candidate is hired. Any can-

didate interviewed earlier is either reserve or unacceptable, and thus can never be

hired regardless of the order of interviews. Alternatively, suppose that all candidates

have been interviewed and no strong candidate has been found. Then any two re-

serve candidates with identical types are hired equally likely, and any unacceptable

candidate is not hired, independently of the order of interviews. Finally, a partition

strategy can choose the outside option only in round 0 (when no one is interviewed),

3Formally, a type θ̃ ∈ Θ is reserve if there exists a run rt = (θ1, ..., θt) ∈ Rs and i ∈ {1, ..., n} such

that θi = θ̃ and qi(s|rt) > 0. A type that is neither strong nor reserve is unacceptable.
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or in round n (when everyone is interviewed). In either case, no reordering of the

candidates can change this outcome. So, condition (B) is satisfied.

Let us sketch the argument for why every fair strategy is a partition strategy. Suppose

that the first candidate has been interviewed. For some types of this candidate, the

strategy prescribes to stop the search and to hire this candidate with certainty. Let

us define such types as strong. Note that the set of strong types is nonempty, because

the “ideal candidate” belongs to this set by assumption (A). Several observations are

in order. First, if a candidate with a strong type is discovered in any round, the

search must stop immediately, and this candidate must be hired. Otherwise, this

candidate could have swapped his current position with position 1, where he would

have been hired with certainty. This violates condition (B). Second, in every round,

the search either stops or continues for sure. Otherwise, if the search continues with

an intermediate probability, then a candidate who is sometimes interviewed prefers

to be interviewed earlier. This violates condition (B). Third, an order where some

reserve candidate can be hired before everyone is interviewed must not exist. To see

why, consider a different order in which this reserve candidate is interviewed first,

followed by a strong candidate who was previously uninterviewed. In this case the

reserve candidate is not hired and would have been better off with the original order.

Finally, if the search reaches the last round, candidates with equal types must be

treated equally, as otherwise one would want to swap the position with the other.

Moreover, who is hired must not depend on the order of interviews, as otherwise

condition (B) is violated. Summarizing the above, we conclude that a hiring strategy

that satisfies property (B) must be a partition strategy.

3.2. Discussion. Following Theorem 1, fair hiring means using partition strategies.

In this section we outline some implications of using such strategies and discuss some

assumptions.

We first highlight several implications.

Commitment to the hiring criterion. Before starting the interviewing process, the

hiring committee has to agree on a categorization of the candidates’ attributes into

who will be hired on the spot, who will be put in reserve, and who will never be hired.

The hiring committee also has to agree that this categorization may not be changed,

regardless of what happens during the interviews. In particular, fair hiring precludes
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the use of random events (like flipping a coin) during the interviews. Randomness may

only be used as a tie-breaker between candidates of equal types once all candidates

have been interviewed.

Flexibility of objectives. When implementing a fair hiring procedure, the searcher

must categorize the candidates’ types, but she is free to choose which types belong to

which category. The categorization can depend the searcher’s objective function, her

costs, and her outside option. For example, the searcher may wish to hire quickly, in

which case she would label many types as strong. At the other extreme, the searcher

may wish to interview all candidates unless an unusually excellent candidate is found.

In this case she can categorize only very few candidates as strong.

Affirmative action. Affirmative action may not be implemented by choosing a minor-

ity group candidate over another candidate when both have the same type. It has

to be implemented by incorporating the attribute of belonging to the minority group

into the type. In that case, candidates can be assigned to different categories based

on whether they belong to the minority group.

Testable implications. An outsider might not be able to observe the hiring procedure

that the searcher follows. Yet, one can still identify that the hiring procedure is

unfair when the search stops before all the candidates are interviewed, and the last

interviewed candidate is not hired.

Individual treatment. Candidates have to be interviewed one by one with a decision

being made after each interview. In particular, the searcher may not first wait to see

the first few candidates before making a decision.

No learning. Learning about the quality of the pool of candidates is not allowed. In

particular, Bayes’ rule is not used when following a partition strategy. Even if many

“bad” candidates are interviewed, the searcher may not get disappointed and stop

the search to hire a candidate who was initially categorized as reserve. Similarly,

when seeing a “good” candidate, the searcher may not get excited about the pool

and decide to look further if that candidate was initially categorized as strong.

Next, we discuss several assumptions made in our model.

Fixed order of interviews. One might wish to mitigate the unfairness that arises due

to the order in which candidates are interviewed by randomizing the order. However,

randomization can easily increase a feeling of injustice and is hardly realistic as this
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creates inefficiencies. In practice, candidates are often interviewed in the order de-

termined by the hiring committee based on the candidates’ CVs, or in the order in

which applications arrive. So, the order is often predetermined. Even if the order

is random, the fairness concerns raised in this paper are still relevant as they apply

conditional on each possible realization of the order.

Concern for interviewed candidates. Fairness concerns raised in this paper are di-

rected towards possible complaints of interviewed candidates. These complaints arise

from objecting that a hypothetical alternative order would have increased their hir-

ing probability. Uninterviewed candidates are not allowed to complain. This gives

rise to the question: What if we apply the same fairness concern to all candidates,

interviewed and uninterviewed? Then this will mandate to interview all candidates

in the pool. While this is clearly fair, it might be too restrictive in practice if the cost

of interviewing is high.

Common support of types. Ex-ante the searcher is endowed with beliefs about the

candidates’ types conditional on their CVs. The assumption that these beliefs have

common support reflects an implicit concern for fairness. This means that the searcher

cannot be certain that one candidate is better than another just by looking at their

CVs. It is always possible that the revealed performance in the interview outweighs

the negative expectations that emerge from a bad CV.

Perfect recall. We have assumed that the searcher has perfect recall, namely, that any

candidate previously interviewed is still available for hiring when the search stops.

Yet under a partition strategy the searcher will not need this recall option unless all

candidates have been interviewed.

No rejections. For simplicity of exposition, we have assumed that a selected candidate

always accepts the job offer. One can easily incorporate the possibility that a job offer

can be rejected. In that case, the searcher treats this candidate as if his type was

unacceptable, and continues to follow the partition strategy. In particular, fair hiring

means that when a selected candidate turns down an offer, then the search continues.

The offer may not be passed on to a candidate interviewed in the past, unless all

candidates have been interviewed.
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4. Fair Hiring Using Thresholds

In this section we make some assumptions on the objective of the searcher. This

restricts the kinds of search strategies she would use. We investigate what this implies

for fair hiring.

Assume that the searcher’s preferences over candidates’ types admit a utility repre-

sentation. Let v(θ) be the searcher’s added value from hiring a candidate with type

θ as compared with the outside option. Thus, the value of the outside option is zero,

so v(θ0) = 0. We remain agnostic as to how the searcher evaluates future outcomes

and incorporates costs of interviewing.

