Financial Constraints and Firm Size: Micro-Evidence and Aggregate Implications

Miguel H. Ferreira¹ **Timo Haber**² Christian Rörig³ ¹QMUL ²De Nederlandsche Bank ³QuantCo, Inc. August 2023

EEA-ESEM Barcelona 2023

Views expressed are those of the authors and do not necessarily reflect official positions of De Nederlandsche Bank or the Eurosystem.

Size and financial constraints

According to standard theory, small firms are constrained, large firms are unconstrained.

▶ Gertler and Gilchrist, 1994

Research questions:

- Is this an oversimplification?
- Does it matter for aggregate outcomes?

Size and financial constraints

According to standard theory, small firms are constrained, large firms are unconstrained.

• Gertler and Gilchrist, 1994

Research questions:

- Is this an oversimplification?
- Does it matter for aggregate outcomes?

Size and financial constraints

According to standard theory, small firms are constrained, large firms are unconstrained.

• Gertler and Gilchrist, 1994

Research questions:

- Is this an oversimplification?
- Does it matter for aggregate outcomes?

Empirical

- Use credit data on the universe of Portuguese firms
- Provide a novel stylized fact
- Validate model mechanism

Theoretical

- Model with financial frictions and richer productivity structure
- Importance of large constrained firms for shocks propagation
- Use the model to assess aggregate outcomes

I. Empirical fact: Constrained firms across the entire size distribution

II. Quantitative model

- 1. Distribution of constrained firms in line with the data
- 2. Top 10% of large constrained firms explain 2/3 of aggregate effects of financial shocks
- 3. Ignoring the joint size-constrained distribution can lead to underestimating effects of financial shocks by up to 3 times
- III. Mechanism validation: Constrained firms have higher elasticity to different shocks

1. Introduction

2. Literature

- 3. Empirics and stylized fact
- 4. Structural model

5. Results

6. Mechanism validation

Literature

 Firm dynamics: Gertler & Gilchrist (1994), Kashyap et al. (1994), Cooley & Quadrini (2001), Khan & Thomas (2013), Kudlyak & Sanchez (2017), Ottonello & Winberry (2018), Cloyne et al. (2023), Mehrotra & Sergeyev (2020), Crouzet & Mehrotra (2020), Pugsley et al. (2021)

 \rightarrow Contribution: Importance of joint size and financial constraints distribution for aggregate dynamics

- Measuring financial constraints: Kaplan & Zingales (1997), Lamont & Polk (2001), Whited & Wu (2006), Farre-Mensa & Ljungqvist (2016), Bodnaruk et al. (2015), Buehlmaier & Whited (2018), Hadlock & Pierce (2010), Hennessy & Whited (2007)
 - \rightarrow Contribution: Measurement based on detailed, firm-specific credit information

Empirics and stylized fact

- Use Informação Empresarial Simplificada (IES) data on the universe of Portuguese firms between 2006 and 2017
- Matched with Bank of Portugal's credit register that records individual bank relationships and respective credit situations
- This data set is very granular:
 - Any (potential) loan amounting to 50 Euros or more is recorded in the credit register
 - Several types of credit, including potential, overdue, maturing and secured credit

Proxies for intensive margin financial constraints

Our main measure for financial constraints is:

Constrained $I_{i,t} = 1$ (Potential Credit_{i,t} = 0 & Δ Effective credit_{i,t} \leq 0)

Intuition:

- Quantity based measure of financial constraints
- Firms exhausted all credit lines from banks
- No increase in debt across years

Some robustness measures:

- Const. $II_{i,t} = \mathbb{1}(Potential Credit_{i,t} = 0 \& Overdue Credit_{i,t} > 0)$
- Const. $III_{i,t} = 1$ (Potential Credit_{i,t} = 0 & Δ Overdue Credit_{i,t} > 0)
- Const. IV_{i,t} = 1(Secured Credit / Assets_{i,t} > p(90th)) (see e.g. Rampini and Viswanathan, 2021)
- Const. $V_{i,t} = 1$ (Credit < 1 Year Maturity / Assets_{i,t} > p(90th))

Our main measure for financial constraints is:

Constrained $I_{i,t} = 1$ (Potential Credit_{i,t} = 0 & Δ Effective credit_{i,t} \leq 0)

Intuition:

- Quantity based measure of financial constraints
- Firms exhausted all credit lines from banks
- No increase in debt across years

Some robustness measures:

- Const. $II_{i,t} = \mathbb{1}(Potential Credit_{i,t} = 0 \& Overdue Credit_{i,t} > 0)$
- Const. $III_{i,t} = \mathbb{1}(Potential Credit_{i,t} = 0 \& \Delta Overdue Credit_{i,t} > 0)$
- Const. IV_{i,t} = 1(Secured Credit / Assets_{i,t} > p(90th)) (see e.g. Rampini and Viswanathan, 2021)
- Const. $V_{i,t} = \mathbb{1}(\text{Credit} < 1 \text{ Year Maturity } / \text{ Assets}_{i,t} > p(90th))$

Our main measure for financial constraints is:

Constrained $I_{i,t} = 1$ (Potential Credit_{i,t} = 0 & Δ Effective credit_{i,t} \leq 0)

Intuition:

- Quantity based measure of financial constraints
- Firms exhausted all credit lines from banks
- No increase in debt across years

Some robustness measures:

- Const. $II_{i,t} = \mathbb{1}(Potential Credit_{i,t} = 0 \& Overdue Credit_{i,t} > 0)$
- Const. $III_{i,t} = 1$ (Potential Credit_{i,t} = 0 & Δ Overdue Credit_{i,t} > 0)
- Const. IV_{i,t} = 1(Secured Credit / Assets_{i,t} > p(90th)) (see e.g. Rampini and Viswanathan, 2021)
- Const. $V_{i,t} = \mathbb{1}(\text{Credit} < 1 \text{ Year Maturity } / \text{ Assets}_{i,t} > p(90th))$

Main Empirical Fact

Constrained firms exist across the entire size distribution

All measures 🕨 Const. Due 🕩 Const. Due 0 🕩 Const. Secured 🕩 Const. Maturing

Structural model

Structural model - overview

- Heterogeneous firms model with financial frictions
- Representative household, chooses labour and consumption details
- Firms produce according to the following production function:

$$y_{i,t} = \varphi_{i,t} k_{i,t}^{\alpha} l_{i,t}^{\nu}$$
 where $\alpha + \nu < 1$

• Idiosyncratic productivity schedule:

$$\ln \varphi_{i,t} = \underbrace{\theta_i}_{\text{Permanent}} + \underbrace{w_{i,t}}_{\text{Transitory}}$$

where

$$\begin{split} \theta_{i} &\sim \mathcal{N}\left(\mu_{\theta}, \sigma_{\theta}^{2}\right) \\ w_{i,t} &= \rho_{w} w_{i,t-1} + \varepsilon_{i,t}, \quad \varepsilon_{i,t} \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right), \end{split}$$

• Firms maximize profits subject to a collateral constraint

• The **optimal**, **unconstrained choice** of capital $k^*(\varphi_i)$ solves the following equation

$$\beta \mathbb{E}_t \left[\frac{d\pi(\varphi_{i,t+1}, k_{i,t+1})}{dk_{i,t+1}} | \varphi_{i,t} \right] + \beta(1-\delta) = 1$$

We consider all firms that cannot implement $k^*(\varphi_{i,t})$ as constrained.

