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Abstract

This paper studies how technology usage affects earnings growth and earnings inequal-

ity over the life-cycle. I first construct an index to measure technology usage at the individ-

ual level and investigate its empirical relationship with earnings. However, reduced-form

analysis could understate the impact of technology as it cannot capture the interaction with

human capital. To address this concern, I then develop a life-cycle model with a college

decision, technology choices, human capital investments, and incomplete markets to quan-

tify the relative importance of technology. The model features rich interactions between

technology and human capital investment such that workers with high human capital are

more likely to work with advanced technologies and vice versa. Counterfactual exper-

iments suggest that technology usage contributes 25% of the growth in mean earnings

and 46% of the growth in life-cycle inequality. In particular, the model generates a rein-

forcement mechanism between human capital and technology usage which amplifies the

growth in mean earnings and earnings inequality. Lastly, I evaluate the role of technology

usage for policy implications of non-linear taxation. Results show that the distortionary

effect of a progressive tax on earnings growth is larger with the presence of technology

usage compared to an otherwise standard human capital model due to the reinforcement

mechanism.
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1 Introduction

There is a large body of literature that studies the effects of information technology (IT)

on labor market outcomes but very few papers have explored this question from the

life-cycle view.1 One important margin that arises from the life-cycle perspective is that

technology choice is contingent on previous experience: individuals with proficiency

in certain technologies might find it easier to learn new ones compared to those less

familiar with technology.

In this paper, I investigate the mechanism through which technology usage affects

life-cycle earnings and quantify its relative importance. I develop a life-cycle model fea-

turing rich interactions between technology choice and human capital investments. My

results suggest that technology usage contributes to 25% of the growth in mean earnings

and 46% of the growth in life-cycle inequality. In addition, I find that technology usage

provides additional incentives for a college education, which complements the standard

human capital view.

The empirical challenge is to measure technology usage at the individual level.

To overcome this obstacle, I construct an index distance to the frontier to approxi-

mate information technology usage using occupations as proxy following Gallipoli and

Makridis (2018). This index, which is based on the importance of IT-related knowledge

and skills, measures how far the technology used in one specific occupation is behind

the most IT-intensive occupation (frontier technology). This index reflects the relative

position of a specific occupation in the technology distribution, which progresses over

time.

I first present empirical evidence to show a strong positive relationship between

technology usage and earnings. I include the technology index in an otherwise standard

1Burstein et al. (2019) study how technology affects inequality and Acemoglu and Restrepo (2020)
investigate its impact on employment. Hudomiet and Willis (2021) studies the effect of computerization
on near-retirement workers.
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Mincer regression and the estimated coefficient on the technology index is positive and

statistically significant. In particular, one standard deviation increase in technology

usage leads to 17% increase in earnings after controlling for observables. Furthermore,

I find that the observed variation in technology usage accounts for 38% of the growth in

life-cycle earnings inequality.

This reduced-form analysis might underestimate the impact of technology because

it fails to capture rich interactions between technology usage and human capital. The

reason is that I observe a strong correlation between technology usage and education in

the data: there are more college workers in more advanced technologies. So technology

could generate effects on earnings through the interplay with human capital investments,

which cannot be directly captured by reduced-form estimates.

To quantify the contribution of technology usage on earnings, I develop a life-cycle

model with a college decision, technology choices, human capital investments, and in-

complete markets. Individuals are heterogeneous in initial human capital and the cost

of a college education which determine their college decisions. Agents who go to col-

lege will accumulate additional human capital with the cost of forgoing four years of

earnings. During the working stage, individuals maximize utility by choosing which

technology to work with and making human capital investments. The model then is

parameterized to match life-cycle profiles of technology usage and earnings as well as

the college attainment rate.

The novelty of the model is to allow for rich interactions between technology and

human capital, which are summarized in three mechanisms. The first mechanism is

denoted direct channel, in which I assume the earnings are the product of human capital

and technology level. This assumption explicitly leads to the complementarity between

these two terms. The second one is the switching channel where technology switching

comes at a cost of loss in human capital. This assumption is built on Kambourov and

Manovskii (2009a) where they find human capital is occupation-specific and partially
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transferable.

The last channel is the catch-up channel. Since the entire technology distribution is

moving forward over time, one needs to learn new knowledge to stay updated with the

current technology. I model this cost of learning as the catch-up cost, which decreases

with human capital. This mechanism is in the spirit of Galor and Moav (2000) where the

time required for learning the new technology diminishes with the level of ability. All

three mechanisms will be shown to be important in matching technology usage patterns

in the data.

Findings I conduct counterfactual experiments to evaluate each channel separately

and their aggregate impact on life-cycle earnings. After shutting down all three chan-

nels associated with technology usage, the model boils down to a standard risky human

capital investments model. I find that the growth in mean earnings decreases by 26

percentage points and the growth in life-cycle inequality drops by 5.6 log points. Fur-

thermore, the college attainment rate decreases by 11.6 percentage points.

The counterfactual experiments provide two key insights about technology usage.

