# Country- and sector-specific trade liberalization, directed technical change, and long-run growth

Takumi Naito<sup>1</sup>

<sup>1</sup>Waseda University

EEA 2023 Barcelona

Naito (Waseda U)

Ctry-sector-specific liberalization and growth

EEA 2023 (18 min.)

1/16

# What and why to do

- o does trade liberalization raise economic growth?
- empirically, Yes<sup>1</sup>
- $\bullet$  theoretically, Yes (but sometimes No), w/ monopolistic competition:  $^2$ 
  - most assume symmetric countries
  - all consider trade costs in a single differentiated good sector
- in reality, trade costs are different across countries AND sectors:

| lower-income 260% 190% 360 | ices |
|----------------------------|------|
|                            | )%   |
| high-income 230% 170% 290  | )%   |

Source: WTO (2021) trade cost index

• Q: how does country- AND sector-specific liberalization affect growth?

<sup>1</sup>Wacziarg and Welch (2008), Estevadeordal and Taylor (2013), Irwin (2019) <sup>2</sup>homogeneous firms: Rivera-Batiz–Romer (1991a, b), Baldwin–Forslid (1999); heterogeneous firms: Baldwin–Robert-Nicoud (2008), Sampson (2016), Naito (2017, 2019, 2021), Impullitti–Licandro (2018), Perla et al. (2021), Akcigit et al. (2021), etc.

#### How to do

- directed technical change (DTC) model of Acemoglu (2002, RES)
  - growth  $\rightleftharpoons$  skill premium (relative wage of skilled to unskilled labor)
- literature on two-country DTC models:<sup>3</sup>
  - all assume specialized R&D (innovation by North, imitation by South)
  - this paper: innovation by asymmetric countries

<sup>3</sup>Acemoglu (2002, 2003), Gancia and Bonfiglioli (2008), Chu et al. (2015), Acemoglu et al. (2015) Naito (Waseda U) Ctry-sector-specific liberalization and growth EEA 2023 (18 min.) 3 / 16

# What I got

around a symmetric BGP, country- and sector-specific liberalization:

- may not raise skill premium for some country-sector pairs
  - in contrast to static quantitative trade models<sup>4</sup>
- raises the balanced growth rate for any country-sector pair
  - stronger support for "liberalization is good for growth"

 $^{4}$  Epifani and Gancia (2008), Parro (2013), Burstein and Vogel (2017), Cravino and Sotelo (2019)

# The model

two-country DTC model of Acemoglu (2002, RES):

- two countries: j, k = 1, 2 (developing and developed)
- two factors: i = S, L (skilled and unskilled labor)
- two machine sectors: i = S, L
  - final good  $\rightarrow$  *i*-augmenting machines
  - CES, monopolistic competition, Krugman (extendable to Melitz)
  - the only tradable, subject to iceberg trade cost factor  $\tau^i_{ik} (\geq 1)$
- two intermediate good sectors: i = S, L
  - factor  $S \times S$ -aug machines  $\rightarrow S$ -intensive intermediate (services)<sup>5</sup>
  - factor  $L \times L$ -aug machines  $\rightarrow L$ -intensive intermediate (manufacturing)
- one final good sector: Y
  - two intermediate goods  $\rightarrow$  final good

<sup>5</sup>Cravino and Sotelo (2019, AEJ Macro)

< □ > < □ > < □ > < □ > < □ > < □ >

# Technology market clearing condition

$$\kappa_{j} = s_{j}(\omega_{j}^{*}/\nu_{j}^{*})\delta_{j}^{*};$$
(13)  

$$\kappa_{j} \equiv \kappa_{j}^{S}/\kappa_{L}^{I}, s_{j} \equiv S_{j}/L_{j}, \omega_{j} \equiv w_{j}^{S}/w_{j}^{L}, \nu_{j} \equiv n_{j}^{S}/n_{L}^{J},$$

$$\delta_{j}^{*} \equiv \frac{\zeta_{jj}^{S*} + (1 - \zeta_{kk}^{S*})(L_{k}/L_{j})(w_{k}^{L*}/w_{j}^{L*})(s_{k}/s_{j})(\omega_{k}^{*}/\omega_{j}^{*})}{\zeta_{jj}^{L*} + (1 - \zeta_{kk}^{L*})(L_{k}/L_{j})(w_{k}^{L*}/w_{j}^{L*})}, k \neq j,$$

$$\zeta_{kj}^{i} \equiv E_{kj}^{i}/\sum_{l} E_{lj}^{i}; \sum_{k} \zeta_{kj}^{i} = 1.$$

- relative R&D cost = relative firm value, of S- to L-aug machine
- $\delta_j$ : relative profitability in machine sector S to L
- $\zeta_{ki}^{i}$ : expenditure share of *i*-aug machines *j* buys from *k*
- in autarky,  $\delta_{j}=1 
  ightarrow$  same as Acemoglu (2002)