• Standard entry assumptions • details

• Firms maximize profits subject to a collateral constraint

• The optimal, unconstrained choice of capital $k^*(\varphi_i)$ solves the following equation

$$eta \mathbb{E}_t \left[rac{d\pi(arphi_{i,t+1},k_{i,t+1})}{dk_{i,t+1}} | arphi_{i,t}
ight] + eta(1-\delta) = 1$$

We consider all firms that cannot implement $k^*(\varphi_{i,t})$ as constrained.

• Standard entry assumptions • details

The within-period timing of an incumbent firm i can be illustrated as follows (dropping respective subscript below):

- 1. Observes its idiosyncratic productivity φ_t , current stock of debt b_t and capital $k_t \times b_t$
- 2. Chooses labour input I_t and production y_t
- 3. If hit by the stochastic, exogenous death shock it repays outstanding debt b_t and exit
- 4. Conditional on survival, firm chooses its investment k_{t+1} and borrowing b_{t+1} subject to the borrowing constraint $b_{t+1} \le \xi x_t$

Calibration

- Objective: Discipline joint distribution of size and financial constraints
- 6 free parameters $\xi,\,\sigma_{\theta},\,\rho_{\rm w},\,\sigma_{\rm w},\,\sigma_{\rm ke}$ and $\mu_{\rm ke}$
- 7 moments

Table 1: Calibrated model fit

Moment	Data	Model
Size of 90th percentile / median	9.440	9.218
Average leverage	0.626	0.330
Std. dev. of value added	1.559	1.644
1-year autocorrelation of value-added	0.924	0.928
5-year autocorrelation of value-added	0.818	0.762
Std. dev. of value-added growth	0.382	0.384
% of constrained firms	0.244	0.250

Notes. All constrained firms moments are calculated using constrained measure I.

Steady state distributions - constrained and unconstrained

Results

Aggregate response financial shock

Result

Effects of financial shocks are mainly driven by large constrained firms

Mechanisms at play

Mechanism

Large firms have a higher share of total capital while having the same elasticity

- Importance of matching the joint constrained-size firm distribution
 - 1. Shut down permanent productivity component Alternative calibration 1 Alternative calibration distribution
 - 2. Directly target the distribution Alternative calibration 2
- TFP shock produces qualitatively similar results but quantitatively smaller Alternative calibration: Share constrained

Mechanism validation

Constrained firms respond more to shocks

• Run the following regressions, in the spirit of Crouzet & Mehrotra (2020):

$$g_{i,t} = \kappa u_{i,t} + \sum_{j \in \mathcal{J}} (\alpha_j + \beta_j u_{i,t}) \mathbf{1}_{i \in \mathcal{S}_t^{(j)}} + (\zeta + \eta u_{i,t}) \text{Const.} n_{i,t}$$
$$+ \gamma_l + \delta_t + \lambda_{lt} + \alpha_i + \epsilon_{i,t},$$

- $g_{i,t}$ is the year-on-year log change in turnover or employees
- the set $\mathcal{S}_t^{(j)}$ is the *j*th size group, e.g. all firms above the 90th but below the 99th percentile
- Const_{*i*,t} refers to the indicator measuring financial constraints
- *u_{it}* takes the form of three different shocks
 - 1. Year-on-year GDP growth;
 - 2. TFP estimated as in Ackerberg et al. (2015)
 - 3. Bank shocks as in Amiti and Weinstein (2018)

	Un-	Constrained measure					
	conditional	I	П	111	IV	V	
$\% \Delta$ GDP	2.316	0.311	1.495	0.882	0.085	-0.145	
	(0.056)	(0.054)	(0.175)	(0.217)	(0.103)	(0.102)	
TFP shock	0.086	0.016	0.076	0.075	0.068	0.065	
	(0.001)	(0.004)	(0.009)	(0.010)	(0.007)	(0.008)	
Fin. shock	0.054	0.014	0.155	0.128	0.179	0.073	
	(0.005)	(0.013)	(0.049)	(0.057)	(0.040)	(0.035)	

Constrained firms exhibit higher sensitivity to GDP, TFP and financial shocks, conditional on size

Robustness

- Employment GDP TFP Financial Shock
- Include time fixed effects GDP
- Exclude firms with zero potential credit in all periods GDP TFP Financial Shock
- Control for supply side effects GDP TFP Financial Shock

Three main contributions

- 1. Financially constrained firms exist across the entire size distribution
- 2. Large constrained firms account for 2/3 of the aggregate response to financial shocks
- 3. Importance of matching firm joint size-constrained distribution

Three main contributions

- 1. Financially constrained firms exist across the entire size distribution
- 2. Large constrained firms account for 2/3 of the aggregate response to financial shocks
- 3. Importance of matching firm joint size-constrained distribution

Three main contributions

- 1. Financially constrained firms exist across the entire size distribution
- 2. Large constrained firms account for 2/3 of the aggregate response to financial shocks
- 3. Importance of matching firm joint size-constrained distribution

Thank you for your attention!

Appendix

Gertler and Gilchrist, 1994:

"The informational frictions that add to the costs of external finance apply mainly to younger firms, firms with a high degree of idiosyncratic risk, and firms that are not well collateralized. These are, on average, smaller firms."