We are interested in fair hiring when the searcher evaluates the candidates’ types

according to v(·). Following Theorem 1, a fair hiring strategy has to be a partition

strategy. The first insight is that any candidate with a negative value is unacceptable.

Observe now what can happen with a candidate whose value is positive using the

following example. Let the set of types be Θ = {mediocre, good, excellent} and let

v(mediocre) = 1, v(good) = 2, v(excellent) = 3.

Consider a partition strategy in which mediocre and excellent candidates are cat-

egorized as strong, and good candidates are categorized as reserve. This is a fair

hiring strategy according to Theorem 1. However, according to this strategy, after

first interviewing a good candidate followed by a mediocre candidate, the interview

process stops and the mediocre candidate is hired. Such behavior is not optimal, as

the searcher strictly prefers the good candidate to the mediocre one. Furthermore, it

does not seem fair that the mediocre candidate is hired when the good candidate has

been interviewed. To rule out such situations, we introduce a new condition. This

condition can be interpreted both as a constraint that follows from optimality and as

a constraint that is imposed to due to fairness considerations.

In what follows, we assume that the search strategy satisfies the following condition.

Only the candidates with the highest value can be hired, where ties are broken equally.
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Formally:

For each run rt = (θ1, ..., θt) ∈ Rs and each i, j ∈ {0, 1, ..., t},

if v(θi) < v(θj) then ϕi(rt) = 0, and

if v(θi) = v(θj) then ϕi(rt) = ϕj(rt).

(C)

We now show that strategies that are both fair and satisfy (C) are the threshold

strategies as we now define.

A threshold strategy is a particular partition strategy whose partition can be described

by a threshold. This threshold is weakly above the value of the outside option. The

candidates whose values are at least as high as the threshold are considered strong.4

The rest of the candidates are divided into reserve and unacceptable. Reserve can-

didates have values below the threshold but above the outside option. Unacceptable

candidates have values below the outside option. Candidates who are as good as the

outside option can be considered either reserve or unacceptable. Hiring proceeds as

follows. Candidates are sequentially interviewed until either a strong candidate is

found, or all candidates have been interviewed. When a strong candidate is found,

then interviews stop immediately, and this candidate is hired on the spot.5 If instead

all candidates are interviewed and no strong candidate is found, then the following

happens. The best reserve candidate is hired provided he is better than the outside

option. If the best reserve candidate is as good as the outside option, then possibly

no one is hired. If there are several best candidates, then they are hired with equal

probabilities. If all the candidates are unacceptable, then no one is hired.

Definition 3. A partition strategy s = (σ, ϕ) is called a threshold strategy if there

exists a threshold y ∈ R+ and a partition {ΘS,ΘR,ΘU} of Θ such that for each θ ∈ Θ,

θ ∈



ΘS if v(θ) ≥ y,

ΘR if 0 < v(θ) < y,

ΘR ∪ΘU if v(θ) = 0,

ΘU if v(θ) < 0,

4Without loss of generality, the candidates whose value is equal to the threshold are considered
strong. This is because we have assumed that the types have a discrete support.
5Strategies based on this principle are also known in the search literature as reservation price strate-
gies.
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and for each hn = (θ1, ..., θn) ∈ Θn,∑
i∈arg maxj=0,1,...,n v(θj)

ϕi(hn) = 1,

for each i, j ∈ {1, ..., n}, if v(θi) = v(θj) then ϕi(hn) = ϕj(hn).

Corollary 1. A fair strategy satisfies condition (C) if and only if it is a threshold

strategy.

We show why Corollary 1 follows easily from Theorem 1, namely, that partition strate-

gies that satisfy condition (C) are threshold strategies. Suppose that the searcher

interviews a reserve candidate A followed by a strong candidate B. The partition

strategy dictates that the searcher must stop and hire B with probability one. Con-

dition (C) requires that B can only be hired with probability one if B’s value is greater

than A’s. This leads to the conclusion that the value of every strong candidate must

be greater than that of every reserve candidate. Condition (C) also implies that when

all candidates are interviewed, only the best of them can be hired.

We hasten to point out the following implication.

Remark 1. When the searcher is restricted to threshold strategies, her optimization

problem is greatly simplified. There is a single variable that the searcher needs to

choose, namely, the threshold.

5. Cost of Fairness

Now let us address the question of how much potential value the searcher loses by

restricting herself to fair strategies. To do this, we introduce the searcher’s utility that

incorporates time preferences and interviewing costs. We also specify her beliefs about

the candidates’ types. We compare the maximum expected utility of the searcher with

and without the constraint to use fair strategies. We perform this investigation in

a special but relevant case where earlier candidates are more likely to have higher

values.

First we introduce the searcher’s utility. Following Section 4, each type θ of a candi-

date is associated with a value v(θ). We make the following additional assumptions.

The searcher incurs a cost c ≥ 0 for each interview. Future payoffs are converted into
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their present value using a discount factor δ ∈ (0, 1). Thus, if the searcher stops the

search in round t and hires a candidate with a type θ, her utility is specified to be

u(θ, t) =

u0 if t = 0,

u0 + δtv(θ)−
∑t

k=1 δ
kc if t ≥ 1,

where u0 is the baseline utility that the searcher obtains if she decides to stop in

round t = 0 and choose the outside option.

We assume that the baseline utility u0 is enough to cover the cost of interviewing the

entire pool of applicants, so
n∑
t=1

δtc ≤ u0. (1)

Thus, the net utility of the searcher cannot go below zero. A possible interpretation

is that the searcher is a firm owner, and u0 is an initial value of the firm. Assumption

(1) means that the firm does not need to borrow in order to pay the costs of its hiring

process. For a given baseline utility u0 > 0, let Cu0 be the set of pairs of the interview

cost c and discount factor δ that satisfy the above constraint, so

Cu0 =
{

(c, δ) ∈ R+ × (0, 1) :
∑n

t=1
δtc ≤ u0

}
.

The searcher’s uncertainty about the candidates’ types is modeled as follows. Let Ω

be a finite set that describes the possible states of the world. The searcher has a prior

β over Ω. In each state ω ∈ Ω, the type θi of candidate i = 1, ..., n is distributed

according to a discrete probability distribution λω(·|xi) that is conditional on his

observable CV xi. Thus, in each state ω, the types are distributed independently but

not necessarily identically. For all xi ∈ (x1, ..., xn) and all ω ∈ Ω, the distributions

λω(·|xi) are assumed to have common support Θ ⊂ Θ̄. Prior β is described by a

profile that assigns a probability pω to each distribution λω, so β = (λω, pω)ω∈Ω.