First, the growth in mean earnings and earnings inequality is amplified by the interac-

tions between technology and human capital through a reinforcement mechanism. In

particular, technology complements human capital through the direct channel. Thus,

workers in advanced technologies have more incentives to invest in human capital.

Meanwhile, the catch-up channel lowers the barrier of technology upgrading for people

with high human capital so they are more likely to switch to more advanced technolo-

gies.

Second, technology usage plays a crucial role in college attainment, which com-

plements the standard human capital view. In particular, individuals benefit from ac-

cumulating human capital during their college education, and this, in turn, facilitates

technology upgrading in their future careers. When the complementarity between hu-
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man capital and technology is weakened, the incentive for additional human capital

accumulation during college diminishes, leading to a decline in the college attainment

rate.

Lastly, technology usage generates different policy implications in terms of pro-

gressive taxation. Recent studies have shown that a more progressive tax distorts the

incentive of human capital investments and hence lowers earnings growth.2 My findings

show that the distortionary effects are more pronounced when considering the presence

of endogenous technology choice, in contrast to standard human capital models. In

the baseline model, a progressive tax suppresses not only human capital investments but

also technology upgrading, which further dampens human capital accumulation through

the reinforcement mechanism. Therefore technology usage amplifies the impact of non-

linear taxation.

Related literature To the best of my knowledge, this is the first paper to study tech-

nology usage patterns from the life-cycle perspective. Previous studies on individuals’

technology choices only focus on a short period or infinite horizon. For example, Chari

and Hopenhayn (1991) study technology adoption for agents that only live two periods,

and Kredler (2014) extends their work to infinite-horizon. Jovanovic and Nyarko (1996)

propose a theoretical framework to study the trade-off between learning by doing and

adopting new technologies. My work applies important modeling elements from the

above papers in a life-cycle framework. The model also shares similar intuitions with

the literature on technology adoption from the firm’s perspective, like Parente (1994)

and Greenwood and Yorukoglu (1997). Specifically, the incentive of technology up-

grading decreases with age as the benefit can only be enjoyed for a shorter period when

the individual (or firm) is older.

My paper broadens the understanding of earnings inequality by unveiling an im-

2See Erosa and Koreshkova (2007) and Guvenen et al. (2014) for exmaple.
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portant mechanism associated with technology. My paper not only incorporates key

features from previous work, such as uninsurable earnings shocks and risky human cap-

ital accumulation, but also includes technology choices as another source of inequality

over the life-cycle. It is closely related to Huggett et al. (2011), who find that the dif-

ference in initial conditions accounts for the bulk of the variation in earnings inequality.

My analysis complements their findings by showing the interaction between technology

and human capital as an amplifier of earnings growth and life-cycle inequality.

My work is also closely connected to the literature on occupational mobility. Since

the technology index is constructed at the occupational level, technology switching can

also be understood as occupational switching. In line with the work of Dillon (2018) and

Liu (2019), I find that the opportunity of switching technologies helps mitigate negative

earnings shocks. However, instead of focusing on earnings risk in detail, I focus on

how technology switching affects earnings inequality, like Kambourov and Manovskii

(2009b) and Cubas and Silos (2017). In particular, I conduct my analysis in a life-cycle

framework and explicitly emphasize the interplay between technology switching and

endogenous human capital investments.

The paper is organized as follows. In Section 2, I present empirical evidence on tech-

nology usage and its relationship with earnings. In Section 3, I introduce a life-cycle

model with endogenous technology and human capital choices. I discuss the parame-

terization and model’s performance in Section 4. In section 5, I conduct counterfactual

experiments to understand model mechanisms. Section 6 evaluates a policy experiment

of a non-linear tax on labor earnings. Section 7 concludes.

2 Technology Usage and Earnings

This section is devoted to studying technology usage patterns and their direct effects on

earnings. I first construct an index to measure technology usage using occupations as the
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proxy and then investigate technology usage behaviors. I find there is a significant gap in

average technology level between college and non-college workers over the life-cycle.

Furthermore, the life-cycle profiles of average technology level exhibit a hump-shaped

pattern but the magnitude of fluctuation is relatively small.

I also document a strong and positive correlation between technology level and earn-

ings after controlling for observables. This correlation is robust both at the individual

level and the occupational level. In addition, the observed dispersion in technology us-

age can directly account for 4.3 percentage points of overall earnings inequality and

38% of the growth in life-cycle inequality.

2.1 Measurement of technology

The empirical challenge to study technology usage patterns is the lack of a direct mea-

sure at the individual level. To overcome this obstacle, I construct an index distance to

the frontier to approximate technology usage using occupations as the proxy based on

Gallipoli and Makridis (2018). The index is based on how intensively people use in-

formation technologies in daily work. The rationale behind this measure is inspired by

well-documented facts that information technologies can greatly improve productivity

at different levels.3

This index measures how far one technology (occupation) is behind the frontier tech-

nology, i.e., the most advanced technology. Since the frontier technology is evolving

over time, this index can be interpreted as the relative position in the moving technol-

ogy distribution.