• 
$$\zeta_{jj}^{S}\uparrow, \zeta_{kk}^{S}\downarrow \to \delta_{j}\uparrow \to \nu_{j}\uparrow$$

< 回 > < 回 > < 回 >

## Relative factor market clearing condition

$$s_{j} = [\alpha/(1-\alpha)]^{\varepsilon} \omega_{j}^{-\psi} \nu_{j}^{\psi-1} (m_{j}^{S}/m_{j}^{L})^{(1-\sigma)(\psi-1)};$$
(14)  

$$\psi \equiv 1 + (\varepsilon - 1)/\sigma > 1 - 1/\sigma > 0,$$
  

$$\zeta_{jj}^{i} = (m_{j}^{i})^{\sigma-1}.$$

- relative supply = relative demand, of S to L
- $\varepsilon(>0)$ : elasticity of substitution across intermediate goods
- $\sigma(> 1)$ : elasticity of substitution across machines
- $\psi(> 0)$ : elasticity of substitution across factors
- $m_i^i (\leq 1)$ : j's "autarkiness" in machine sector i
- in autarky,  $m_i^i = 1 
  ightarrow$  same as Acemoglu (2002)
- $\psi > 1$ :  $\nu_j \uparrow \rightarrow \omega_j \uparrow$

### Growth equation

$$\gamma_{j}^{*} = (1 - 1/\sigma)^{\sigma} [(s_{j}\omega_{j}^{*} + 1)/(s_{j}\omega_{j}^{*}\delta_{j}^{*} + 1)]R_{j}^{*}(m_{j}^{L*})^{1 - \sigma} - \rho;$$
(18)  
$$R_{j}^{*} \equiv \left[\alpha^{\varepsilon} \left(\frac{S_{j}}{\kappa_{j}^{S}}\right)^{\psi - 1} \left(\frac{m_{j}^{S*}}{m_{j}^{L*}}\right)^{(1 - \sigma)(\psi - 1)} \delta_{j}^{*\psi - 1} + (1 - \alpha)^{\varepsilon} \left(\frac{L_{j}}{\kappa_{j}^{L}}\right)^{\psi - 1}\right]^{1/(\psi - 1)}$$

- $\gamma_j$ : growth rate of  $n_i^i$  (equalized across *i*)
- ρ: subjective discout rate
- $R_j$ : "resource function" (aggregating  $\frac{S_j}{\kappa_i^S}, \frac{L_j}{\kappa_i^L}$ , adjusting for  $\frac{m_j^S}{m_i^L}, \delta_j$ )
- in autarky,  $m^i_j = 1, \delta_j = 1 
  ightarrow$  same as Acemoglu (2002):

$$\gamma_j^* = (1 - 1/\sigma)^{\sigma} [\alpha^{\varepsilon} (S_j / \kappa_j^{S})^{\psi - 1} + (1 - \alpha)^{\varepsilon} (L_j / \kappa_j^{L})^{\psi - 1}]^{1/(\psi - 1)} - \rho.$$

(人間) トイヨト イヨト ニヨ

# Hat algebra around a symmetric BGP

#### Assumption 1

At an old BGP, all exogenous variables are the same across countries, and  $\tau_{ik}^i, \kappa_i^i$  are the same across machine sectors:

$$S_{j} = S, L_{j} = L \Rightarrow s_{j} = S/L \equiv s \forall j,$$
  

$$\tau_{jk}^{i} = \tau \in (1, \infty) \forall i \forall j, k, k \neq j,$$
  

$$\kappa_{j}^{i} = \kappa \forall i \forall j \Rightarrow \kappa_{j} = \kappa/\kappa = 1 \forall j.$$

• analytically examine the effects of changes in  $\tau_{21}^{S}, \tau_{21}^{L}, \tau_{12}^{S}, \tau_{12}^{L}$ 

• (local) hat algebra: 
$$\hat{x} \equiv d \ln x \equiv dx/x$$

# Skill premium

#### Proposition

#### Around the symmetric old BGP:

- $\delta_j$ ,  $R_j$ ,  $\nu_j$  are increasing in  $\tau_{kj}^S/\tau_{kj}^L$  but decreasing in  $\tau_{jk}^S/\tau_{jk}^L$ ,  $k \neq j$ . -  $\omega_j$  is increasing in  $\tau_{kj}^S/\tau_{kj}^L$  but decreasing in  $\tau_{jk}^S/\tau_{jk}^L$ ,  $k \neq j \Leftrightarrow \psi > 1$ .
  - $\tau_{21}^{S} \uparrow \rightarrow \zeta_{11}^{S} \uparrow \rightarrow \delta_{1} \uparrow \rightarrow \nu_{1} \uparrow (\because (13)) \rightarrow \omega_{1} \uparrow \text{iff } \psi > 1 (\because (14))$ •  $\omega_{1} \uparrow w/ \text{ liberalization in } \tau_{21}^{L}, \tau_{12}^{S}, \text{ but } \downarrow w/ \text{ liberalization in } \tau_{21}^{S}, \tau_{12}^{L}$