Let Fω(·|xi) be the cumulative probability distribution of values conditional on xi in

state ω, so

Fω(v̂|xi) = Pr
(
v(θ) ≤ v̂

∣∣ω, xi) =

∫
θ∈Θ:v(θ)≤v̂

λω(dθ|xi). (2)

We assume that candidates who are positioned earlier in the order are likely to have

higher values in the following sense. For each state ω, the conditional distributions

of the values of earlier candidates first order stochastically dominate those of later
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candidates, so

for all ω ∈ Ω, Fω(·|xi) �fosd Fω(·|xj) whenever i < j. (3)

Let Bfosd be the set of priors that satisfy condition (3).

The story behind condition (3) is as follows. Assume briefly that there is no given

order of candidates, but that the candidates are ranked according to their CVs as

follows. Independently of the state of the world, the value distribution of a candidate

with a better CV first order stochastically dominates that of a candidate with a

worse CV. Then, following Weitzman (1979), it is best to interview the candidates

with higher ranked CVs first. This leads to an order that satisfies condition (3).

We now define and compare optimal payoffs with and without constraints imposed

by fair hiring. Let Us(β, c, δ) denote the expected utility of the hiring strategy s

given prior β ∈ Bfosd, cost parameter c, and discount factor δ. Let U∗(β, c, δ) be the

maximal expected payoff when choosing among all hiring strategies. Let UP (β, c, δ)

and UT (β, c, δ) be the maximal expected payoffs when choosing among partition and

threshold strategies, respectively.

We are now able to measure how much the searcher loses by limiting herself to fair

hiring strategies. As a measure, in accordance with Theorem 1, we look at the ratio

U∗(β, c, δ)/UP (β, c, δ). This ratio describes how many times the searcher could have

improved her payoff if she is not constrained to use fair strategies. We will refer to

this ratio as the relative cost of fairness. We also do as above for the case where the

hiring strategy has to additionally satisfy condition (C). In accordance with Corollary

1, we evaluate U∗(β, c, δ)/UT (β, c, δ). This ratio is referred to as the relative costs of

fairness under (C).

An obstacle that stands in our way is that it is generally intractable to compute

U∗(β, c, δ). This value can only be found under very specific assumptions about the

prior β.6 This means that it is also generally intractable to compute the relative cost

of fairness for general priors. Yet we are able to provide tight upper bounds on the

relative cost of fairness.

The next theorem provides tight upper bounds on the relative cost of fairness, with

and without condition (C). It turns out that both of these bounds are equal to 2.

6These include i.i.d. normal distribution with uncertain mean (DeGroot, 1968) and a Dirichlet prior
(Rothschild, 1974).
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Theorem 2.

sup
β∈Bfosd, (c,δ)∈Cu0

U∗(β, c, δ)

UP (β, c, δ)
= sup

β∈Bfosd, (c,δ)∈Cu0

U∗(β, c, δ)

UT (β, c, δ)
= 2.

The proof is in Appendix A.2. Here we outline the intuition behind the proof.

The first key step to the proof is to find an upper bound on the relative cost of

fairness whose supremum can be evaluated. It is important that this upper bound is

tight, so that in the worst case the upper bound is approximately equal to the original

expression. The upper bound is found by replacing the unconstrained searcher (whose

payoff U∗(β, c, δ) is in the numerator) by an unconstrained partially informed searcher

who observes the state ω. Because the conditional distribution Fω(·|xt) is decreasing

in t by first order stochastic dominance, the optimal expected payoff of this strategy

can be evaluated using Weitzman (1979).

The next steps consist of showing that the ratio U∗(β, c, δ)/UT (β, c, δ) is the largest

when there are only two types. This is then used to explicitly bound this ratio by 2.

An example shows that this bound is tight. This completes the proof for the relative

cost of fairness under (C).

In the final step, this is connected to the cost of fairness without (C). While the

maximal expected payoff among the partition strategies is generally greater than that

among the threshold strategies, we show that the two are equal when considering only

distributions involving two types. This shows that the two bounds are equal and tight.

The intuition for why U∗(β, c, δ)/UT (β, c, δ) ≤ 2 is as follows. When the searcher

uses a threshold strategy, she lacks flexibility to adapt the threshold in different

states of the world and in different rounds of the search. In some states or rounds,

the searcher would prefer to stop when her threshold strategy prescribes to keep

searching. In other states or rounds, the searcher would prefer to keep searching

when her threshold strategy prescribes to stop. As there are only two ways to get

it wrong, and the payoffs cannot be negative by assumption (1), balancing the two

concerns yields the error factor of at most 2.7

7Despite some similarities, our result is not a variation of the prophet inequality of Krengel and
Sucheston (1978). In the prophet inequality setting, the prophet knows which candidate is the best.
The bound of 2 is then obtained for the case of independent types. In contrast, in our setting, types
can be correlated, and the partially informed searcher only knows the state ω. Given our assumption
(2) of the first order stochastic dominance, knowing the state is not enough to determine which
candidate is the best.
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Observe that none of the parameters, c, δ, or u0, affect the upper bound on the

relative cost of fairness. This is because the case where the restriction to threshold

strategies hurts the most is when the potential values of the candidates are so high

that the value of outside option u0 is negligible. In this case, by assumption (1), the

maximum accumulated cost of search,
∑n

t=1 δ
tc, is also negligible. As the costs do

not matter, and both U∗(β, c, δ) and UT (β, c, δ) are affected by the discount factor δ

in the same way, δ does not matter either.

6. Concluding Remarks

There is more to fairness than only the concern for how candidates are evaluated and

compared. The procedure for selecting among the candidates also matters. Any fair

evaluation of candidates can be undermined by strategically manipulating the inter-

viewing procedure. We model the hiring process as sequential search, and use this

to postulate fairness criteria on how this process should be conducted. Interestingly,

only very simple hiring strategies turn out to be fair. In the canonical search model

where candidates are given values, these fair strategies are the threshold strategies.

Threshold strategies are found to be optimal in the particular setting where the values

are i.i.d. (e.g., McCall, 1970). Our investigation shows that hiring strategies must

be restricted to that class if fairness is to be taken into account. This means that

threshold strategies are also relevant under more general distributions. In particu-

lar, the restriction to threshold strategies substantially simplifies finding best hiring

strategies under more realistic distributions.

Appendix

A.1. Proof of Theorem 1. Consider any strategy s satisfies (A). By our argument

after Theorem 1, it is straightforward to verify that if s is a partition strategy, then

it satisfies (B). We now prove that if s satisfies (B), then s is a partition strategy.

Let s = (σ, ϕ) be a strategy that satisfies (A) and (B). We show that s is the partition

strategy whose set of strong types, denoted by ΘS, is given as follows. Let ΘS be the

subset of types in Θ such that the search stops in round 1 and the first interviewed

candidate is hired with certainty, so

ΘS = {θ1 ∈ Θ : σ(θ1) = 1 and ϕ1(θ1) = 1}. (4)
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Note that ΘS is nonempty, because the ideal type θ̄ is in ΘS by condition (A).