I draw detailed information from Occupational Information Network (O*NET) data

set on how intensively workers use information technologies. The O*NET is a com-

prehensive database of worker attributes and job characteristics. The survey interviews

3Stiroh (2002) shows that the usage of information technology improves productivity at the industry
level. Bloom et al. (2012) shows a similar result at the firm level. Akerman et al. (2015) find that the
adoption of broadband internet improves the productivity of skilled workers.
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a random sample of workers in each occupation. Interviewees answer questions on a

scale from 1 (“not important”) to 6 (“extremely important”) that measure the importance

of some specific knowledge, tasks, or skills. A large literature has used the O*NET

database to analyze the labor market outcomes using the task approach (See Autor et al.

(2003) and David and Dorn (2013)).

I construct the index distance to the frontier by extracting values of characteristics

related to IT technology. Specifically, I consider a set of knowledge, tasks, and skills

associated with IT technology and sum up the levels of importance (from 1 to 6). After

that, I normalize the values of all occupations to the interval [−1,0]. The details of the

construction are shown in Appendix A.

This index, as implied by its name, describes how far the technology used in one

specific occupation is behind the frontier technology. By construction, the occupation

that requires the most intensive IT activities is considered to be the frontier technology

and its distance to the frontier is 0. Table 1 shows a sample of representative occupa-

tions and their distances in each distance quintile. For instance, janitors are the most

common occupation in the first distance quintile (bottom of the technology distribution)

and computer scientists are the most common occupation in the 5th distance quintile.

Table 1: Examples of occupation and distance

Distance quintiles 1 2 3 4 5

Occupation Janitors Truck drivers Supervisor of salers Accountant Computer scientists
Distances -0.95 -0.76 -0.57 -0.35 -0.10

Note: The table presents the occupation with the highest employment in each quantile of the distance.

I assume the index is time-invariant over the period of the analysis, i.e. the distance

of an occupation relative to the frontier is fixed even though the frontier technology is

evolving over time. For instance, consider an occupation with the task of inputting and

editing text. Workers used IBM MT/ST, a stand-alone word processing device, in the

1970s and switched to computer software like WordPerfect or Microsoft Word in the
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Figure 1: Correlation of Technology Indices over Time

(a) 1977 and 2003 (b) 1977 and 2021

Note: The figure shows the correlation of occupational technology indices across different years.
Source: Author’s calculation from the 4th edition of DOT (1977), O*NET 2003 and 2021.

1990s. Since both technologies were up-to-date at their time, the relative distance of

this occupation does not change. Meanwhile, the absolute level of technology increased

over time because computer software is more efficient than typewriters.

To justify this assumption, I provide empirical evidence to show that there are no

significant changes in task intensity and skill composition so this measurement is robust

over time. The O*NET data set is only available from 2003 so I use the information

from the fourth edition of the Dictionary of Occupational Titles (DOT) conducted in

1977, which is the predecessor of the O*NET, to check how IT-related task intensity

changes across time. I construct an index based on a similar combination of skills and

tasks for each occupation in the DOT and compare it with the indices from the O*NET

in 2003 and 2021 separately.

Standard OLS regressions indicate that the technology index in 1977 has strong

explanatory power on the index in 2003 as well as in 2021 with corresponding R-squared
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of 0.62 and 0.63.4 Figure 1 also shows the scatter plots of indices between different

periods. Though there are some occupations that become more or less IT intensive over

time, the above empirical evidence suggests that the skill composition and task intensity

from which I infer relative technology level do not change in general.

2.2 Technology usage patterns

Utilizing the constructed index, I document technology usage patterns across education

and over the life-cycle. I find a huge variation in technology usage by education: the

fraction of college workers increases with technology level. In addition, there is a con-

siderable gap in technology level between college and non-college workers throughout

life-cycle. However, the life-cycle technology usage profile is relatively stable as the

mean technology level barely changes over the life-cycle for both educational groups.

Specifically, the change in the mean distance between age 23 and 60 for non-college

workers is 0.04 whereas the gap in average technology level across education is around

0.25.

Data source The analysis draws information from the Current Population Survey

(CPS) Annual Social and Economics Supplement (ASEC) over the period 1968-2019.

I restrict the sample to full-time full-year male workers with earnings above 50% of

the federal minimum wage in that year. Self-employed workers are also excluded.5 I

harmonize occupational codes in both CPS and O*NET to the 2010 SOC code and link

the constructed index from the O*NET to the CPS sample.

Technology usage by education The distribution of technology usage varies signif-

icantly across educational groups as shown in Figure 2 panel (a). I divide workers

4The explanatory power of the index in 2003 on the index in 2021 is even higher, with an R-squared
of 0.74.

5Similar criteria are applied in the literature on earnings inequality. See Storesletten et al. (2004) and
Guvenen (2007) for example.
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into two educational groups: with college degrees and without college degrees. College

workers are largely concentrated on the right tail of the distribution whereas non-college

workers mainly work with less advanced technologies with a distance of less than -0.6.

Figure 2: Technology Distribution by Education

(a) Technology distribution by education (b) Relative Share by education

Note: Panel (a) shows the distribution of technology usage by educational groups: workers with and
without college degrees. Panel (b) shows the relative share of college workers and non-college workers
by distance (technology level). The technology distribution is divided by 20 bins and the relative share is
calculated in each bin.
Source: Author’s calculation from CPS ASEC 1968-2019 and O*NET.