# Balanced growth rate

#### Proposition

Around the symmetric old BGP,  $\partial \gamma / \partial \ln \tau^i_{jk} < 0 \ \forall i = S, L \ \forall j, k = 1, 2, k \neq j.$ 

• (18):

$$\begin{split} d\gamma_j &= (\rho + \gamma) [\beta \widehat{\omega}_j - \beta (\widehat{\omega}_j + \widehat{\delta}_j) + \widehat{R}_j + (1 - \sigma) \widehat{m}_j^L] \\ &= (\rho + \gamma) \{ -\beta \widehat{\delta}_j + \beta [(1 - \sigma) (\widehat{m}_j^S - \widehat{m}_j^L) + \widehat{\delta}_j] + (1 - \sigma) \widehat{m}_j^L \} \\ &= -(\sigma - 1) (\rho + \gamma) [\beta \widehat{m}_j^S + (1 - \beta) \widehat{m}_j^L]. \end{split}$$

- $\chi \equiv n_1^L/n_2^L \uparrow \to \gamma_1 \downarrow, \gamma_2 \uparrow (\because 1 \text{ imports less, } 2 \text{ imports more})$ •  $\tau_{21}^i \uparrow \to m_1^i \uparrow \to \gamma_1 \downarrow \to \chi \downarrow \to \gamma_2 \downarrow$
- $au_{12}^i \uparrow \to m_2^i \uparrow \to \gamma_2 \downarrow \to \chi \uparrow \to \gamma_1 \downarrow$
- $\gamma \uparrow w/$  any country- and sector-specific liberalization, whether  $\psi \stackrel{<}{=} 1$

## Exact hat algebra around a factual BGP

• express the model in relative changes:  $\tilde{x} \equiv x'/x$ 

• parameters:

- $\rho = 0.02$  (Acemoglu, 2009)
- $\sigma = 3.8$  (Bernard et al., 2003)
- $\psi = 1.7$  (Acemoglu, 2009)
- $\Rightarrow \varepsilon = 1 + 3.8(1.7 1) = 3.66$
- data on a factual BGP: ann avg 2010-2019, WDI
  - intermediate sectors: i = S (services), i = L (agriculture and industry)
  - countries: j = 1 (low & middle income), j = 2 (high income)
  - services share:  $\beta_1 = 0.515948, \beta_2 = 0.693663$
  - domestic expenditure shares in machine sectors:
    - $\zeta_{11}^{S} = 0.968899, \zeta_{22}^{S} = 0.963665, \zeta_{11}^{L} = 0.826309, \zeta_{22}^{L} = 0.64393$
  - relative GDP and growth rate:  $y_1 = 0.537046, \gamma = 0.0174589$
- counterfactual relative changes in iceberg trade costs:
  - $\widetilde{ au}^i_{jk}=$  0.9 (decreased by 10%);  $\widetilde{ au}^i_{jk}=$  1.1 (increased by 10%)

(비) (레) (문) (문) (문)

# Effects of relative changes in $\tau^i_{ik}$ around a factual BGP



(a) relative changes in the balanced growth rate  $\gamma$ 



# Melitz (Pareto shape $\theta = 3.4$ from Ghironi–Melitz (2005))



(a) relative changes in the balanced growth rate  $\gamma$ 



Naito (Waseda U)

# Welfare around a factual BGP



(a) changes in countries' long-run welfare  $\Delta u_1$  (top),  $\Delta u_2$  (bottom), Krugman



(b) changes in countries' long-run welfare  $\Delta u_1$  (top),  $\Delta u_2$  (bottom), Melitz

- j's welfare tends to move in the same direction as j's skill premium
- j's liberalization may not raise j's welfare

Naito (Waseda U)

Ctry-sector-specific liberalization and growth

EEA 2023 (18 min.) 15 / 16

# Summary

- around a symmetric BGP:
  - 1's skill premium  $\uparrow$  w/  $\tau_{21}^L \downarrow$ ,  $\tau_{12}^S \downarrow$ , but  $\downarrow$  w/  $\tau_{21}^S \downarrow$ ,  $\tau_{12}^L \downarrow \Leftrightarrow \psi > 1$
  - balanced growth rate  $\uparrow$  w/  $\tau^{i}_{ik} \downarrow \forall i, j, k \; \forall \psi$
- the above is mostly valid:
  - around a factual BGP
  - w/ heterogeneous firms

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

EEA 2023 (18 min.)

3

16/16