Correcting Market Power with Taxation
 A Sufficient Statistic Approach

Dajana Xhani

Tilburg University
August 30, 2023

Motivation

- Concern that monopoly power is on the rise.
- Higher firm concentration across industries
- Higher markup dispersion
- Differential tax/subsidy of firms could alleviate misallocation.
- Should we tax large and powerful firms or small unproductive ones? How big are the gains?
- Most current approaches rely on parametric assumptions.

In this Paper

- Analytical formula for the welfare effect of general shocks that features
- Markup

$$
\mu_{f}=\frac{\text { price }}{\text { marginal cost }}
$$

- Output Responsiveness $\Delta=\frac{\% \text { change in output }}{\% \text { shock in variable costs }}$
- Show that with a standard production function assumption one can recover Δ non-parametrically.
- Using the largest survey of UK firms, I find that at the industry level:
- Markups decrease in firm size
- The output responsiveness increases in firm size
- Evaluate the welfare gains from a simple revenue-neutral VAT reform where the tax rate is dependent on firm sales.

Related Literature

- Increasing Markup \& Falling Labour Share

De Loecker and Eeckhout (2019), Autor et al. (2017), Barkai (2016), Gutierrez and Philippon (2016), Kehrig and Vincent (2017), Gutierrez (2017), Hsieh and Rossi-Hansberg (2019), Neiman and Karabarbounis (2014), Decker et al. (2018)

- Misallocation in General Equilibrium

Restuccia and Rogerson (2008), Hsieh and Klenow (2009), Baqaee and Farhi (2020), Edmond et al. (2018), Pellegrino (2019), Itskhoki and Moll (2019)

- Tax/Cost Passthrough Estimation

Amiti et al. (2019), Carbonnier (2007), Danninger and Carare (2008), Besley and Rosen (1998), De Loecker et al. (2016)

Partial Equilibrium

- The equilibrium output response of a firm of cost type c is:

Firm-Specific Responsiveness

$$
\frac{\hat{x}(c)}{x(c)}=\overbrace{\left(\varepsilon_{m r}+\varepsilon_{m c}\right)^{-1}}^{\left(\frac{\hat{\lambda}}{\lambda}-\frac{\hat{c}}{c}\right)}
$$

- Where the output responsiveness is $\Delta=\left(\varepsilon_{m r}+\varepsilon_{m c}\right)^{-1}$.
- The vector of the shocks \hat{c} determines the GE effct that works through $\frac{\hat{\lambda}}{\lambda}$.
- Derive the rest of the equilibrium response $\left\{\widehat{M}_{e}, \hat{c}_{d}, \hat{\lambda}\right\}$.

Welfare Effect

\% change in income that keeps utility unchanged at initial prices.

$$
\begin{gathered}
\lambda \widehat{U}=\overbrace{-M_{e} \lambda U \int_{0}^{c_{d}} c v(x) \frac{\hat{c}}{c} d G(c)}^{\text {selection }}+ \\
\overbrace{\hat{c}_{d} M_{e} g\left(c_{d}\right) s_{d}\left[\frac{u\left(x_{d}\right)}{u^{\prime}\left(x_{d}\right) x_{d}}-\mathscr{M}\right]}^{\text {direct effect }}+ \\
\overbrace{M_{e} \int_{0}^{c_{d}}\left[1-\frac{\mathscr{M}}{\mu_{f}}\right] s(c) \frac{\hat{x}}{x} d G(c)}^{\text {reallocation }}
\end{gathered}
$$

- Average Surplus: $\quad \mathscr{M}=\frac{\int_{0}^{c_{d}} u(x(c)) d G(c)}{\int_{0}^{c_{d}} u^{\prime}(x(c)) \times(c) d G(c)}$.
- At the firm-level we need $\left\{\mu_{f}, \Delta\right\}$

Extensions

- Multi-sector Economy
- Response of the firm distribution is independent across sectors
- Aggregate using the observed sectoral sales shares
- Reallocation across sectors does not matter to first-order
- Endogenous Labour Supply
- Generalized Love-of-Variety
- Materials in Production

(1) Framework

2 Identification

(3) Empirical Findings

4 Tax Policy

Identification

- Exploiting the profit-maximizing condition $m r_{i t}=m c_{i t}$

$$
\frac{\partial V C_{i t}}{\partial S_{i t}}=1-\left(\varepsilon_{i t}^{v c} \Delta_{i t}\right)^{-1}
$$

- Let the returns to scale in the variable input bundle be r so that $\varepsilon_{i t}^{\nu c}=1 / r$.
- Recover $\Delta_{i t}$ non-parametrically from the slope estimator.