Panel (b) shows that the relative share of college workers increases with the tech-

nology level. At the bottom of the technology distribution (distance less than -0.8),

around 90% of the workers don’t have a college degree. For example, the relative share

of college workers in janitors (with a distance of -0.95 as shown in Table 1) is around

5%. The share of non-college workers decreases with distance and less than 30% of

non-college workers are in the top 10% technologies. The increasing share of college

workers suggests there could be a selection mechanism of technology choices based on

education.
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Life-cycle profiles of technology usage Next, I look at technology usage patterns

over the life-cycle. I construct the life-cycle profiles by extracting the age coefficients

(β age
i,t ) from the following statistical model:

y j,c,t = β
age
j +β

year
t +β

cohort
c + εc, j,t (1)

where y j,c,t is the statistic of interest from cohort c of age j at time t. Due to the

linear relationship between age, year, and cohort (c = t− j), it is impossible to identify

three terms separately without further assumptions. The common way to deal with this

problem is to normalize either the time effects β
year
t or the cohort effects β cohort

c to zero

and attribute the trend to the other factor.

To control for both age effects and cohort effects, I lump three adjacent cohorts

into one aggregate cohort which gives me extra degrees of freedom to identify three

terms separately.6 The implicit assumption of this linear statistical model is that the

time effects (or cohort effects) only interact with the age profile through the additively

separable form.

Two features stand out from the life-cycle profiles of technology usage by education

as shown in Figure 3. First, there is a considerable gap in technology level between

college and non-college workers even from the beginning of the life-cycle. Specifically,

the mean distance of college workers is 0.27 higher than non-college workers at age 25.

This difference is 1.3 times the standard deviation of the distance in the entire sample.

Second, the life-cycle profiles of technology usage are relatively flat, especially for

college workers. For non-college workers, the growth of mean distance from age 23

to 60 is 0.04, which is equivalent to 20% of the standard deviation of the distance in

the sample. The growth of mean distance is only 0.02 for college workers over the

same period. Put differently, the gap in technology level across education is relatively

constant throughout life-cycle between college and non-college workers.
6The shape of age profiles does not change if I only control for year effects or cohort effects.
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Figure 3: Life-cycle Technology Usage Profiles

Note: This figure presents the life-cycle profile of technology usage using the constructed index distance
to the frontier measured at the occupation level. A higher distance means a more advanced technology.
Source: Author’s calculation from CPS ASEC 1968-2019 and O*NET.

One additional caveat regarding the interpretation of life-cycle profiles: the age pro-

file of mean distance represents the relative speed of technology upgrading since the

frontier technology grows over time. By construction, the distance remains constant

if one sticks to the same occupation over time, which implies that the worker adopts

new technology at a pace that is consistent with the growth rate of the entire technology

distribution.

2.3 Technology and earnings

The observation on technology usage patterns naturally begs the question: how does

technology affect earnings? I present empirical evidence to show positive correlations

between technology level and earnings at different levels, and quantify the contribution
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of technology to earnings inequality.

To study the relationship between technology usage and earnings at the individual

level, I include the technology index to the Mincer regressions as described below:

lnwi,t = β0 +β1ni,t +∑
t

β2,tyeart +β3agei,t +β4age2
i,t +X ′i,tγ + εi,t (2)

where lnwi,t is log real annual earnings for individual i in year t, ni,t is the distance to

the frontier technology constructed at occupational level, and Xi,t is the set of control

variables, including dummies of race, education, marital status and states.

Table 2: Effects of Technology on Earnings

Mincer regression Two-step
(1) (2) (3) (4)

Technology (β1) 7 0.691 7 0.777
(0.002) (0.063)

Occupation dummies 7 7 X 7

N 1262416 442

R2 0.326 0.369 0.410 0.473

Note: Column (1) presents the estimation of the standard Mincer regression without the technology index.
Column (2) shows the estimation of the modified Mincer regression with the technology index as shown
in Equation (2). Column (3) includes broad occupational dummies based on (2). Column (4) shows the
results of the two-step regression in Equation (3) and (4) and the R2 is for the second step regression.
Source: CPS ASEC 1968-2019 and O*NET.

Table 2 column (2) shows that the estimated coefficient on technology is 0.691 with

a standard error of 0.002, which is statistically significant from zero. Since the distance

takes value from the interval [−1,0], the result implies that workers in the frontier tech-

nology (n = 0) on average earn 69.1% more relative to workers in the least advanced

technology (n =−1) after controlling for observables.

The comparison between column 1 and 2 indicates that the inclusion of the tech-

nology index increases the R2 of the standard Mincer regression from 0.326 to 0.369 as

shown. This result implies that technology usage contributes 4.3 percentage points of
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the overall variation in earnings. That is, the technology index increases the explanatory

power of the standard Mincer regression by 13%.