Let σ0 be the probability that the search stops in round 0, so σ0 = σ(h0). Throughout

the proof, we will be assuming that

σ0 < 1. (5)

Otherwise, the search stops with certainty in round 0, so no one is interviewed, which

trivially satisfies the definition of the partition strategy. The rest of the proof is

divided into four steps.

Step 1. Whenever a strong candidate is interviewed, this candidate must have prob-

ability one to be hired. Moreover, the search must have continued with certainty after

interviewing earlier candidates. Formally, for each run rt = (θ1, ..., θt) ∈ Rs and each

i ∈ {1, ..., t}, if θi ∈ ΘS, then

σ(θ1, ..., θi) = 1, ϕi(θ1, ..., θi) = 1, and σ(θ1, ..., θj) = 0 for each j = 1, ..., i− 1. (6)

Proof of Step 1. By contradiction, suppose that there exist a run rt ∈ Rs and a

candidate in position iB ∈ {1, ..., t} with a type θiB ∈ ΘS such that (6) does not hold.

Denote this candidate by B and her type by θB, so θB = θiB . The ex-ante probability

that B is hired conditional on run rt is given by

qiB(s|rt) = (1− σ0)

(∏iB−1

j=1
(1− σ(θ1, ..., θj))

)
σ(θ1, ..., θiB)ϕiB(θ1, ..., θiB) < 1− σ0,

where the inequality is by (5), and because we have assumed that (6) does not hold.

Consider the permutation π that swaps iB and 1. Thus, candidate B is interviewed

in position π(iB) = 1 after the permutation. By θB ∈ ΘS and (4), candidate B is

hired with certainty in round 1, so the ex-ante probability that B is hired is given by

qπ(iB)(s|π(rt)) = (1− σ0)σ(θB)ϕπ(iB)(θ
B) = 1− σ0.

We thus obtain qiB(s|rt) < qπ(iB)(s|π(rt)), which contradicts condition (B). This

completes the proof of Step 1. �

Step 2. In each round, the search either stops or continues with probability 1. For-

mally, for each run rt = (θ1, ..., θt) ∈ Rs, and each i ∈ {1, ..., t},

σ(θ1, ..., θi) ∈ {0, 1}.
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Proof of Step 2. By contradiction, suppose that there exist a run rt = (θ1, ..., θt) ∈
Rs and a round i ∈ {1, ..., t} such that σ(θ1, ..., θi) ∈ (0, 1). Because the search stops

in round i with a positive probability, ri = (θ1, ..., θi) is also a run in Rs.

Let θ̂i+1 ∈ ΘS. Observe that r̂i+1 = (θ1, ..., θi, θ̂i+1) is a run in Rs, because ri is a run,

the search continues in round i with a positive probability, and by Step 1 it stops

in round i + 1 under r̂i+1. Then, by Step 1 and the assumption that θ̂i+1 ∈ ΘS, we

conclude that σ(θ1, ..., θi) = 0. Thus, we have reached a contradiction. �

Step 3. The search cannot stop after a candidate who is not strong is interviewed,

unless this is the last candidate. Formally, for each t = 1, ..., n − 1, each run rt =

(θ1, ..., θt) ∈ Rs, and each i ∈ {1, ..., t},

if θi 6∈ ΘS, then σ(θ1, ..., θi) = 0.

Proof of Step 3. By contradiction, suppose that there exist a round t < n, a run

rt = (θ1, ..., θt) ∈ Rs, and a candidate i ∈ {1, ..., t} with a type θi 6∈ ΘS such that

σ(θ1, ..., θi) > 0. By Step 2 it means that

σ(θ1, ..., θi) = 1, and σ(θ1, ..., θj) = 0 for each j = 1, ..., i− 1.

In particular, the search stops in round i. That is, i is the last round of the run rt,

so t = i and rt = ri = (θ1, ..., θi).

First, suppose that once the search stops in round i, the outside option is chosen with

certainty, so ϕ0(θ1, ..., θi) = 1. Observe that

q0(s|ri) = 1,

because the search does not stop in rounds 1, ..., i−1, and the outside option is chosen

in either round 0 or round i. Denote the candidate in position i+1 by C and her type

by θC , so θC = θi+1. Consider the permutation π that assigns C to position 1, and

assigns the rest of the candidates arbitrarily. Denote by π−1 the inverse permutation.

Let θC ∈ ΘS. Consider the sequence with a single interview given by r̂1 = (θC).

Because θC ∈ ΘS, by Step 1 we have σ(θC) = 1. Thus, r̂1 is a run in Rs. Moreover,

by Step 1, candidate C is hired with certainty, provided that C is interviewed. Thus,

the outside option cannot be chosen with probability one under r̂1, so q0(s|r̂1) = σ0,

and we have σ0. Now, apply the permutation π−1 conditional on the run r̂1. Under

this permutation, we restore the original order where C is in the position i+1. Under
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this order, we have q0(s|ri) = 1 as we established earlier. In summary, we obtain

q0(s|r̂1) = σ0 < 1 = q0(s|ri), where the inequality is by (5). Thus we have reached a

contradiction with condition (B).

Second, suppose that once the search stops in round i, the outside option is not chosen

with certainty, so ϕ0(θ1, ..., θi) < 1. Let iB ∈ {1, ..., i} be a candidate who may be

hired in round i, so ϕiB(θ1, ..., θi) > 0. Denote this candidate by B and her type

by θB, so θB = θiB . Denote the candidate in position i + 1 by C and her type by

θC , so θC = θi+1. Consider the permutation π that assigns B to position 1 and C

to position 2, and assigns the rest of the candidates arbitrarily. Denote by π−1 the

inverse permutation.

Let θC ∈ ΘS, and consider the sequence r̂2 = (θB, θC). Because θB 6∈ ΘS, by (4) we

have σ(θB) > 0. Because θC ∈ ΘS, by Step 1 we have σ(θB, θC) = 1. Thus, r̂2 is a

run in Rs. Moreover, by Step 1, candidate C is hired with certainty. Thus, candidate

B (who is in position 1) cannot be hired, so q1(s|r̂2) = 0.

Now, apply the permutation π−1 conditional on the run r̂2. Under this permutation,

we restore the original order where B and C are in positions iB and i+1, respectively.