Back
Tables

Variable	Mean	Median	Std. Dev.	<90th	Size grou 90th- 99th	p median 99- 99.5th	>99.5th
Total Assets	3.15	0.28	85.10	0.25	5.06	42.71	135.70
Turnover	1.86	0.23	33.59	0.21	3.25	19.93	27.94
Potential credit	0.19	0.03	4.56	0.03	0.14	0.95	2.95
Effective credit	0.53	0.04	5.96	0.04	1.15	6.93	126.73
Leverage	0.28	0.20	0.38	0.20	0.24	0.17	0.08
Liquidity ratio	0.14	0.06	0.19	0.06	0.02	0.01	0.01
Age	15.01	12.00	12.26	12.00	21.00	23.00	21.50
Employees	14.47	4.00	130.58	4.00	25.00	95.00	98.00
# Banks	2.45	2.00	1.89	2.00	4.00	4.00	5.00

Back

Debt and financial shocks

	(1)	(2)	(3)
Bank shock: Effective credit	0.161***	0.0496***	-0.00680
	(0.0118)	(0.0147)	(0.0133)
Const.		-0.284***	
		(0.00296)	
Const. $ imes$ Bank shock: Effective credit		0.117***	
		(0.0217)	
Const. Adj. Eff.			-0.766***
			(0.00333)
Const. Adj. Eff. \times Bank shock: Effective credit			0.0461*
			(0.0194)
Industry $ imes$ Year FE	Yes	Yes	Yes
Clustering	Firm	Firm	Firm
N	1071731	1071731	1071731

Test 1

Constrained firms increase debt by more in response to credit supply shocks

Variable	Constrained					Unconstrained				
	all	<90th	90th-	99-	>99.5	thall	< 90th	90th-	99-	>99.5th
			99th	99.5th				99th	99.5th	
TFP	3.15	0.28	85.10	0.25	5.06	42.71	135.70			
	1.86	0.23	33.59	0.21	3.25	19.93	27.94			
# bank relations	0.19	0.03	4.56	0.03	0.14	0.95	2.95			
	0.53	0.04	5.96	0.04	1.15	6.93	126.73			

Cyclicality of turnover

	(1)	(2)	(3)	(4)	(5)	(6)
$[90, 99] \times GDP$ Growth	0.000	0.001	0.001	0.001	0.001	0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
[99, 99.5] $ imes$ GDP Growth	-0.002	-0.002	-0.002	-0.002	-0.002	-0.001
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
>99.5 $ imes$ GDP Growth	-0.005	-0.004	-0.004	-0.004	-0.005	-0.005
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Const. Adj. Eff. \times GDP Growth		0.213				
		(0.054)				
Const. Overdue \times GDP Growth			1.426			
			(0.166)			
Const. Overdue Inc. \times GDP Growth				0.988		
				(0.205)		
Const. Maturing × GDP Growth					0.666	
					(0.098)	
Const. Secured \times GDP Growth						0.310
						(0.096)
Industry \times GDP Growth FE	Yes	Yes	Yes	Yes	Yes	Yes
Clustering	Firm	Firm	Firm	Firm	Firm	Firm
N	1326447	1326447	1326447	1326447	1088781	1088781

back

Table 2: Untargeted moments

Moment	Data	Model
Share of const. firms in bottom 20%	0.33	0.65
Size of const. firms 90th percentile / median	7.35	9.72
Size of unconst. firms 90th percentile / median	9.67	9.05
Asset share of const. firms	0.07	0.10
Share of const. firms in top 10% vs. bottom 20%	0.36	0.05
Percentage of const. firms in top 1%	0.09	0.01

Notes. All constrained firms moments are calculated using constrained measure I.

back

Turnover and TFP

	(1)	(2)	(3)	(4)	(5)	(6)
TFP shock	0.273	0.268	0.265	0.267	0.266	0.266
	(0.004)	(0.004)	(0.004)	(0.004)	(0.005)	(0.005)
[00 00] × TEP shock	0.006	0.008	0.100	0 000	0.080	0.080
[50, 55] × 111 SHOCK	(0.011)	(0.011)	(0.011)	(0.011)	(0.013)	(0.013)
	(0.011)	(0.011)	(0.011)	(0.011)	(0.010)	(0.010)
[99, 99.5] \times TFP shock	0.014	0.017	0.019	0.018	0.059	0.057
	(0.029)	(0.029)	(0.029)	(0.029)	(0.036)	(0.036)
199.5 × TEP shock	0.002	0.007	0.010	0.008	0.011	0.010
200.0 X TTT Shoek	(0.041)	(0.041)	(0.041)	(0.041)	(0.049)	(0.050)
	()	()	()	()	()	()
Const. Adj. Eff. \times TFP shock		0.016				
		(0.004)				
Const. Overdue × TEP shock			0.076			
const. overdae x TTT shoek			(0.009)			
			` '			
Const. Overdue Inc. \times TFP shock				0.075		
				(0.010)		
Const. Maturing × TEP shock					0.068	
					(0.007)	
					· /	
Const. Secured \times TFP shock						0.065
						(0.008)
Firm FF	Yes	Yes	Yes	Yes	Yes	Yes
Industry \times Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Clustering	Firm	Firm	Firm	Firm	Firm	Firm
N	1011102	1011102	1011102	1011102	816841	816841

Turnover and financial shocks

	(1)	(2)	(3)	(4)	(5)	(6)
Bank shock	0.015	-0.001	0.002	0.007	0.022	0.025
	(0.007)	(0.008)	(0.007)	(0.007)	(0.009)	(0.009)
[90, 99] × Bank shock	0.078	0.089	0.085	0.084	0.069	0.071
[(0.028)	(0.029)	(0.028)	(0.028)	(0.033)	(0.034)
	. ,		. ,	. ,	. ,	. ,
[99, 99.5] × Bank shock	-0.050	-0.037	-0.036	-0.040	0.151	0.152
	(0.170)	(0.170)	(0.169)	(0.169)	(0.198)	(0.198)
$299.5 \times Bank shock$	-0.147	-0.133	-0.133	-0.139	-0.028	-0.035
	(0.127)	(0.127)	(0.127)	(0.127)	(0.107)	(0.107)
Const. All: Eff. or Deal should		0.0125				
Const. Adj. Efr. × Bank snock		0.0135				
		(0.013)				
Const. Overdue \times Bank shock			0.155			
			(0.049)			
Const. Overdue Inc. × Bank shock				0.128		
const. overdae me. × bank snock				(0.057)		
				()		
Const. Maturing \times Bank shock					0.179	
					(0.041)	
Const. Secured × Bank shock						0.073
						(0.035)
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Industry $ imes$ Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Clustering	Firm	Firm	Firm	Firm	Firm	Firm
N	1196505	1196505	1196505	1196505	980796	980796