Since the technology index is constructed at the occupational level, there is a perfect

linear relationship between the technology index and occupation. Therefore one might

wonder to what extent the variation is accounted for by the technology index instead

of occupational fixed effects. In column (3), I replace the technology index with oc-

cupation dummies and find that the R2 increases to 0.410. Compared to R2 in the first

two columns, it implies that the technology index is able to explain almost half of the

variation across occupations.

To solve the collinearity problem, I run a two-step regression which allows me to

disentangle the effect of technology usage from occupational fixed effects. I first run the

Mincer regression with occupational dummies (OCC j) as shown in Equation (3). The

first stage is to extract the occupational fixed effects λ j. In the second step, I regress

the estimated occupational fixed effects λ j on the technology index n j to examine to

what extent the variation across occupations can be accounted for by the variation in the

technology index.

lnwi,t = β0 +∑
j

λ jOCC j +∑
t

β2,tyeart +β3agei,t +β4age2
i,t +X ′i,tγ + εi,t (3)

λ̂ j = β
′
0 +β1n j + ε j (4)

Column (4) in Table 2 shows that the positive relationship between technology and

earnings is also robust at the occupation level. The effect of technology even becomes

stronger as the estimated coefficient on technology increases to 0.777 with a standard er-

ror of 0.063. The reason is that some high-paying occupations like managers or lawyers

are not at the top of the technology distribution. Such occupations require interpersonal

or leadership skills and do not involve a high intensity of technology usage. As a result,

the coefficient on technology will be underestimated if not controlling for such skills.
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The two-step regression helps me to disentangle the impact of technology from other

valuable skills of an occupation. Therefore its estimation is higher than the one from

the modified Mincer regression.

More importantly, as shown in column (4), the R2 in the second stage of the two-

step regression is 0.473. This number implies that almost half of the variation across

occupations (λ̂ ) can be explained by the constructed index of technology usage. This

is also quantitatively consistent with the comparisons in R2 from column (1) to column

(3). Specifically, the occuaptional fixed effects increases R2 of the standard Mincer

regression from 0.326 to 0.410 and the technology index contributes 4.3 percentage

points.

Contribution to life-cycle inequality I conduct a simple accounting exercise to demon-

strate how technology usage affects life-cycle earnings inequality. I find that the ob-

served variation in technology usage accounts for 38% of the growth in life-cycle earn-

ings inequality.

To isolate the impact of technology, I construct an alternative measurement of earn-

ings as described below:

ln w̃i,t = lnwi,t− β̂1ni,t (5)

where wi,t is the observed annual labor earnings for individual i at time t, ni,t represents

the distance to the frontier and β̂1 is the estimated coefficient of the technology index in

Table 2 column 2. I denote ln w̃i,t as the residualized earnings, which rules out the part

of earnings that can be explained by technology usage.

I compare the age profiles of life-cycle earnings inequality between the raw earnings

(lnwi,t) and the residualized earnings (ln w̃i,t). In particular, I utilize the statistical model

described in Equation (1) and use the variance of log earnings as the metric of inequality.

The wedge between these two age profiles of earnings inequality can be understood as

the variation accounted for by technology usage.
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Figure 4: Life-cycle Earnings Inequality

Note: The figure shows the age profile of variance of log earnings estimated from Equation (1). The solid
line represents the raw earnings lnwi,t and the dotted line represents the residualized earnings ln w̃i,t as
described in Equation (5), which excludes the part explained by technology. Both levels are normalized
to 0 at age 23 for comparison purpose.
Source: Author’s calculation from CPS ASEC 1968-2019 and O*NET.

Figure 4 shows that the growth in life-cycle inequality drops significantly using the

residualized earnings, which excludes the part explained by technology. Specifically,

the level of raw earnings inequality increases 12.5 log points over the life-cycle but the

growth decreases to 7.7 log points when using the alternative measurement of earnings.

This means that the observed variation in technology usage directly contributes 38% of

the growth in life-cycle inequality.

2.4 Taking stock

In this section, I document technology usage patterns over the life-cycle and investigate

their empirical relationship with earnings. I find that the usage of IT-intensive technol-
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ogy is positively associated with earnings at both individual and occupational levels.

The empirical exercise also shows that the observed dispersion in technology usage

could account for 13% of the overall inequality and 38% of the growth in life-cycle

inequality.

However, the above reduced-form analysis might underestimate the impact of tech-

nology due to the strong correlation between technology usage and education as shown

in Figure 2. On one hand, education could affect technology choices. For example,

Riddell and Song (2017) find that education increases the probability of technology

adoption. On the other hand, educational decisions, or in general, human capital in-

vestments, could also be affected by technology usage (Mincer (1989)). Therefore one

needs a life-cycle model that can explain the joint distribution of technology usage and

education to quantify the relative importance of the interaction between technology us-

age and human capital.

3 A Life-Cycle Model for Technology Usage

In this section, I develop a life-cycle model with a college decision, endogenous tech-

nology choices, human capital investments, and incomplete markets to quantify how

technology usage affects life-cycle earnings. The model allows for rich interactions

between technology and human capital decisions. I will first ask the model to repro-

duce technology usage and earnings patterns over the life-cycle for both college and

non-college workers and then shut down the technology channel to see what happens to

earnings growth and earnings inequality. A tax system is also embedded in the model

which allows me to study the role of technology if the economy switches from a pro-

portional tax to a progressive tax.
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3.1 Environment

Time is discrete. Each period a unit mass of individuals is born who live up to J periods.