Under this order, there is a strictly positive probability that run ri occurs, in which

case B may be hired, so qiB(s|π−1(r̂2)) > 0. We thus obtain

qiB(s|π−1(r̂2)) > q1(s|r̂2) = 0,

which contradicts condition (B). This completes the proof of Step 3. �

Step 4. If all the candidates are interviewed, then hiring probabilities do not depend

on the order, and candidates with the same type are hired equally likely. Formally,

for each run rn = (θ1, ..., θn) ∈ Rs and each i ∈ {1, ..., n},

for each j ∈ {1, ..., n}, if θi = θj then ϕi(θ1, ..., θn) = ϕj(θ1, ..., θn), (7)

and

for each π ∈ Π, ϕi(rn) = ϕπ(i)(π(rn). (8)

Proof of Step 4. Let rn = (θ1, ..., θn) be a run inRs. Condition (8) is straightforward

by (B). We now show (7).
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Suppose first that θn ∈ ΘS. By Steps 1 and 2, for all t = 1, ..., n− 1 we have θt 6∈ ΘS,

and thus θt 6= θn. By Step 1, ϕn(θ1, ..., θn) = 1. Therefore, ϕt(θ1, ..., θn) = 0 for all

t = 1, ..., n− 1, and hence (7) holds.

Alternatively, suppose that θn 6∈ ΘS. By Steps 1 and 2, for each t = 1, ..., n − 1 we

have θt 6∈ ΘS and σ(θ1, ..., θt) = 0, so round n is reached with certainty conditional on

the run rn. Consequently, for each t = 1, ..., n the ex-ante probability of being hired

conditional on rn is given by

qt(s|rn) = (1− σ0)ϕt(θ1, ..., θn). (9)

By (5) we have σ0 < 1, as otherwise rn would not be a run in Rs.

By contradiction, suppose that there exist i, j ∈ {1, ..., n} such that θi = θj but

ϕi(θ1, ..., θn) < ϕj(θ1, ..., θn). Using (5) and (9), this implies that

qi(s|rn) < qj(s|rn). (10)

Now, consider the permutation π that swaps i and j. Because θi = θj, the run

rt = (θ1, ..., θn) is unchanged under this permutation, so

qt(s|π(rn)) = qt(s|rn) for each t = 1, ..., n. (11)

Thus we obtain

qπ(i)(s|π(rn)) = qj(s|π(rn)) = qj(s|rn) > qi(s|rn),

where the first equality is by π(i) = j, the second equality is by (11), and the inequal-

ity is by (10). We have reached a contradiction with condition (B). This completes

the proof of Step 4. �

Steps 1–4 imply that every strategy that satisfies (A) and (B) is a partition strategy.

Indeed, by the definition of the set ΘS of strong types and Step 1, the procedure

stops and hires the last interviewed candidate when that candidate is strong. By

Step 3, whenever a candidate who is not strong is interviewed, the searcher does not

stop unless all candidates have been interviewed. By Step 4, when all candidates have

been interviewed, the candidates with equal types are treated equally. This completes

the proof of Theorem 1.

A.2. Proof of Theorem 2. We will use the following notation throughout the proof.

Given a prior β = (λω, pω)ω∈Ω, let Θβ be the common support of the distributions
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over types under prior β. Recall that the distributions are discrete, so Θβ is finite or

countable. For each ω, let Fω be the conditional distribution of values induced by the

distribution of types λω according to (2).

First, we introduce the notion of strict threshold strategy. A strict threshold strategy

is similar to a threshold strategy except in the event that all the candidates have been

interviewed and all of them are below the threshold, this strategy selects the outside

option.

Definition 4. A threshold strategy s = (σ, ϕ) is strict if for each (θ1, ..., θn) ∈ Θ̄n,

if v(θn) ≥ y then ϕn(θ1, ..., θn) = 1, and otherwise ϕ0(θ1, ..., θn) = 1.

Let s̄(y) denote the strict threshold strategy with threshold y.

Let β ∈ Bfosd and (c, δ) ∈ Cu0 . Let UP (β, c, δ), UT (β, c, δ), and UST (β, c, δ) be

the maximal expected payoffs when the searcher is restricted to partition strategies,

threshold strategies, and strict threshold strategies, respectively. Strict threshold

strategies are more restrictive than threshold strategies, which in turn are more re-

strictive than partition strategies, so

UST (β, c, δ) ≤ UT (β, c, δ) ≤ UP (β, c, δ). (12)

Next, consider a hypothetical situation where the searcher learns the state ω after

the very first interview. We will refer to this searcher as the oracle. Let Û∗(β, c, δ)

be the maximal expected payoff of the oracle under prior β from the perspective of

round 0.

Remark 2. Because the oracle knows the state ω after the first draw, the optimal

strategy for the oracle in state ω is Weitzman’s (1979) solution conditional on the

distribution of values Fω. This solution is described by a weakly decreasing sequence

of thresholds (τ ∗ω,t)t∈N, where for each t ∈ N, threshold τ ∗ω,t is the unique solution of

the equation

τ ∗ω,t = δ

(
−c+

∫ ∞
0

max{τ ∗ω,t, z}Fω(dz|xt+1)

)
. (13)

Weitzman’s (1979) condition that the sequence of thresholds must be weakly decreasing

in t is satisfied under our assumption that Fω(·|xt) is decreasing in t according to first

order stochastic dominance.
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Recall that U∗(β, c, δ) denotes the searcher’s maximal expected payoff when choosing

among all strategies. Observe that the searcher can only be better off if she learns

the distribution she faces after the very first interview, so

U∗(β, c, δ) ≤ Û∗(β, c, δ). (14)

Note that inequality (14) is tight, in the sense that for each prior β there exists a

sequence of priors (βk)k∈N such that

lim
k→∞

βk = β and lim
k→∞

U∗(βk) = Û∗(β, c, δ).

This is because for each ω ∈ Ω, distribution λω can be arbitrarily closely approximated

by a sequence of priors (βk)k∈N that converges to β and has the following property.

Choose each prior βk = (λω,k, pω)ω∈Ω such that for each ω′, ω′′ ∈ Ω and each k ∈ N,

distributions λω′,k and λω′′,k have disjoint support. In this case, the first interview

reveals ω, so U∗(βk) = Û(βk) for all k ∈ N.

Summarizing the above, we obtain

u0 ≤ UST (β, c, δ) ≤ UT (β, c, δ) ≤ UP (β, c, δ) ≤ U∗(β, c, δ) ≤ Û∗(β, c, δ). (15)

The first inequality is because the searcher can guarantee u0 by stopping in round

0. The second and third inequalities are by (12). The fourth inequality is because

the highest attainable payoff when restricting to partition strategies is weakly smaller

than that when using any strategies. The fifth inequality is by (14).