Cyclicality of employment

	(1)	(2)	(3)	(4)	(5)	(6)
[90, 99] \times GDP Growth	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
[00, 00 5] × CDP Growth	0.000	0.000	0.000	0.000	0.000	0.000
[99, 99.5] × GDF Glowtii	-0.000	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
;99.5 imes GDP Growth	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Count Adi Eff of CDD Counth		0.074				
Const. Adj. Efr. × GDP Growth		(0.022)				
		(0.055)				
Const. Overdue \times GDP Growth			0.764			
			(0.087)			
Const. Overdue Inc. \times GDP Growth				0.455		
				(0.108)		
Const. Maturing \times GDP Growth					0.110	
-					(0.052)	
Const. Secured \times GDP Growth						-0.011
						(0.053)
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Industry \times GDP Growth FE	Yes	Yes	Yes	Yes	Yes	Yes
Clustering	Firm	Firm	Firm	Firm	Firm	Firm
N	1360304	1360304	1360304	1360304	1116621	1116621

Employment and TFP

	(1)	(2)	(3)	(4)	(5)	(6)
TFP shock	-0.053	-0.055	-0.056	-0.055	-0.060	-0.059
	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)	(0.002)
[90, 99] × TEP shock	0.011	0.012	0.013	0.012	0.010	0.010
[(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
	· /	· /	. ,	` '	· /	` ´
[99, 99.5] × TFP shock	0.035	0.036	0.036	0.036	0.031	0.031
	(0.009)	(0.009)	(0.009)	(0.009)	(0.010)	(0.010)
$,99.5 \times \text{TFP shock}$	0.013	0.015	0.015	0.014	0.023	0.023
-	(0.011)	(0.011)	(0.011)	(0.011)	(0.012)	(0.012)
		0.005				
Const. Adj. Eff. × TFP shock		0.005				
		(0.001)				
Const. Overdue \times TFP shock			0.017			
			(0.004)			
Const. Overdue Inc. V TEP shock				0.010		
Const. Overalle Inc. × TTT shock				(0.004)		
				(0.000.)		
Const. Maturing \times TFP shock					0.008	
					(0.003)	
Const. Secured × TEP shock						0.003
						(0.003)
						()
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
$Industry \times Year \; FE$	Yes	Yes	Yes	Yes	Yes	Yes
Clustering	Firm	Firm	Firm	Firm	Firm	Firm
N	1014676	1014676	1014676	1014676	819792	819792

Employment and financial shocks

	(1)	(2)	(3)	(4)	(5)	(6)
Bank shockt	0.001	-0.004	-0.006	-0.003	0.011	0.014
	(0.005)	(0.005)	(0.004)	(0.004)	(0.006)	(0.006)
[90 99] × Bank shock	0.036	0.039	0.039	0.039	0.023	0.023
[50, 55] × Bank shoek	(0.014)	(0.014)	(0.013)	(0.013)	(0.016)	(0.016)
	` ´	. ,	. ,	. ,	. ,	. ,
[99, 99.5] × Bank shock	-0.007	-0.004	-0.002	-0.003	0.034	0.035
	(0.068)	(0.068)	(0.068)	(0.068)	(0.078)	(0.078)
$399.5 \times Bank shock$	0.030	0.035	0.031	0.034	0.058	0.055
-	(0.065)	(0.065)	(0.065)	(0.065)	(0.099)	(0.099)
Const. Adi: Eff. y Bool, should		0.011				
CONSL. Adj. Ell. × Balik Shock		-0.011				
		(0.009)				
Const. Overdue \times Bank shock			0.092			
			(0.025)			
Const Overdue Inc. × Bank shock				0.087		
const. Overage me. A bank shock				(0.031)		
				(****=)		
Const. Maturing \times Bank shock					0.046	
					(0.020)	
Const. Secured \times Bank shock						-0.006
						(0.018)
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Industry $ imes$ Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Clustering	Firm	Firm	Firm	Firm	Firm	Firm
N	1230781	1230781	1230781	1230781	1011230	1011230

back

Cyclicality of turnover

	(1)	(2)	(3)	(4)	(5)	(6)
$[90, 99] \times GDP$ Growth	0.000	0.001	0.001	0.001	0.001	0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
[99, 99.5] $ imes$ GDP Growth	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
$ m {}_{2}99.5 imes$ GDP Growth	-0.005	-0.004	-0.004	-0.004	-0.005	-0.005
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Const. Adj. Eff. × GDP Growth		0.213				
		(0.054)				
Const. Overdue \times GDP Growth			1.426			
			(0.166)			
Const. Overdue Inc. \times GDP Growth				0.988		
				(0.205)		
Const. Maturing × GDP Growth					0.666	
					(0.098)	
Const. Secured \times GDP Growth						0.310
						(0.096)
Industry $ imes$ Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Clustering	Firm	Firm	Firm	Firm	Firm	Firm
N	1326447	1326447	1326447	1326447	1088781	1088781

Cyclicality of turnover

	(1)	(2)	(3)	(4)	(5)	(6)
[90, 99] $ imes$ GDP Growth	0.001	0.001	0.001	0.001	0.001	0.002
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
	0.002	0.000	0.000	0.000	0.000	0.000
[99, 99.5] × GDP Growth	-0.003	-0.002	-0.002	-0.002	-0.002	-0.002
	(0.004)	(0.004)	(0.004)	(0.004)	(0.005)	(0.005)
$,99.5 \times \text{GDP Growth}$	-0.004	-0.004	-0.004	-0.004	-0.004	-0.003
-	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Const Adi Eff × GDP Growth		0 1 1 9				
		(0.069)				
		(0.005)				
Const. Overdue \times GDP Growth			1.760			
			(0.212)			
Const. Overdue Inc. \times GDP Growth				1.251		
				(0.265)		
Const Maturing × GDP Growth					0 706	
const. mataring x ost crowth					(0.102)	
					(0.102)	
Const. Secured \times GDP Growth						0.363
						(0.103)
Industry \times GDP Growth FE	Yes	Yes	Yes	Yes	Yes	Yes
Clustering	Firm	Firm	Firm	Firm	Firm	Firm
N	1161130	1161130	1161130	1161130	955844	955844

Turnover and TFP

	(1)	(2)	(3)	(4)	(5)	(6)
TFP shock	0.108	0.101	0.100	0.102	0.098	0.099
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
[00 00] v TED shask	0.056	0.050	0.050	0.059	0.020	0.040
[90, 99] × TFF SHOCK	(0.006)	(0.009)	(0.009)	(0.006)	(0.006)	(0.006)
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
[99, 99.5] × TFP shock	-0.020	-0.015	-0.017	-0.017	-0.009	-0.011
	(0.015)	(0.015)	(0.015)	(0.015)	(0.017)	(0.018)
¿99.5 × TEP shock	-0.024	-0.018	-0.017	-0.019	-0.027	-0.032
	(0.015)	(0.015)	(0.015)	(0.015)	(0.016)	(0.016)
Const. Adi. Eff. × TFP shock		0.034				
		(0.003)				
		. ,				
Const. Overdue \times TFP shock			0.137			
			(0.009)			
Const. Overdue Inc. V TEP shock				0.151		
const. overalle me. × mi shock				(0.011)		
				(0.011)		
Const. Maturing \times TFP shock					0.078	
					(0.006)	
Const. Secured × TFP shock						0.069
						(0.005)
Industry $ imes$ Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Clustering	Firm	Firm	Firm	Firm	Firm	Firm
N	907128	907128	907128	907128	738944	738944