The population growth rate is µ . Individuals enter the economy with high-school de-

grees at age 18. They can spend four years in college or enter the labor market directly.

During the working stage, they maximize expected lifetime utility by choosing which

technology to work with in each period and making human capital investments. They

will retire exogenously after age JR.

I assume workers supply one unit of labor inelastically in each period. Individuals

also borrow and save assets at the risk-free rate r to smooth consumption over the life-

cycle. The model abstracts away from the demand side of technologies and takes the

growth rate of the technology distribution as exogenous.

Technology and earnings Technology is chosen from the interval [−1,0] to closely

follow the concept of the distance to the frontier in the empirical part. Earnings is a

function of technology n, human capital h, productvity z and time t:

w = exp(z) ·h · γ(η ·n+t) (6)

where the component γ(η ·n+t) can be interpreted as the marginal productivity of working

with technology n at time t.

The parameter γ stands for the growth rate of the technology distribution. If one

stays at the same relative position in the technology distribution from t to t + 1, his

earnings would grow at the rate

γ =
exp(z) ·h · γ(η ·n+t+1)

exp(z) ·h · γ(η ·n+t)
(7)

The parameter η captures the productivity difference within the technology distribu-
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tion. The earnings ratio between workers in the frontier technology (n = 0) and workers

in the least advanced technology (n =−1) equals γη . So η rescales the productivity gap

for the interval [−1,0].

Human capital evolution I model human capital evolution in the spirit of Ben-Porath

but the set-up is different mainly in two aspects. First, human capital accumulation is

uncertain in the sense that the evolution is stochastic. One’s investments can only affect

the probabilities. Second, the accumulation process is stepwise such that one cannot

skip intermediate levels.

Following Jung and Kuhn (2019), I assume the human capital levels are discrete and

represented by an evenly spaced ordered set [hmin, ...,hmax]. During the working stage,

individuals make human capital investments by choosing the effort e ∈ [0,1] which af-

fects the law of motion of human capital evolution. The cost is captured by the disutility

term ζ e2.

The evolution of human capital follows a Markov process with probabilities that

depend on the effort e, age j, and education s ∈ {College,Non-College}. In particular,

let h+ (h−) denotes the immediate successor (predecessor) of human capital level h, the

probability that human capital increases to the next level is given by

Ps(ht+1 = h+|ht = h,e, j) = ρ
j−22 · ps · e (8)

where ps is the baseline probability that varies by education.7 Human capital deprecia-

tion is modeled by the term ρ j−22 with ρ < 1. When workers get older, it is less likely

to climb up the skill ladder as the baseline probability is multiplied by a factor less than

7This assumption is to illustrate that the average learning ability is different across education, like in
Kong et al. (2018). The detailed discussion is postponed to Section B.2.
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one. The probability that human capital decreases to the previous level is

Ps(ht+1 = h−|ht = h,e, j) = (1−ρ
j−22 · ps · e)αdown

s (9)

where αdown
s ∈ [0,1] and it is also education-specific.

The law of motion of human capital evolution is summarized in the following equa-

tion

h′ =


h+ with probability ρ j−22 · ps · e

h with probability (1−ρ j−22 · ps · e)(1−αdown
s )

h− with probability (1−ρ j−22 · ps · e)αdown
s

(10)

When the human capital level is hmin (hmax), the probability of human capital decrease

(increase) is absorbed into the probability of staying.

The human capital accumulation process is stepwise. In order to reach the maximum

level hmax, one needs to experience all its predecessor levels. If a worker falls from the

human capital ladder, it would take some time to climb back to the original level. Put

differently, the loss cannot be reimbursed by an excess amount of investments in a short

time.

Cost of switching technologies Knowledge accumulated at old technologies cannot

be completely applied in new technologies (Chari and Hopenhayn (1991)). I follow

Kambourov and Manovskii (2009a) to assume human capital is technology-specific and

partially transferable. The following equation shows the amount of human capital that

can be transferred when switching to new technologies:

h̃(n,n′,h) =

h if n≤ n

h− (n′−n) ·h if n′ > n
(11)

21



Equation (11) shows the switching cost is asymmetric such that it only occurs when

people upgrade technology (n′ > n). If the worker chooses technology downgrading

(n′ ≤ n), he can keep the same human capital level after switching. The downward cost

is eliminated to decrease the obstacle of technology downgrading, which is a common

phenomenon in the data.

The cost of technology upgrading in terms of human capital loss is increasing in the

distance of the switch (n′−n). This functional form is built on the work from Jovanovic

and Nyarko (1996) where they provide micro foundations using the Bayesian updating

setup.

More experience can be carried to new technologies if they are highly correlated

with the old ones. For example, most of the coding skills in Matlab can be directly

applied to Python. However, the experience with Excel, a less-advanced technology

relative to Matlab, can hardly be helpful to learn Python. The correlation of technology

is interpreted as the distance of the switching (n′− n). So the loss in human capital is

small if two technologies are closely related.