By (15), and because inequality (14) is tight, to prove the theorem it suffices to show

that
Û∗(β, c, δ)

UST (β, c, δ)
≤ 2 for all β ∈ Bfosd and all (c, δ) ∈ Cu0 , (16)

and there exist (c, δ) ∈ Cu0 and a sequence of priors (βk)k∈N in Bfosd such that

lim
k→∞

Û∗(βk, c, δ)

UST (βk, c, δ)
= lim

k→∞

Û∗(βk, c, δ)

UT (βk, c, δ)
= lim

k→∞

Û∗(βk, c, δ)

UP (βk, c, δ)
= 2. (17)

In what follows, w.l.o.g. we assume that the oracle’s optimal strategy prescribes to

search at least one round, so

Û∗(β, c, δ) > u0,

This is because otherwise, if Û∗(β, c, δ) ≤ u0, then the oracle prefers to stop immedi-

ately. But then so does the searcher who is constrained to strict threshold strategies,
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by using the threshold y = 0. In this case, inequality (15) holds as equality, in

particular, we obtain U∗(β, c, δ)/UST (β, c, δ) = 1 < 2.

The proof of (16) and (17) is divided into four steps. Steps 1 and 2 simplify the

problem by showing that it is sufficient to consider sets of priors that become simpler

with each step. Inequality (16) is proved in Step 3. Equality (17) is proved in Step 4.

Step 1 shows that w.l.o.g. we can restrict attention to the priors such that the

searcher’s optimal strict threshold strategy has the threshold equal to the lower bound

on the support.

Step 1. For each β ∈ Bfosd there exists β̂ ∈ Bfosd such that

Û∗(β, c, δ) ≤ Û∗(β̂, c, δ) and UST (β, c, δ) = UST (β̂) = Us̄(y)(β̂, c, δ), (18)

where y = inf{v(θ) : θ ∈ Θβ̂}.

Proof of Step 1. Let β = (λω, pω)ω∈Ω ∈ Bfosd. Given a number y > 0, let F̄ω,y

be the distribution with the floor y obtained from Fω by pooling at y all the values

below y. Formally, for each ω ∈ Ω and each i = 1, ..., n let

F̄ω,y(v̂|xi) = Fω(max{v̂, y}|xi), v̂ ≥ 0.

Let β̄y = (F̄ω,y, pω)ω∈Ω. Observe that

Û∗(β, c, δ) = Û∗(β̄0, c, δ) ≤ Û∗(β̄y, c, δ), (19)

where the equality is because β̄0 = β and the inequality is because the oracle can

only be better off as y increases.

Next, recall that a strict threshold strategy never chooses a candidate below its thresh-

old, and stops immediately when the candidate is weakly above the threshold. So, as

the lower bound on the support changes, it has no consequence on the payoff when

this bound is below the threshold, and it improves the payoff when this bound is

above the threshold. Thus we obtain that when the searcher uses a strict threshold

strategy with a threshold τ > 0, her expected payoff Us̄(τ)(β̄y, c, δ) satisfies

Us̄(τ)(β̄y, c, δ) is

constant in y for y < τ ,

continuously increasing in y for y ≥ τ .
(20)
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Next, let z be the solution of the equation

δ(−c+ z) = UST (β, c, δ). (21)

Let V (y) be the expected payoff of the searcher who uses the strict threshold strategy

whose threshold is equal to the lower bound on the support, so

V (y) = Us̄(y)(β̄y, c, δ).

We have

V (0) = Us̄(0)(β, c, δ) ≤ sup
τ≥0

Us̄(τ)(β, c, δ) = UST (β, c, δ) ≤ V (z), (22)

where the first equality is because β̄0 = β, the second equality is by the definition

of UST (β, c, δ), and the second inequality is because when the lower bound on the

support is z, the expected payoff cannot be smaller than δ(−c+ z), which is equal to

UST (β, c, δ) by (21).

Next, by (20) and (22), there exists y ∈ [0, z] such that

V (y) = UST (β, c, δ) = sup
τ≥0

Us̄(τ)(β̄y, c, δ) = UST (β̄y, c, δ). (23)

In particular, y is the optimal threshold under β̄y.

In summary, by (19) and (23), we obtain (18) with β̂ = β̄y. This completes the proof

of Step 1. �

Step 2 shows that w.l.o.g. we can restrict attention to the priors that have support

on at most two values.

Step 2. For each β ∈ Bfosd there exist β̂ ∈ Bfosd and y, z ∈ R+ such that y ≤ z and

Θβ̂ = {θ′, θ′′} with v(θ′) = y and v(θ′′) = z,

Û∗(β, c, δ) ≤ Û∗(β̂, c, δ), and UST (β, c, δ) = UST (β̂, c, δ).
(24)

Proof of Step 2. Let β = (Fω, pω)ω∈Ω ∈ Bfosd. Let y be the lowest nonnegative

value and let z be the highest value of the types in Θβ, so

y = max {0, inf{v(θ) : θ ∈ Θβ}} and z = sup{v(θ) : θ ∈ Θβ} = v(θ̄).

In what follows we consider y < z, as otherwise (24) trivially holds with β̂ = β.
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For each ω ∈ Ω and each t = 1, ..., n let qω,t be the probability such that

(1− qω,t)y + qω,tz =

∫ ∞
0

v̂dFω(v̂|xt).

Given x ∈ [y, z], let ξv̂ be the probability of z under the mean-preserving lottery over

{y, z} with mean v̂, so

(1− ξv̂)y + ξv̂z = v̂. (25)

Define β̂ = (F̂ω, pω)ω∈Ω as follows. For each ω ∈ Ω and each t = 1, ..., n let F̂ω(·|xt) be

obtained from Fω(·|xt) by replacing the value v(θ) of each draw of θ ∈ Θβ with the

mean-preserving lottery over y and z with probabilities 1 − ξθ and ξθ, respectively.

After integrating over all possible draws of θ from Fω(·|xt), the resulting distribution

over y and z assigns probability 1−qω,t to y and qω,t to z. In particular, Θβ̂ = {θ′, θ′′}
with v(θ′) = y and v(θ′′) = z.

First let us show that Û∗(β̂, c, δ) ≥ Û∗(β, c, δ). Let u∗ω,t(v̂) be the maximal expected

payoff of the oracle (excluding u0) from perspective of round t (after having inter-

viewed candidate t) when the best interviewed candidate up to round t has value v̂.

It suffices to show that

(1− ξv(θ))u
∗
ω,t(y) + ξv(θ)u

∗
ω,t(z) ≥ u∗ω,t(v(θ)) (26)

for each θ ∈ Θβ, each t = 1, ..., n, and each ω ∈ Ω.

Let τ ∗ω,t be the oracle’s optimal threshold under Fω in round t as given by (13).

Because the oracle stops and obtains v̂ whenever v̂ ≥ τ ∗ω,t, and prefers to continue

rather than stopping and having v̂ whenever v̂ < τ ∗ω,t, we have

u∗ω,t(v̂) = v̂ if v̂ ≥ τ ∗ω,t, and u∗ω,t(v̂) ≥ v̂ if v̂ < τ ∗ω,t.

