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Motivation

Information does not come for free (Simon ’96).

Information provider (Sender) faces a heterogeneous audience.

I study the persuasion of an inattentive Receiver who is
privately informed about her cost and benefit of information.
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Example

A seller designs a signal S of the product’s quality θ to persuade
a buyer to buy.

Increasing the correlation between S and θ has two effects:

1. On the buyer’s decision to buy if she observes the realization
of S (intensive margin of persuasion).

2. On the buyer’s attention (extensive margin of
persuasion).

Results:

1. Characterization of the extensive margin.

2. Signals are equivalent to persuasion mechanisms.

3. Optimal signal in applications.
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Model

Receiver’s payoff from action a ∈ {0, 1} and state ∈ [0, 1] is

UR(a, θ, e; c, λ) = a(θ − c)︸ ︷︷ ︸
material payoff uR

− λk(e)︸ ︷︷ ︸
effort cost

,

in which:

I c ∈ [0, 1] is the threshold for action.

I λ ∈ [0, 1] is the attention cost.

I e ∈ [0, 1] is the attention effort, and k is strictly convex
(this talk).

I θ ∼ abs. cont. CDF F0, with mean x0.

Sender’s payoff is US(a) = a.

Receiver is privately informed about her type: (c, λ) ∈ T , drawn
from CDF H and independent of θ.
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Timing

1. Sender publicly commits to a signal σ : Θ→ ∆M (M = [0, 1],

meas. σ).

2. Receiver chooses an effort e, knowing her type.

3.1 Nature draws the state θ from F0;
3.2 Nature draws a message m from σ(θ).

4. With probability e, Receiver observes the message m;
and then chooses action a.

Optimal Action given belief µ, of type-(c, λ) Receiver, is:

a? = 1{Eµθ ≥ c}.

Marginal Benefit of Effort given belief distribution p, of
type-(c, λ) Receiver, is:

A(c) = Ep
[
EµuR(a?, c, θ)

]
− uR(1{x0 ≥ c}, c, x0).
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Literature

Persuasion of privately informed Receiver, with costless
access to signal. (Rayo-Segal ’10; Kolotilin et al. ’17; Kolotilin ’18;

Guo-Shmaya ’19; ...)

Persuasion of inattentive Receiver, without private
information. (Bizzotto et al. ’20; Wei ’21; Matyskova-Montes ’23.)

- Bloedel-Segal wp:

main specification: costly mutual information.
alternative: costly attention effort e → binary signals.

Attention management: US = uR. (Lipnowski et al. ’20, ’22.)

Incomplete-Information beauty contests (Myatt-Wallace ’14;
Chahrour ’14; Galperti-Trevino ’20.)
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Signals as Information Policies

We identify a signal with its induced information policy.

The information
policy of CDF F is:

IF (x) =

∫ x

0
F (x̃) dx̃, x ≥ 0.

1. IF is convex ← F is nondecreasing.

2. IF ≤ IF ≤ IF0 , in which:

F is posterior mean’s CDF induced by

an uninformative signal.

F0 is posterior mean’s CDF induced by

a fully informative signal.
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posterior mean.
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1. IF is convex ← F is nondecreasing.

2. IF ≤ IF ≤ IF0 , in which:

F is posterior mean’s CDF induced by

an uninformative signal.

F0 is posterior mean’s CDF induced by

a fully informative signal.

Fact 1 (Gentzkow-Kamenica ’16; Kolotilin ’18).

If I : R+ → R+ satisfies 1. and 2., then: I is the information
policy of the CDF of the posterior mean for some signal.
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Informativeness

x0 1

IF

posterior mean (x)

Blackwell’s ranking of information policies
I ≥ J iff I is more Blackwell informative than J .

7 / 16



Informativeness

x0 1

IF

IF0

posterior mean (x)

Blackwell’s ranking of information policies
I ≥ J iff I is more Blackwell informative than J .

7 / 16



Informativeness

x0 1

IF

IF0

posterior mean (x)

Blackwell’s ranking of information policies
I ≥ J iff I is more Blackwell informative than J .