3.2 College decisions

Workers are endowed with initial human capital h0 and psychic cost of a college educa-

tion q. Both initial conditions are drawn from two independent log normal distributions:

h0 ∼ LN(µh0 ,σ
2
h0
) and q∼ LN(µq,σ

2
q ) (12)

Given the combination of h0 and q, workers are endogenously sorted into college

path and non-college path. College workers spend four years to acquire the desired

human capital level at the cost of disutility which depends on q then they enter the

working stage. Another benefit of a college education is that college workers are more

likely to work with advanced technologies when entering the labor market relative to
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non-college workers after graduation. Non-college workers will directly enter the labor

market with initial human capital h0.

Non-college path If the worker does not attend college, he will directly enter the

working stage at age 18 with initial human capital h0. So the value as a non-college

(NC) worker is

WNC(h0) =
∫

n

∫
z0

VNC(a0,h0,n,z,18)dFz(z0)dFNC
n (n) (13)

where VNC(a0,h0,n,z,18) is the value as non-college worker at the working stage with

asset level a0, human capital h0, technology n, productivity z at age 18. The initial

productivity is drawn from the distribution N(µz0,σz0) with CDF Fz(z). Workers’s ini-

tial technology is also determined stochastically and it is drawn from the distribution

FNC
n (n).

College path If the worker decides to go to college, he chooses human capital invest-

ment x in the college. The production function of human capital is given by

hc(h0,x) = (h0 · x)αh +h0 (14)

and the cost of investment is captured by the following disutility term

q(x+1{x > 0}) (15)

This disutility can be understood as the psychic cost of attending college.8 The worker

has to pay (1) the fixed cost of college q ·1{x > 0}, and (2) the cost that is proportional

to the investments q · x. Since both terms are increasing in the cost parameter q, it is

less costly for people born with lower q to attend college and acquire human capital

8See Restuccia and Vandenbroucke (2013) for example.
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investments.

The value of a college education is presented as:

WC(h0,q) = max
x

−q(x+1{x > 0})+β
4
∫

n

∫
z0

VC(a,hc(h0,s),n,z,22)dFz(z0)dFC
n (n)

(16)

Similarly, VC stands for the value of a college worker at the working stage. This continu-

ation value is discounted by β 4 since it takes four years to complete a college education.

For simplicity, I abstract away from the consumption-saving problem during the college

stage.

College workers’ initial productivity level is drawn from the same distribution Fz(z)

as non-college workers. However, their initial technology choice is drawn from a dif-

ferent distribution FC
n (n) which has first-order stochastic dominance over FNC

n (n). That

is, college workers on average work with more advanced technologies. I postpone the

discussion of the details to Section B.1.

College attainment The lifetime value of a worker with initial human capital h0 and

cost q is described as

W (h0,q) = max{WC(h0,q),WNC(h0)} (17)

Given the combination of initial conditions, people choose either the college path or the

non-college path that generates the highest lifetime value.

The cost of college is to forgo four periods of utility from working stage. The

benefit of a college education is mainly two-fold. First, workers can directly make

human capital investments in the college stage and it is not subject to the stepwise

procedure. That is, one with a very low q could accumulate a lot of human capital

during college stage. Second, college workers are more likely to work with advanced

technologies relative to high-school workers since they are exposed to new technologies
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in the college stage. This feature accounts for the difference in the initial technology

conditions between the two educational groups.

3.3 Working stage

In this subsection, I describe the value functions in the working stage by education types

m ∈ {C,NC}. In short, both college and non-college workers face same idiosyncratic

productivity shocks over the life-cycle. However, the transitions of shocks and human

capital are different by education, which I will emphasize later.

Let Vs(a,h,n,z, j) denote the value of a worker at age j working at technology n

with education s, human capital level h, asset level a and productivity shock z at the

beginning of the period. The value function is

Vs(a,h,n,z, j) =
∫

max{V stay
s (a,h,n,z, j),V move

s (a,h,n,Z, j)}F(Z) (18)

where V stay
s (a,h,n,z, j) denotes the value of staying at the same relative position and

V move
s (a,h,n,Z, j) is the value of moving to new technologies. Z stands for the vector

of technology-specific productivity shocks.

At the beginning of the period, workers first decide whether to stay with the same

technology or move to new technologies. The decision is based upon the realization of

the vector of shocks Z over the technology distribution. That is, the worker will know

his productivity zn if he moves to technology n. Each shock zn is drawn from the same

normal distribution N(µz,σ
2
z ) independently. This vector of shocks only matters when

switching to new technologies and does not affect the value of staying.

The value of staying is described below. If the worker chooses to stay, he will

work with technology n this period and collect earnings based on current productivity

level z and human capital h.9 After that, the worker chooses the amount of effort e

9Here earnings is a function of age j instead of time t. I implicitly assume the baseline cohort enters
the labor market at t = 0 so the time index conincides with age j.
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spent on human capital investments and asset level in the next period a′ (or equivalently

consumption level c). The taxes are summarized as T (w,a) which I will explain in

Section 3.5.