Turnover and financial shocks

	(1)	(2)	(3)	(4)	(5)	(6)
Bank shock	-0.047	-0.070	-0.063	-0.058	-0.030	-0.038
	(0.006)	(0.007)	(0.006)	(0.006)	(0.008)	(0.008)
[90, 99] × Bank shock	0.076	0.093	0.085	0.084	0.102	0.108
	(0.025)	(0.025)	(0.025)	(0.025)	(0.031)	(0.031)
[99, 99.5] × Bank shock	-0.101	-0.082	-0.090	-0.090	-0.013	-0.006
	(0.163)	(0.163)	(0.163)	(0.163)	(0.167)	(0.167)
$299.5 \times Bank shock$	-0.073	-0.052	-0.059	-0.064	-0.012	-0.010
	(0.117)	(0.117)	(0.117)	(0.117)	(0.105)	(0.106)
Const. Adj. Eff. × Bank shock		0.005				
		(0.015)				
Const. Overdue × Bank shock			0.132			
			(0.058)			
Const. Overdue Inc. \times Bank shock				0.106		
				(0.071)		
Const. Maturing × Bank shock					0.212	
					(0.039)	
Const. Secured \times Bank shock						0.105
						(0.034)
$Industry \times Year \; FE$	Yes	Yes	Yes	Yes	Yes	Yes
Clustering	Firm	Firm	Firm	Firm	Firm	Firm
N	1071731	1071731	1071731	1071731	883661	883661

Cyclicality of turnover

	(1)	(2)	(3)	(4)	(5)	(6)
[90, 99] × Δ GDP	-0.003	-0.003	-0.002	-0.002	-0.004	-0.004
	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
[99, 99.5] $ imes$ Δ GDP	-0.002	-0.002	-0.001	-0.001	-0.007	-0.007
	(0.010)	(0.010)	(0.010)	(0.010)	(0.010)	(0.010)
$_299.5 imes \Delta$ GDP	0.002	0.002	0.004	0.005	-0.008	-0.008
	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)
Const. Adj. Eff. $\times \Delta$ GDP		0.205				
		(0.0641)				
Const. Overdue $\times \Delta$ GDP			1.955			
			(0.483)			
Const. Overdue Inc. $\times \; \Delta \; GDP$				1.706		
				(0.594)		
Const. Maturing $\times \Delta$ GDP					1.036	
					(0.281)	
Const. Secured \times Δ GDP						0.502
						(0.288)
Industry \times Δ GDP FE	Yes	Yes	Yes	Yes	Yes	Yes
Clustering	Firm	Firm	Firm	Firm	Firm	Firm
Bank Controls	Yes	Yes	Yes	Yes	Yes	Yes
N	1187112	1187112	1187112	1187112	976408	976408

Turnover and TFP

	(1)	(2)	(3)	(4)	(5)	(6)
TFP shock	0.112	0.104	0.103	0.105	0.101	0.103
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
[90, 99] × TEP shock	0.056	0.060	0.059	0.059	0.039	0.040
[(0.006)	(0.006)	(0.006)	(0.006)	(0.006)	(0.006)
[00, 00 F] v TED sheek	0.022	0.017	0.010	0.010	0.011	0.012
[99, 99.5] × TFP SNOCK	-0.023	-0.017	-0.019	-0.019	-0.011	-0.013
	(0.013)	(0.013)	(0.013)	(0.013)	(0.010)	(0.010)
$_{2}$ 99.5 \times TFP shock	-0.027	-0.020	-0.020	-0.020	-0.029	-0.034
	(0.015)	(0.015)	(0.015)	(0.015)	(0.016)	(0.017)
Const. Adi. Eff. × TEP shock		0.033				
		(0.003)				
Const. Overdue \times TFP shock			0.125			
			(0.008)			
Const. Overdue Inc. \times TFP shock				0.136		
				(0.010)		
Const. Maturing × TFP shock					0.078	
					(0.005)	
Const. Secured \times TFP shock						0.070
						(0.005)
						.,
Industry × Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Clustering	Firm	Firm	Firm	Firm	Firm	Firm
Bank Controls	Yes	Yes	Yes	Yes	Yes	Yes
N	892702	892702	892702	892702	725166	725166

Turnover and financial shocks

	(1)	(2)	(3)	(4)	(5)	(6)
Bank shock	-0.025	-0.050	-0.041	-0.039	-0.020	-0.025
	(0.007)	(0.008)	(0.007)	(0.007)	(0.009)	(0.009)
[00 00] × Bank shock	0.067	0.082	0.072	0.074	0.122	0.127
[50, 55] × Dank shock	(0.029)	(0.029)	(0.029)	(0.029)	(0.038)	(0.038)
	(0.020)	(0.0-0)	(***=*)	(******)	()	()
[99, 99.5] imes Bank shock	-0.106	-0.086	-0.096	-0.093	-0.010	-0.004
	(0.168)	(0.168)	(0.168)	(0.168)	(0.171)	(0.171)
199.5 × Bank shock	-0.125	-0 102	-0 108	-0.111	-0.043	-0.051
235.5 × Dalik slibek	(0.184)	(0.184)	(0.184)	(0.184)	(0.249)	(0.248)
	(0.20.)	(0.201)	(*****)	(0.20.)	(**=**)	(**=**)
Const. Adj. Eff. \times Bank shock		0.061				
		(0.016)				
Const. Overdue × Bank shock			0 146			
Collst. Overlate × Dalik slibek			(0.049)			
			()			
Const. Overdue Inc. \times Bank shock				0.169		
				(0.061)		
Const Maturing × Bank shock					0.216	
const. mataring x bank shock					(0.038)	
					(0.000)	
Const. Secured \times Bank shock						0.091
						(0.033)
Industry $ imes$ Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Clustering	Firm	Firm	Firm	Firm	Firm	Firm
Bank Controls	Yes	Yes	Yes	Yes	Yes	Yes
N	1153335	1153335	1153335	1153335	947734	947734