Estimation

- Estimate the slope $\frac{\partial V C_{i t}}{\partial S_{i t}}$ by running a non-parametric kernel estimate by industry-year, and controlling for capital stock.
- Firm-level markups are recovered using the ratio estimator

$$
\hat{\mu}_{i t}=r \frac{\hat{S}_{i t}}{V C_{i t}}
$$

- I assume slightly decreasing returns to in labour and materials by choosing $r=0.95$.
- Data come from the $\operatorname{ABS}(A R D)$ which after cleaning includes about 20k observations per year.

(1) Framework

2 Identification

(3) Empirical Findings

- Markup
- Output Responsiveness

Firm Markups in the Cross-Section

Figure: Dots indicate coefficient estimates of the median markup and lines indicate 95\% confidence intervals obtained by bootstrapping. All observations are from 2010.

Markups fall with Firm Size

All Industries in Manufacturing

Output Responsiveness in the Cross-Section

Figure: Dots indicate coefficient estimates of the median output responsiveness and lines indicate 95% confidence intervals obtained by bootstrapping. All observations are from 2010.

Output Responsiveness Increases with Firm Size

All Industries in Manufacturing

(1) Framework

(2) Identification
(3) Empirical Findings

4 Tax Policy

Tax Policy

- Consider increasing the sales tax rate for firms of type c^{*} only

$$
\lambda \widehat{U}=\tilde{s}\left(c^{*}\right)[\overbrace{-\left(\omega\left(c^{*}\right)-\bar{\omega}\right)}^{\text {reallocation }}+\overbrace{(\psi-\lambda U) \widehat{R}\left(c^{*}\right)}^{\text {direct effect }}]
$$

- Intuition: We want to tax firms that have welfare weights that are below the average $\bar{\omega}$ and subsidies high- ω firms.
- Kill off the direct term by making the tax change revenue-neutral.

Welfare Weights for all Firms

The shaded area denotes the $95 \% \mathrm{Cl}$ for the mean.

A Bracket Tax Reform of VAT

- Consider a revenue neutral tax reform with a single threshold c^{*} which corresponds to some s^{*}.

Application to the UK

- I start from the observed market equilibrium in 2010.
- I assume a fixed initial VAT Rate of 20% for all firms.
- I construct weights to match the sales distribution in the BSD.
- To make the numbers comparable across calibrations I use $\frac{\hat{U}}{U}$ instead of the money metric measurement $\lambda \hat{U}$.

Results for the UK

Welfare Effect of a 1\% Tax Shock

A VAT Reform in the UK

Let's translate the previous graph into policy

- Consider increasing the VAT rate of large firms from 20% to 24%. That implies that $\theta_{1}=0.05$.
- Assume that we pick the threshold at the 60th percentile and take $\lambda U=1.2$ as the benchmark case.

$$
\frac{\widehat{U}}{U}=0.05 \times \text { Welfare Multiplier }=0.05 \times 0.4=0.02
$$

- This corresponds to a sales threshold of $£ 2 \mathrm{~m}$.
- This is pretty high compared to Edmond et al. total consumption equivalent gains of 6.6% !

Conclusion

- A welfare incidence formula in GE monopolistic competition models with firm heterogeneity.
- Use a novel identification strategy to recover output responsiveness at the firm level.
- Document substantial firm and industry-level heterogeneity:
- Markups are decreasing in firm size and especially so for the smallest firms.
- Output responsiveness increase in firm size
- Increasing VAT for firms with sales above $£ 2 \mathrm{~m}$ from 20% to 24% and giving a cut to smaller firms leads to a 2% utility gain. The gains are robust and positive for different sales thresholds.