Moreover, as follows from Weitzman (1979) and the Envelope Theorem, the marginal

increment of u∗ω,t(v̂) is increasing in v̂, so u∗ω,t(v̂) is weakly convex in v̂. Consequently,

we obtain (26).

Second, we show that

UST (β, c, δ) = Us̄(y)(β, c, δ) = Us̄(y)(β̂, c, δ) = UST (β̂, c, δ).



30 SCHLAG AND ZAPECHELNYUK

Let µt be the expected value of candidate t under β. Note that this value is the same

under β̂ by the construction of β̂, and it is given by

µt =
∑
ω∈Ω

(∫ ∞
0

v̂dFω(v̂|xt)
)
pω =

∑
ω∈Ω

((1− qω,t)y + qω,tz) pω. (27)

By Step 1, w.l.o.g. we assume that under β the searcher’s optimal threshold is the

lower-bound value y, so

UST (β, c, δ) = Us̄(y)(β, c, δ).

Clearly, when the searcher uses the strategy with threshold y, she stops in round 0

or 1, so her expected payoff is the same under β and β̂, and it is given by

Us̄(y)(β, c, δ) = Us̄(y)(β̂, c, δ) = u0 + max{0, δ(−c+ µ1)}.

It remains to show that threshold y is optimal under β̂, and therefore Us̄(y)(β̂, c, δ) =

UST (β̂, c, δ).

By assumption, Fω(·|xt) is decreasing in t according to f.o.s.d. That is, conditional on

any given threshold τ , the searcher’s expected payoff can only get worse with time.

Consequently, as y is the optimal threshold from perspective of round 0, it follows that

y must remain the optimal threshold from perspective of every round t = 1, ..., n− 1.

This means that when the value of the best interviewed candidate up to round t is

y, then the searcher prefers to stop rather than to search one more round and then

stop,

y ≥ δ(−c+ µt) for each t = 2, ..., n, (28)

where µt is the expected value in round t given by (27).

Let
¯
uSTt (τ, β) be the expected payoff (excluding u0) from the perspective of round t

when the searcher uses the strict threshold strategy with threshold τ , and the value

of the best interviewed candidate up to round t is equal to y. We show by induction

that for every threshold τ > y we have

¯
uST1 (τ, β̂) ≤ y. (29)

This inequality explains the searcher’s optimal choice in round 1 when she drew the

worst possible value, y. The right-hand side of (29) is the payoff of stopping in round

1 and getting that value. The left-hand side of (29) is the expected payoff when
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continuing the search with threshold τ . Inequality (29) means stopping is preferred.

This proves that threshold τ is weakly inferior to threshold y.

We now provide the induction argument to prove (29). In the very last round n, if

the value of the best candidate interviewed so far is y, the expected payoff in this

round cannot exceed y, so

¯
uSTn (τ, β̂) ≤ y.

We proceed by induction in t = n− 1, n− 2, ..., 2. Suppose that

¯
uSTt (τ, β̂) ≤ y. (30)

Then

¯
uSTt−1(τ, β̂) = δ

(
−c+

(∑
ω∈Ω

qω,tpω

)
z +

(
1−

∑
ω∈Ω

qω,tpω

)
¯
uSTt (τ, β̂)

)

≤ δ

(
−c+

(∑
ω∈Ω

qω,tpω

)
z +

(
1−

∑
ω∈Ω

qω,tpω

)
y

)
= δ (−c+ µt) ≤ y.

The first line is because when the best value up to t−1 is y, which is smaller than the

threshold τ , the search must proceed to round t. In round t, the searcher gets z with

probability qω,t in each state ω. With the complementary probability she gets y, in

which case her continuation payoff is
¯
uSTt (τ, β̂). The second line is by the induction

assumption (30). The third line is by (27) and (28). This completes the induction

argument and the proof of Step 2. �

Step 3 shows inequality (16).

Step 3. For each β ∈ Bfosd, Û∗(β, c, δ) ≤ 2UST (β, c, δ).

Proof of Step 3. Let β ∈ Bfosd = (Fω, pω)ω∈Ω. By Step 2, w.l.o.g., suppose that

Θβ = {θ′, θ′′} with v(θ′) = y, v(θ′′) = z, and y < z. We can exclude the case of y = z,

because in that case β is degenerate, and Û∗(β, c, δ) = UST (β, c, δ).

We represent each distribution Fω(·|xt) as the lottery over y and z with probabilities

1− qω,t and qω,t, respectively. Thus, each state ω induces a sequence of probabilities

(qω,1, ..., qω,n). Because we have assumed that Fω(·|xt) is ordered in t according to

f.o.s.d., this sequence of probabilities is decreasing, so

qω,1 ≥ qω,2 ≥ ... ≥ qω,n for each ω ∈ Ω.



32 SCHLAG AND ZAPECHELNYUK

Let

Qt,Ω = (1− q1,ω)(1− q2,ω)...(1− qt,ω).

Consider the oracle’s optimal payoff. Because we have only two values in the sup-

port, y and z, it follows from Weitzman (1979) that the oracle’s optimal strategy is

described by a cutoff round Tω ∈ {1, ..., n} such that the oracle stops the search when

z is drawn or when round Tω is reached. The oracle’s optimal payoff is given by

Û∗(β, c, δ) =
∑
ω∈Ω

v∗ωpω, (31)

where v∗ω is the oracle’s expected payoff in state ω,

v∗ω = u0 + δ(−c+ q1,ωz) + δ2Q1,ω(−c+ q2,ωz) + ...+ δTωQTω−1,ω(−c+ qTω ,ωz)

+ δTωQTω ,ωy. (32)

W.l.o.g. suppose that prior β satisfies the following property:

qt,ω = 0 for each t ∈ {Tω + 1, ..., n} and each ω ∈ Ω. (33)

In words, it is impossible to draw z after the round when the oracle stops the search.

Changing a positive qt,ω to zero in these rounds has no effect on the oracle’s payoff,

but it weakly reduces the payoff of the searcher who uses a strict threshold strategy.

So, overall, the ratio of the oracle’s payoff to the optimal threshold payoff increases.