7 / 16



Informativeness

x0 1

IF

IF0

I

J

posterior mean (x)

Blackwell’s ranking of information policies
I ≥ J iff I is more Blackwell informative than J .

7 / 16



Extensive Margin
“Net informativeness” is denoted by

∆I = I − IF .

Lemma 1 (Marginal Benefit of Effort) The marginal
benefit of effort given information policy I satisfies:

A(c) = ∆I(c), for all c ∈ [0, 1].

x0 1

IF
I

posterior mean (x)
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Extensive Margin
“Net informativeness” is denoted by

∆I = I − IF .
Lemma 1 (Marginal Benefit of Effort) The marginal
benefit of effort given information policy I satisfies:

A(c) = ∆I(c), for all c ∈ [0, 1].

cλ(I) x0 cλ(I) 1

λκ

threshold type (c)

A

Linear Cost (k(e) = κe)
There exist cutoff types,
given attention-cost λ:
cλ(I), cλ(I).
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Supermodularity

Receiver’s value of information policy I is her interim payoff,
given her type:

VR(∆I(c), λ) := max
e∈[0,1]

e∆I(c)− λk(e).

A persuasion mechanism is a menu of information policies:
I• = (Ir)r∈T .

A persuasion mechanism I• is incentive compatible (IC) if:

VR(∆I(c,λ)(c), λ) ≥VR(∆I
(̃c,λ)

(c), λ)

for all types (c, λ) ∈ T and reports (̃c, λ) ∈ T .
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Equivalence
An IC persuasion mechanism I• and an information policy J
induce the same effort distribution if:

arg max
e∈[0,1]

e∆J(c)− λk(e) = arg max
e∈[0,1]

e∆I(c,λ)(c)− λk(e),

for all types (c, λ).

An IC persuasion mechanism I• and an information policy J
induce the same action distribution if:

1− J ′(c−)︸ ︷︷ ︸
Prob. of {a? = 1}

= 1− I ′(c,λ)(c
−),

for all types (c, λ) who exert positive effort under I•.

Theorem 1
For every IC persuasion mechanism I• there exists an
information policy J that induces the same effort and action
distributions.
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Equivalence

Key step: The upper envelope of the information policies in I• is
an information policy.

x0 1

posterior mean (x)

If λ = 0 is known to Sender: Kolotilin et al. ’17.
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Sender’s Maximization

The Sender’s expected payoff from information policy I, if
Receiver’s cost k is linear, is:

VS(I) =

∫
T

1{cλ(I) ≤ c ≤ cλ(I)}︸ ︷︷ ︸
Extensive margin

e>0

[
1− I ′(c−)− 1{x0 ≥ c}

]︸ ︷︷ ︸
Intensive margin

dH(c, λ).

I is an optimal information policy if it solves the Sender’s
problem:

sup
I : R+→R+

VS(I)

subject to:

1. I is convex.

2. IF ≤ I ≤ IF0 .
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Optimal Signal
Assumption (SPness)

1. Attention cost λ is independent of threshold c.

2. Threshold c admits an abs. cont. PDF f that is
single-peaked, with CDF F .

θ is revealed Pool

state (θ)0 1θ?

Theorem 2
Under the SPness assumption, there exists an optimal
information policy that is induced by an upper censorship signal.

Key step
Sender’s value functional:

VS(I) =

∫ 1

λ=0

∫ 1

c=0
VR(∆I(c), λ)h′c(c) dchλ(λ) dλ.
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Application

1. Sender knows Receiver’s attention
cost λ.

2. k is linear.

3. Sender’s payoff is:

US(a, e) = ψa+ γe.

Interpretation:

I ψ ≥ 0 is the
mobilizing character
of the government.

I γ ≥ 0 is the size of
the media market.

Lemma 2 (Media Censorship)
Under 1., 2. and 3., and SPness, there exists an optimal
information policy that is induced by a bi-upper censorship
signal.

θ is revealed Pool1 Pool2

0 1θ1 θ2

I Kolotilin et al. ’22: no media market.

I Gehlbach-Sonin ’14: Sender knows c, and does not know λ.
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