Materials as Inputs in Production

- Varieties are produced using both materials and labour.
- Materials are produced with labour only and a linear production.
- They can be priced at a markup with $p^{m} \geq 1$ given exogenously.
- The problem of the firm now becomes a two-stage one:
(1) Minimize costs given any desired output level x

$$
V C\left(p^{m}, \zeta, x\right) \equiv \min _{I, m} I+p^{m} m \quad \text { s.t } \quad \zeta F(I, m) \geq(x)
$$

(2) Maximize profits by choosing the optimal x^{*}

- Cost-minimization requires that $\frac{F_{l}^{\prime}\left(l^{*}, m^{*}\right)}{F_{m}^{\prime}\left(l^{*}, m^{*}\right)}=\frac{1}{p^{m}}$.
- Homogeneity of the production function implies that the ratio of inputs used depends only on the relative prices $\left(p^{m}\right)$.

Materials as Inputs in Production

- Assume homogeneity of degree r : $F(\theta I, \theta m)=\theta^{r} F(I, m)$.
- The optimal ratio of inputs depends only on the ratio of prices

$$
\frac{l^{*}}{m^{*}}=\eta^{*}\left(p^{m}\right)
$$

- Re-write the cost function as following

$$
\begin{aligned}
\operatorname{VC}\left(p^{m}, \zeta, x\right) & =\left(p^{m}+\eta^{*}\right)\left[F\left(\eta^{*}, 1\right)\right]^{-1 / r} \cdot \zeta^{-1 / r} \cdot x^{1 / r} \\
& =\psi\left(p^{m}\right)
\end{aligned} \cdot c \quad \cdot v(x)
$$

- Equilibrium Conditions

$$
\begin{aligned}
& \lambda\left[u^{\prime \prime}(x(c)) x(c)+u^{\prime}(x(c))\right]=\psi\left(p^{m}\right) c v^{\prime}(x) \\
& \lambda\left[u^{\prime}\left(x\left(c_{d}\right)\right) x\left(c_{d}\right)\right]=\psi\left(p^{m}\right) c_{d} v\left(x\left(c_{d}\right)\right)+f \\
& \lambda \int_{0}^{c_{d}} u^{\prime}(x(c)) x(c) d G(c)=\int_{0}^{c_{d}}\left[\psi\left(p^{m}\right) c v(x(c))+f\right] d G(c)+f_{e} \\
& M_{e}\left(\int_{0}^{c_{d}}\left[\frac{1+\eta^{*}}{p^{m}+\eta^{*}} \psi\left(p^{m}\right) c v(x(c))+f\right] d G(c)+f_{e}\right)=1
\end{aligned}
$$

Derivation

- Given the assumption of the model we have that:

$$
\begin{aligned}
S_{i t} & =\lambda_{t} u^{\prime}\left(x^{*}\left(\lambda_{t}, c_{i t}\right)\right) x^{*}\left(\lambda_{t}, c_{i t}\right) \\
V C_{i t} & =c_{i t} v\left(x^{*}\left(\lambda_{t}, c_{i t}\right)\right)
\end{aligned}
$$

- Taking the derivative of sales wrt the cost-shifter

$$
\frac{\partial S_{i t}}{\partial c_{i t}}=\lambda_{t}\left[u^{\prime \prime}\left(x_{i, t}^{*}\right) x_{i t}^{*}+u^{\prime}\left(x_{i t}^{*}\right)\right] \times \frac{\partial x_{i t}^{*}}{\partial c_{i t}}=m r_{i t} \times \frac{\partial x_{i t}^{*}}{\partial c_{i t}}
$$

- Taking the derivative of variable costs wrt the cost-shifter

$$
\begin{aligned}
\frac{\partial V c_{i t}}{\partial c_{i t}} & =v\left(x_{i t}^{*}\right)+c_{i t} v^{\prime}\left(x_{i t}^{*}\right) \times \frac{\partial x_{i t}^{*}}{\partial c_{i t}}=v\left(x_{i t}^{*}\right)+m c_{i t} \times \frac{\partial x_{i t}^{*}}{\partial c_{i t}} \\
& =m c_{i t} \times\left(\frac{v\left(x_{i t}^{*}\right)}{c_{i t} v^{\prime}\left(x_{i t}^{*}\right)}+\frac{\partial x_{i t}^{*}}{\partial c_{i t}}\right) \\
& =m c_{i t} \times\left(\frac{x_{i t}^{*}}{c_{i t}} \frac{1}{\varepsilon_{v c, i t}}+\frac{\partial x_{i t}^{*}}{\partial c_{i t}}\right)
\end{aligned}
$$