	Constrained binary						
	(1)	(2)	(3)	(4)			
Age	-0.034						
	(0.000)						
Total assets		-0.066					
		(0.000)					
Leverage			-0.008				
			(0.000)				
Liquidity ratio				0.007			
				(0.000)			
Constant	0.246	0.245	0.244	0.244			
Observations	1,365,913	1,365,913	1,365,913	1,365,913			
R-squared	0.006	0.024	0.015	0.000			

Every cell reports the coefficient $\hat{\beta}$ of the following (pooled) linear probability model:

 $Const_{i,t} = \alpha + \beta x_{i,t} + \epsilon_{i,t}$

back

Parameters statistical model

	$ ho_u$	$\rho_{\rm v}$	ρ_{w}	σ_{θ}	σ_u	σ_v	σ_{ϵ}	σ_z
Total	0.425	0.799	0.904	0.369	0.748	0.708	0.305	0.185
Unconstrained	0.431	0.770	0.884	0.399	0.769	0.744	0.311	0.158
Constrained	0.493	0.874	0.911	0.255	0.655	0.641	0.265	0.176

$$\underbrace{\log \tilde{n}_{i,a}}_{\text{log employment}} = \underbrace{u_{i,a} + v_{i,a}}_{\text{Ex-ante component}} + \underbrace{w_{i,a} + z_{i,a}}_{\text{Ex-post component}}$$

where

$$\begin{array}{ll} u_{i,a} = & \rho_u u_{i,a-1} + \theta_i, & u_{i,-1} \sim \textit{iid} \left(\mu_{\tilde{u}}, \sigma_{\tilde{u}}^2 \right), & \theta_i \sim \textit{iid} \left(\mu_{\theta}, \sigma_{\theta}^2 \right), & |\rho_u| \leq 1 \\ v_{i,a} = & \rho_v v_{i,a-1}, & v_{i,-1} \sim \textit{iid} \left(\mu_{\tilde{v}}, \sigma_{\tilde{v}}^2 \right), & |\rho_v| \leq 1 \\ w_{i,a} = & \rho_w w_{i,a-1} + \varepsilon_{i,a}, & w_{i,-1} = 0, & \varepsilon_{i,a} \sim \textit{iid} \left(0, \sigma_{\varepsilon}^2 \right), & |\rho_w| \leq 1 \\ z_{i,a} \sim & \textit{iid} \left(0, \sigma_z^2 \right) \end{array}$$

Bacl

Calibration

Parameter	Description	Value	Source
β	Discount factor	0.96	K&T (2013)
α	Returns on capital	0.30	K&T (2013)
η	Returns on labor	0.60	K&T (2013)
δ	Depreciation rate	0.065	K&T (2013)
ψ	Labour preference	2.15	K&T (2013)
π_d	Exogenous probability of exit	0.02	Data
$\mu_{ heta}$	Average: permanent productivity	0	Normalized
μ_w	Average: transitory shock	0	Normalized
Model			
ξ	Collateral constraint	0.50	Calibrated
$\sigma_{ heta}$	Std. dev.: permanent productivity	0.20	Calibrated
$ ho_w$	Persistence of transitory shock	0.43	Calibrated
σ_w	Std. dev: transitory shock	0.11	Calibrated
$\mu_{\textit{ke}}$	Relative size of entrants	0.01	Calibrated
σ_{ke}	Standard deviation of entrants	1.35	Calibrated

Table 3: Parameter values benchmark calibration

Notes. K&T (2013) is short for Khan & Thomas (2013).

Figures

Constrained firms growth

Test 2

Constrained firms grow faster

back

Constrained_{t,i} = 1(Potential Credit_{t,i} = 0 & Δ Effective credit_{t,i} < 0)

Constrained = 1(Potential Credit_t = 0 & Overdue Credit_t > 0)

Constrained = 1(Potential Credit_t = 0 & Δ Overdue Credit_t > 0)

Constrained = 1(Secured Credit / Assets_{*i*,*t*} > *p*(90*th*))

Const. Maturing_{*i*,*t*} = $\mathbb{1}$ (Credit i 1 Year Maturity / Assets_{*i*,*t*} > p(90th))

Evidence v Theory

Joint size-constrained distribution - Alternative calibration

Aggregate response financial shock - Alternative Calibration 1

Aggregate response financial shock - Alternative Calibration 2

Aggregate response financial shock - GE

Statistical model

• Look at the employment growth process within and across firms

- Prior: Standard deviation decreasing with age as firms reach uniform potential
 - Result: Standard deviation increasing with age Std
- Prior: Age autocorrelation tending to zero as firms grow older
 - Result: Autocorrelation converging to values larger than 0 Autocorr
- Prior: Ex-ante variance contribution small and tending to zero
 - Result: Ex-ante variance still explains 50% of employment variance after 10 years 🕑 Exempt
- Prior: Ex-ante variance should affect more constrained than unconstrained
 - Result: Ex-ante contribution larger for unconstrained firms Ex-ante const
- Look at the employment growth process within and across firms
- Prior: Standard deviation decreasing with age as firms reach uniform potential
 - Result: Standard deviation increasing with age Std
- Prior: Age autocorrelation tending to zero as firms grow older
 - Result: Autocorrelation converging to values larger than 0 Autocorr
- Prior: Ex-ante variance contribution small and tending to zero
 - Result: Ex-ante variance still explains 50% of employment variance after 10 years 🕑 Example
- Prior: Ex-ante variance should affect more constrained than unconstrained
 - Result: Ex-ante contribution larger for unconstrained firms Ex-ante const

- Look at the employment growth process within and across firms
- Prior: Standard deviation decreasing with age as firms reach uniform potential
 - Result: Standard deviation increasing with age Std
- Prior: Age autocorrelation tending to zero as firms grow older
 - Result: Autocorrelation converging to values larger than 0 Autocorr
- Prior: Ex-ante variance contribution small and tending to zero
 - Result: Ex-ante variance still explains 50% of employment variance after 10 years Exante
- Prior: Ex-ante variance should affect more constrained than unconstrained
 - Result: Ex-ante contribution larger for unconstrained firms Ex-ante const

- Look at the employment growth process within and across firms
- Prior: Standard deviation decreasing with age as firms reach uniform potential
 - Result: Standard deviation increasing with age Std
- Prior: Age autocorrelation tending to zero as firms grow older
 - **Result**: Autocorrelation converging to values larger than 0 Autocorr
- Prior: Ex-ante variance contribution small and tending to zero
 - Result: Ex-ante variance still explains 50% of employment variance after 10 years Exante
- Prior: Ex-ante variance should affect more constrained than unconstrained
 - Result: Ex-ante contribution larger for unconstrained firms Ex-ante const