Next, consider the payoffs under strict threshold strategies. Because we have only

two values in the support, y and z, we only need to consider two strict thresholds

strategies: one with threshold y that stops in round 1, and the other with threshold

z that continues searching until z is drawn or the entire pool of candidates is inter-

viewed. Let vyω and vzω be the searcher’s payoffs in state ω when using thresholds y

and z, respectively. We have

vyω = u0 + δ(−c+ q1,ωz + (1− q1,ω)y) = δ(−c+ q1,ωz) + δQ1,ωy. (34)

We also have

vzω = u0 + δ(−c+ q1,ωz) + δ2Q1,ω(−c+ q2,ωz) + ...+ δTωQTω−1,ω(−c+ qTω ,ωz)

− δTωQTω ,ω(δ + δ2 + ...+ δn−Tω)c

= v∗ω − δTωQTω ,ω

(
y +

δ(1− δn−Tω)

1− δ
c

)
, (35)
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where we used (33) to establish the first equality, and the second equality is by the

definition of v∗ω in (32). The expected payoffs from the two threshold strategies are

given by

Us̄(y)(β, c, δ) =
∑
ω∈Ω

vyωpω and Us̄(z)(β, c, δ) =
∑
ω∈Ω

vzωpω. (36)

Next, we have

v∗ω − vzω − vyω = δTωQTω ,ω

(
y +

δ(1− δn−Tω)

1− δ
c

)
− δ(−c+ q1,ωz)− δQ1,ωy − u0

=
(
δTω−1QTω ,ω −Q1,ω

)
δy +

(
δTωQTω ,ω

(1− δn−Tω)

1− δ
+ 1

)
δc− δq1,ωz − u0

≤ 1− δn

1− δ
δc− u0. (37)

The first equality is by (32), (34), and (35). The second equality is by rearranging

of terms. The first inequality is because QTω ,ω ≤ Q1,ω ≤ 1, so δTω−1QTω ,ω −Q1,ω ≤ 0

and

δTωQTω ,ω
(1− δn−Tω)

1− δ
+ 1 ≤ δTω

(1− δn−Tω)

1− δ
+ 1 =

(
δTω + δTω+1 + ...+ δn−1

)
+ 1

≤ 1 + δ + ...+ δn−1 =
1− δn

1− δ
.

By (31), (36), and (37) we obtain

Û∗(β, c, δ)− Us̄(z)(β, c, δ)− Us̄(y)(β, c, δ) =
∑
ω∈Ω

(v∗ω − vzω − vyω)pω

≤ 1− δn

1− δ
δc− u0 ≤ 0, (38)

where the last inequality is by assumption (1).

Finally, the searcher’s payoff from the optimal threshold strategy is given by

UST (β, c, δ) = max{Us̄(y)(β, c, δ), Us̄(z)(β, c, δ)}. (39)

Thus, we obtain

Û∗(β, c, δ)

UST (β, c, δ)
=
Us̄(z)(β, c, δ)

UST (β, c, δ)
+
Û∗(β, c, δ)− Us̄(z)(β, c, δ)

UST (β, c, δ)

≤
Us̄(z)(β, c, δ)

Us̄(z)(β, c, δ)
+
Û∗(β, c, δ)− Us̄(z)(β, c, δ)

Us̄(y)(β, c, δ)
≤ 2,
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where the first inequality is by (39), and the second inequality is by (38). This

completes the proof of Step 3. �

Step 4 proves the tightness of the bound.

Step 4. There exist (c, δ) ∈ Cu0 and a sequence of priors (βk)k∈N in Bfosd such that

lim
k→∞

Û∗(βk, c, δ)

UST (βk, c, δ)
= lim

k→∞

Û∗(βk, c, δ)

UT (βk, c, δ)
= lim

k→∞

Û∗(βk, c, δ)

UP (βk, c, δ)
= 2. (40)

Proof of Step 4. Given u0 > 0, consider (c, δ) ∈ Cu0 that satisfy

(δ2 + δ3 + ...+ δn)c = u0. (41)

Let (pk, qk, zk)k∈N be a sequence such that

pk, qk ∈ (0, 1] for each k ∈ N, lim
k→∞

pk = 0, and lim
k→∞

qk = 0,

and

zk =
c

pkqk
.

Using the above definition of zk, we obtain the next expression that will be used later,

pkδ(−c+ qkzk) = (1− pk)δc. (42)

Consider a sequence of priors (βk)k∈N, where each βk is described as follows. There

are two states, 0 and 1, that are realized with probabilities 1−pk and pk, respectively.

When state 0 is realized, then all candidates have value 0 with certainty. When state

1 is realized, then the value of each candidate is 0 with probability 1− qk and zk with

probability qk, independently of other candidates. Note that βk does not satisfy our

assumption of the common support across the states. This simplifies the exposition.

The proof can be easily adjusted to accommodate a probability of value zk in state 0

that is positive but fast vanishing as k →∞.

Observe that under each βk, as there are only two types in Θβ, threshold and partition

strategies coincide. Moreover, because the lower type has value 0, so it is as good as

the outside option, the payoffs of threshold and strict threshold strategies are equal.

We thus obtain

UST (βk, c, δ) = UT (βk, c, δ) = UP (βk, c, δ). (43)
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Next, we compute the payoff from the optimal strict threshold strategy, UST (βk, c, δ).

We only need to compare the outside option whose payoff is

Us̄(0)(βk, c, δ) = u0. (44)

and the strategies with two thresholds, y and zk, for an arbitrary y ∈ (0, zk). Thresh-

old y means stopping after the first interview, so

Us̄(y)(βk, c, δ) = u0 + (1− pk)δ(−c) + pkδ(−c+ qkzk) = u0, (45)

where the first equality is by the definition of βk and the second equality is by (42).

Threshold zk means searching until zk is drawn, or until all the candidates are inter-

viewed, so

Us̄(z)(βk, c, δ) = u0 + (1− pk)δ(−c)(1 + δ + ...+ δn−1)

+ pkδ(−c+ qkzk)(1 + (1− qk)δ + ...+ (1− qk)n−1δn−1)

= u0 + (1− pk)δc
(
δ((1− qk)− 1) + ...+ δn−1((1− qk)n−1 − 1)

)
≤ u0, (46)

where the first equality is by the definition of βk, the second equality is by (42), and

the inequality is because qk ≥ 0. Consequently, by (44), (45), and (46), we obtain

UST (βk, c, δ) = max
{
Us̄(0)(βk, c, δ), Us̄(y)(βk, c, δ), Us̄(z)(βk, c, δ)

}
= u0. (47)

Next, we find the payoff from the oracle’s optimal strategy, Û∗(βk, c, δ). The oracle

stops in round 1 when the state is 0, and searches until zk is drawn or until all the

candidates are interviewed when the state is 1. Thus,

Û∗(βk, c, δ) = u0 + (1− pk)δ(−c)

+ pkδ(−c+ qkzk)(1 + (1− qk)δ + ...+ (1− qk)n−1δn−1)

= u0 + (1− pk)δc
(
(1− qk)δ + ...+ (1− qk)n−1δn−1

)
,

where the first equality is by the definition of βk and the second equality is by (42).

Taking the limit as k →∞, so pk → 0 and qk → 0, we obtain

lim
k→∞

Û∗(βk, c, δ) = u0 + δc(δ + ...+ δn−1) = 2u0, (48)

where the second equality is by (41). Consequently, by (43), (47) and (48) we obtain

(40). This completes the proof of Step 4. �
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