Generalized Monopolistic Competition

- There is a representative household that buys a continuum of varieties i.
- Agents supply labour inelastically. Wage is normalized to 1 .
- Utility maximization problem of the household

$$
\max _{\left[x_{i}\right]_{i \in 1}} \int u\left(x_{i}\right) d i \text { subject to } \int p_{i} x_{i} d i \leq 1
$$

- Inverse demand is $p_{i}=\lambda u^{\prime}\left(x_{i}\right)$ where $\lambda=\left(\int u^{\prime}\left(x_{i}\right) x_{i} d i\right)^{-1}$

Firms

- The firm type is given by c and it determines the total production costs $c v(x)+f$.
- Profit maximization

$$
\max _{x} \underbrace{\lambda u^{\prime}(x)}_{p(x)} x-c v(x)-f
$$

- There is an entry cost f_{e} that a firm needs to pay before it learns its type c drawn from an exogenous distribution $G(c)$.
- Firms that are too unproductive $c>c_{d}$ will shut down.
- Equilibrium is given by $\left\{x(c), c_{d}, \lambda, M_{e}\right\}$.

Deriving the Cost Function

- The problem of a firm with productivity ω and capital K is

$$
\min \quad p^{M} M+L \quad \text { st } \quad \omega F(M, L, K) \geq x
$$

- Optimality requires that

$$
\begin{equation*}
\frac{p^{M}}{p^{L}}=\frac{F_{M}\left(M^{*}, L^{*}, K\right)}{F_{L}\left(M^{*}, L^{*}, K\right)}=\frac{M^{* r-1} F_{M}\left(1, \frac{L^{*}}{M^{*}}, K\right)}{M^{* r-1} F_{L}\left(1, \frac{L^{*}}{M^{*}}, K\right)} \tag{1}
\end{equation*}
$$

- Therefore the optimal ratio of variable inputs is $\frac{L^{*}}{M^{*}}=\eta^{*}\left(p^{M}, K\right)$
- Optimality also requires that the production constraint binds

$$
\begin{equation*}
x=\omega F\left(M^{*}, L^{*}, K\right)=\omega M^{* r} F\left(1, \frac{L^{*}}{M^{*}}, K\right) \tag{2}
\end{equation*}
$$

- Which allows us to solve for material inputs as

$$
M^{*}=F\left(1, \eta^{*}\left(p^{M}, K\right), K\right)^{-1 / r} \cdot \omega^{-1 / r} \cdot x^{1 / r}
$$

- $p^{M} M^{*}+L^{*}=\left(p^{M}+\eta^{*}\left(p^{M}, K\right)\right) M^{*}=\mathscr{H}\left(p^{M}, K_{i t}\right) \cdot \omega^{-1 / r} \cdot x^{1 / r}$

Welfare Effect

Endogenous Labour Supply

- Disutility from working $U=M_{e} \int_{0}^{c_{d}} u(x(c)) d G(c)-\varphi(/)$
- This shows up in the equilibrium conditions in:
(1) Resource Constraint $\quad M_{e}\left(\int_{0}^{c_{d}}[c v(x(c))+f] d G(c)+f_{e}\right)=1$
(2) Labour-Consumption Choice
- Extra term in the welfare formula

$$
\lambda \hat{U}=\lambda \hat{U}^{\mathrm{old}}+(\lambda U-1) \frac{\hat{l}}{\bar{l}}
$$

- Can be easily incorporated using the fact that

$$
-\eta_{I} \frac{\hat{l}}{l}=\frac{\hat{\lambda}}{\lambda} \quad \text { where } \quad \eta_{I}=\frac{l \varphi^{\prime \prime}(I)}{\varphi^{\prime}(I)}
$$

Generalizing Love-of-Variety

- $U=H\left(M_{e}\right) \int_{0}^{c_{d}} u(x(c)) d G(c)$ where before $H\left(M_{e}\right)=M_{e}$
- Inverse Demand is unaffected by the function $H(\cdot)$

$$
p(x)=\frac{u^{\prime}(x)}{M_{e} \int_{0}^{c_{d}} u^{\prime}(x(c)) x(c) d G(c)}
$$