- Look at the employment growth process within and across firms
- Prior: Standard deviation decreasing with age as firms reach uniform potential
 - Result: Standard deviation increasing with age Std
- Prior: Age autocorrelation tending to zero as firms grow older
 - Result: Autocorrelation converging to values larger than 0 Autocorr
- Prior: Ex-ante variance contribution small and tending to zero
 - Result: Ex-ante variance still explains 50% of employment variance after 10 years 🕑 Exame
- Prior: Ex-ante variance should affect more constrained than unconstrained
 - Result: Ex-ante contribution larger for unconstrained firms Ex-ante const

- Look at the employment growth process within and across firms
- Prior: Standard deviation decreasing with age as firms reach uniform potential
 - Result: Standard deviation increasing with age Std
- Prior: Age autocorrelation tending to zero as firms grow older
 - Result: Autocorrelation converging to values larger than 0 Autocorr
- Prior: Ex-ante variance contribution small and tending to zero
 - Result: Ex-ante variance still explains 50% of employment variance after 10 years 🕑 Exame
- Prior: Ex-ante variance should affect more constrained than unconstrained
 - Result: Ex-ante contribution larger for unconstrained firms Ex-ante const

- Look at the employment growth process within and across firms
- Prior: Standard deviation decreasing with age as firms reach uniform potential
 - Result: Standard deviation increasing with age Std
- Prior: Age autocorrelation tending to zero as firms grow older
 - Result: Autocorrelation converging to values larger than 0 Autocorr
- Prior: Ex-ante variance contribution small and tending to zero
 - Result: Ex-ante variance still explains 50% of employment variance after 10 years Ex-ante
- Prior: Ex-ante variance should affect more constrained than unconstrained
 - Result: Ex-ante contribution larger for unconstrained firms Ex-ante const

- Look at the employment growth process within and across firms
- Prior: Standard deviation decreasing with age as firms reach uniform potential
 - Result: Standard deviation increasing with age Std
- Prior: Age autocorrelation tending to zero as firms grow older
 - Result: Autocorrelation converging to values larger than 0 Autocorr
- Prior: Ex-ante variance contribution small and tending to zero
 - Result: Ex-ante variance still explains 50% of employment variance after 10 years Ex-ante
- Prior: Ex-ante variance should affect more constrained than unconstrained
 - Result: Ex-ante contribution larger for unconstrained firms Ex-ante const

- Look at the employment growth process within and across firms
- Prior: Standard deviation decreasing with age as firms reach uniform potential
 - Result: Standard deviation increasing with age Std
- Prior: Age autocorrelation tending to zero as firms grow older
 - Result: Autocorrelation converging to values larger than 0 Autocorr
- Prior: Ex-ante variance contribution small and tending to zero
 - Result: Ex-ante variance still explains 50% of employment variance after 10 years Ex-ante
- Prior: Ex-ante variance should affect more constrained than unconstrained
 - Result: Ex-ante contribution larger for unconstrained firms Ex-ante const

- Information on firm growth needed for assessment of firm heterogeneity
- Here: Look at the employment growth process within and across firms
- In order to control for sector and birth year effects we estimate

$$\log n_{i,a,j,t} = \mu_j + \lambda_{t-a} + \epsilon_{i,a,j,t}$$

• Use log $\tilde{n}_{i,a,j,t} \equiv \widehat{\epsilon_{i,a,j,t}}$ as our measure of employment in the analysis below

Standard deviation of employment

Prior

Standard deviation decreasing with age as firms reach uniform potential

Prior

Standard deviation decreasing with age as firms reach uniform potential

Autocorrelation of employment

Prior

Age autocorrelation tending to zero as firms grow older

Autocorrelation of employment

Prior

Age autocorrelation tending to zero as firms grow older

Lines plot $Corr(\log \tilde{n}_{i,a}, \log \tilde{n}_{i,h})$ where $h \leq a$

More evidence from a flexible statistical model (Pugsley et al, 2021)

where

- $u_{i,a}$ is a permanent part that converges to a certain level θ_i
- $v_{i,a}$ is a transitory part that converges to zero
- w_{i,a} captures persistent ex-post shocks
- z_{i,a} captures iid ex-post shocks

We calibrate the model to match the autocovariance profile of employment

Derivations and Descriptions

- Drop all firms with less than €10K Credit throughout (Buera and Karmakar)
- Drop all firms that are out of business
- Drop all firms that are not privately or publicly held
- Drop all firms that report less than 5 years
- Drop all firm observations that have zero or less employees
- Drop all firm observations with liquidity and leverage ratio which is larger than 10 (Ottonello & Winberry (2018))

- Effective Credit is credit used in a regular situation, without payment delays in the effective contract
- Potential Credit represents irrevocable commitments of the participating entities.
- Global credit is the sum of effective and potential credit
- **Overdue credit** All outstanding credit exposures recorded as non-performing (including overdue, written off, renegotiated credit, overdue credit in litigation, and written off credit in litigation) are aggregated to calculate overdue credits
- Short-Term Credit both with residual and original maturity less than one year
- Long-Term Credit both with residual and original maturity more than a year
- Secured Credit is credit that is secured by real collateral, financial collateral or personal liability (state, bank or individual)

More evidence from estimating the Pugsley et al. (2021) model in Portugal

$$\underbrace{\log \tilde{n}_{i,a}}_{\text{log employment}} = \underbrace{u_{i,a} + v_{i,a}}_{\text{Ex-ante component}} + \underbrace{w_{i,a} + z_{i,a}}_{\text{Ex-post component}}$$

where

$$\begin{array}{lll} u_{i,a} = & \rho_u u_{i,a-1} + \theta_i, & u_{i,-1} \sim \textit{iid} \left(\mu_{\tilde{u}}, \sigma_{\tilde{u}}^2 \right), & \theta_i \sim \textit{iid} \left(\mu_{\theta}, \sigma_{\theta}^2 \right), & |\rho_u| \leq 1 \\ v_{i,a} = & \rho_v v_{i,a-1}, & v_{i,-1} \sim \textit{iid} \left(\mu_{\tilde{v}}, \sigma_{\tilde{v}}^2 \right), & |\rho_v| \leq 1 \\ w_{i,a} = & \rho_w w_{i,a-1} + \varepsilon_{i,a}, & w_{i,-1} = 0, & \varepsilon_{i,a} \sim \textit{iid} \left(0, \sigma_{\varepsilon}^2 \right), & |\rho_w| \leq 1 \\ z_{i,a} \sim & \textit{iid} \left(0, \sigma_{z}^2 \right) \end{array}$$