- As a result, the market equilibrium will therefore be unchanged!
- It will matter for the welfare incidence as

$$
\lambda \hat{U}=\left(\eta_{e} \lambda U\right) \frac{\hat{M}_{e}}{M_{e}}+M_{e} \lambda \hat{u}
$$

where $\eta_{e}=\frac{M_{e} H^{\prime}\left(M_{e}\right)}{H\left(M_{e}\right)}$

Multi-Sector Economy

- k sectors with a continuum of varieties in each.
- Let $U^{j}=M_{e}^{j} \int_{0}^{c_{d}^{j}} u^{j}\left(x^{j}(c)\right) d G^{j}(c)$ be the utility from sector j.
- Supply-side structure $\left\{v^{j}(\cdot), f^{j}, f_{e}^{j}, G^{j}(\cdot)\right\}$ can be sector-specific.
- Household's problem is now given by

$$
\max _{\left[x_{i}^{j}\right]_{i \in 1}} \mathscr{F}\left(U^{1}, U^{1}, \ldots U^{k}\right) \quad \text { st } \quad \sum_{j=1}^{k} M_{e}^{j} \int p^{j}(c) x^{j}(c) d G^{j}(c) \leq 1
$$

- Let $\left\{s^{j}, u^{j}\right\}$ be the average firm sale and firm utility in sector j.

Multi-Sector Economy II

- Re-write household's problem as a two-stage maximization:
(1) Allocate expenditure shares across sectors $\left\{\alpha^{1}, \alpha^{2}, \ldots, \alpha^{k}\right\}$
(2) Choose the optimal bundle of varieties $\left[x^{j}(c)\right]$ given prices and α^{j}.
- First-stage optimality requires that

$$
\mathscr{F}_{j}^{\prime} \frac{w^{j}}{s^{j}}-\frac{1}{\psi}=0
$$

- Second-stage optimality coupled with monopolistic competition determines $\left\{c_{d}^{j}, x^{j}(c), \lambda^{j}\right\}$ and therefore $\left\{s^{j}, \mu^{j}\right\}$.
- One can show that the welfare effect is

$$
\psi \hat{U}=\sum_{j=1}^{k} \alpha^{j}\left[\frac{\hat{\alpha}^{j}}{\alpha^{j}}+\frac{\hat{\hat{u}}^{j}}{u^{j}}-\frac{\hat{s}^{j}}{s^{j}}\right]
$$

Welfare Weights by Sector

Distribution of Omega

Construction

\square

Estimation Assumptions

- A1 The production function is common to all firms up to a Hicks-Neutral productivity term $x_{i t}=\zeta_{i t} F\left(M_{i t}, L_{i t}, K_{i t}\right)$.
- A2 Firms face a common downward-slopping inverse demand curve $\lambda_{t} P(\cdot)$, but the final price is subject to an iid shock $\psi_{i t}$.

$$
P_{i t}\left(x_{i t}\right)=e^{\psi_{i t}} \lambda_{t} P\left(x_{i t}\right)
$$

- A3 Capital is the only fixed input that is chosen at or before $t-1$ while labour and materials are both chosen flexibly at t.
- A4 Demand for flexible inputs can be written as $M_{i t}=\mathbb{M}\left(K_{i t}, \omega_{i t}\right), L_{i t}=\mathbb{L}\left(K_{i t}, \omega_{i t}\right)$ where both $\{\mathbb{M}, \mathbb{L}\}$ are strictly monotone in $\omega_{i t}$ for any level of capital $K_{i t}$.
- A5 The production function is homogenous of degree r in materials and labour conditional on capital.

Estimating the Klenow-Willis Demand

- Using the inverse demand function we can write an expression of log sales to log elasticity.

$$
\ln S_{i t}=a_{t}-\frac{1}{\kappa}\left(\frac{1}{\varepsilon_{i t}}+\ln \varepsilon_{i t}\right)
$$

- I run a non-linear least square estimation for to recover the superelasticity parameter κ.
- For comparison with Edmond et al. (2019), I use both my measure of variable costs (labour+materials) and labour only to construct firm level markups.
- Drop observations where markups are less than 1 which implies a negative elasticity.
- Run this by year-sector to control for the demand index.

Kimball Superelasticity in the Data

Figure: kimball_superelast.png Each estimate of the superelaticity parameter corresponds to a SIC2 industry in 2010. Values that are less than -1 or larger than one have been bunched together and are shown in the two tail columns.

Comparing R-squared by Variable Cost Measure

Figure: kimball_fit.png: Each point corresponds to a SIC2 industry in 2010.