Autocovariance

- Use autocovariance to estimate ex-ante and ex-post conditions importance
- Estimate autocovariance for two groups of firms:
 - Constrained: When a firm has potential credit equal to zero at age a-j
 - Unconstrained: Firms that have potential credit available at age a-j

$$Cov[\ln n_{i,a}, \ln n_{i,a-j}] = \underbrace{\left(\sum_{k=0}^{a} \rho_{u}^{k}\right) \left(\sum_{k=0}^{a-j} \rho_{u}^{k}\right) \sigma_{\theta}^{2} + \rho_{u}^{2(a+1)-j} \sigma_{\hat{u}}^{2} + \rho_{v}^{2(a+1)-j} \sigma_{\hat{v}}^{2}}_{2}}_{2}$$

Ex-ante component

Back Derivation

Write stochastic processes in MA representation:

$$\begin{split} u_{i,t} &= \rho_u^{t+1} u_{i,-1} + \sum_{k=0}^{a} \rho_u^k \theta_i \\ v_{i,a} &= \rho_v^{a+1} v_{i,-1} \\ w_{i,a} &= \sum_{k=0}^{a} \rho_w^k \varepsilon_{i,a-k} = \sum_{k=0}^{j-1} \rho^k \varepsilon_{i,a-k} + \rho_v^j \sum_{k=0}^{a-j} \rho_v^k \varepsilon_{i,a-j-k} \quad 0 \le j \le a \end{split}$$

So the level of log employment of firm i at age a is:

$$\ln n_{i,a} = \rho_u^{a+1} u_{i,-1} + \sum_{i=1}^{a} \rho_u^k \theta_i + \rho_v^{a+1} v_{i,-1} + \sum_{i=1}^{j-1} \rho^k \varepsilon_{i,a-k} + \rho_v^j \sum_{i=1}^{a-j} \rho_v^k \varepsilon_{i,a-j-k} + z_{i,a-j-k} + z_{i,a$$

Then the autocovariance of log employment at age *a* and a - j for $j \ge 0$ is:

$$\begin{aligned} \operatorname{Cov}\left[\log n_{i,a}, \log n_{i,a-j}\right] &= \left(\sum_{k=0}^{a} \rho_{u}^{k}\right) \sigma_{\theta}^{2} \left(\sum_{k=0}^{a-j} \rho_{u}^{k}\right) + \rho_{u}^{a+1} \sigma_{u}^{2} \rho_{u}^{a-j+1} + \rho_{v}^{a+1} \sigma_{v}^{2} \rho_{v}^{a-j+1} \\ &+ \operatorname{Cov}\left[\rho_{v}^{j} \sum_{k=0}^{a-j} \rho_{v}^{k} \varepsilon_{i,a-j-k}, \sum_{k=0}^{a-j} \rho_{v}^{k} \varepsilon_{i,a-j-k}\right] + \mathbf{1}_{\{j=0\}} \sigma_{z}^{2} \\ &= \sigma_{\theta}^{2} \left(\sum_{k=0}^{a} \rho_{u}^{k}\right) \left(\sum_{k=0}^{a-j} \rho_{u}^{k}\right) + \sigma_{u}^{2} \rho_{u}^{2(a+1)-j} + \sigma_{v}^{2} \rho_{v}^{2(a+1)-j} + \sigma_{\varepsilon}^{2} \rho_{w}^{j} \sum_{k=0}^{a-j} \rho_{w}^{2k} + \mathbf{1}_{\{j=0\}} \sigma_{z}^{2} \end{aligned}$$

$$\begin{aligned} \frac{\text{Ex-ante variance}}{\text{Total variance}} (\log n_{i,a}) = \\ & \left(\sum_{k=0}^{a} \rho_{u}^{k}\right)^{2} \sigma_{\theta}^{2} + \rho_{u}^{2(a+1)} \sigma_{\hat{u}}^{2} + \rho_{v}^{2(a+1)} \sigma_{\hat{v}}^{2} \\ \hline & \left(\sum_{k=0}^{a} \rho_{u}^{k}\right)^{2} \sigma_{\theta}^{2} + \rho_{u}^{2(a+1)} \sigma_{\hat{u}}^{2} + \rho_{v}^{2(a+1)} \sigma_{\hat{v}}^{2} + \sigma_{\epsilon}^{2} \sum_{k=0}^{a} \rho_{w}^{2k} + \sigma_{z}^{2} \end{aligned}$$

The elasticity of capital with respect to the shock ϵ is decreasing on capital and increasing on the productivity of the firm

$$rac{\Delta g_{cons}}{\Delta \epsilon}|_{\epsilon pprox 0} = (1+q_t\xi)(z heta_i k_{t,1}^{lpha-1}) = rac{(1+q_t\xi)}{lpha} mpk_i$$

A representative household solves the following recursive maximisation problem

$$V(k) = \max_{c,l,k'} \{U(c,l) + \beta \mathbb{E}V(k')\}$$

subject to:
$$k' + c = (1+r)k + \omega l + D,$$

First order conditions are standard, pinning down interest rate and wages in steady state:

$$(1+r) = \frac{1}{\beta}$$

 $\omega = \psi C$

◀ Back

Firm's total profits are given by

$$\pi_t = y_t - \omega_t I_t$$

The firm's optimal labor decision is a static choice which can be found through the firm's first order condition

$$I(k_t,\varphi_t;\omega_t) = \left(\frac{\upsilon\varphi_t}{\omega_t}k_t^{\alpha}\right)^{\frac{1}{1-\upsilon}}$$

◀ Back

Firm problem after production

• Expected value of the firm after production is:

$$V_t^1(x_t,\varphi_t) = \pi_d x_t + (1-\pi_d) V_t^2(x_t,\varphi_t)$$

where $x_t \equiv \pi(k_t, \varphi_t) + (1 - \delta)k_t - b_t$ is current cash-on-hand

• Surviving firms face the following optimisation problem:

$$V^{2}(x_{t},\varphi_{t}) = \max_{k_{t+1},b_{t+1}} \left\{ D_{t} + \mathbb{E}_{t} \left[\Lambda_{t+1|t} V^{1} \left(x_{t+1},\varphi_{t+1} \right) |\varphi \right] \right\}$$

s.t.
$$D_{t} \equiv x_{t} + q_{t} b_{t+1} - k_{t+1} \ge 0$$

$$b_{t+1} \le \xi x_{t}$$

- Fixed measure of potential entrants π_d
- Enter with zero debt and average capital of $\mu_{ke} \bar{k}^*_{i,t}$
- $\bullet\,$ Draw productivity from stationary distribution of φ
- Entry takes place at the end of the period, start operating in the next period, given $(x_{i,t,0}, \varphi_{i,t,0})$