V stay
s (a,h,n,z, j) = max

c,a′,e
u(c)−φs(n,h, j)−ζ e2

+β

∫ hmax

∑
hmin

Vs(a′,h′,n,z′, j+1)Ps(h′|h,e, j)dFs(z′|z)

s.t. a′+ c = (1+ r)a+w(h,n,z, j)−T (w,a)

a′ ≥ a and e ∈ [0,1]

(19)

The worker needs to pay a catch-up cost φs(n,h, j) when staying and this cost comes

as the disutility term

φs(n,h, j) = φ0(1+n)φ1hφ2δ
j−22

s (20)

where φ0,φ1 > 0 and φ2 < 0. Since the entire technology distribution is progressing over

time, staying at the same relative position means technology upgrading at the absolute

level. Therefore he must update his knowledge to operate the new technology. The

catch-up cost is also adjusted by an education-specific discount factor δs to model that

the learning cost varies over the life-cycle.

The catch-up cost is increasing in the technology level n and decreasing in human

capital level h. That is, it is easier to update the latest knowledge for people with higher

levels of human capital. This feature captures the spirit of Galor and Moav (2000) where

the time required for learning the new technology diminishes with the level of ability.

This functional form is also needed to generate the difference in the level of technology

between college and non-college workers.

For the continuation value, he will stay at the same relative position n in the next

period. His human capital level will evolve stochastically with probability Ps(h′|h,e)

as described in Equation (10). This is one distinction between college and non-college
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workers in the working stage since the baseline probability is different.

Another distinction in the value function across education groups is the law of mo-

tion of productivity shock. The shock z evolves stochastically according to a mean-

reverting AR(1) process as the following

z′(z) = ρ
z
s z+ ε

z
s (21)

where εz
s ∼ N(0,σ2

εs
). So the difference comes from the size of innovation σ2

εC
(σ2

εNC
)

and the persistence of shocks ρ
z
C (ρz

NC).

This set-up is common in the literature on income process and earnings inequality.10

In addition, it serves the purpose of increasing occupational mobility, especially for

technology downgrade. One driver behind technology switching in the model is that

the worker draws an extremely good productivity shock for one specific technology. In

the absence of this process, people would get stuck with technologies where they have

high productivity levels. Thus workers will not switch to other technologies unless they

draw a better productivity shock, which is less likely to happen since the current shock

is already good enough.

The value of switching to a new technology is described below:

V move
s (a,h,n,Z, j) = max

n′∈[−1,0]
V stay

s (a, h̃(n′,n,h),n′,zn′, j) (22)

where zn′ is the technology-specific productivity shock from the vector Z and h̃(n′,n,h)

is the amount of human capital that can be carried to new technology n′. When a worker

decides to switch to a new technology n′, he will suffer the loss in human capital and then

the problem goes back to the “stay” case where he chooses human capital investments

and smooths consumption.

The timing of the working stage is summarized in Figure 5. At the beginning of the

10See Guvenen (2009) for a empirical investigation in this topic.
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Figure 5: Timeline of the working stage

age j

Vs(a,h,n,z, j)

draw the vector
of shocks Z

stay (same h and z, n′ = n)

move and choose n′

h̃(n,n′,h) and zn′ determined

collect earnings
w(h,n,z, j)

choose a′ and e

h′ and z′ realized
enter the next period

age j+1

Vs(a′,h′,n′,z′, j+1)

period, workers first draw the vector of shocks Z over the technology distribution and

then decide to stay or move. If one chooses to stay, he will collect labor income based

on current state variables. If he decides to move, he also chooses which technology

to work with in this period. Then, his human capital level is determined according to

Equation (11) and the productivity level is zn′ .

After collecting labor income, workers choose effort e to invest in human capital,

smooth consumption by choosing asset holding tomorrow a′, and then enter the next

period. The value function is evaluated after the realization of human capital and shock.

The value function in the last period of working stage is

V stay
s (a,h,n,z,JR) = max

a′
u(c)−φs(n,h,J)+βV R

s (a′,JR +1)

s.t. a′+ c = (1+ r)a+w(h,n,z,JR)−T (w,a)
(23)

In the last period of the working stage, workers decide how much to save for the retire-

ment period and do not make any human capital investments. The continuation value

V R
s only depends on savings a′ and age.
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3.4 Retirement stage

Individuals retire after age JR and get no labor income. They only live off their accumu-

lated assets plus social security benefits net off taxes. The problem of retirement at age

j > JR is described below:

V retire
s (a, j) = max

a′
u(c)+βV retire

s (a′, j+1)

s.t. a′+ c = (1+ r)a−T (0,a)+bss
s

(24)

Notice that workers in the retirement stage no longer receive labor earnings so the first

argument in the tax function is zero. Workers also receive social security benefits af-

ter retirement. The benefit is also education-specific and on average college graduates

receives more benefit than high-school graduates: bss
C = κbss

NC with κ > 1.

3.5 Tax system

The tax system T (w,a) in the model consists of two parts: income tax T inc and social

security T ss. Individuals’ labor earnings and capital income are taxed at a flat rate τ

and the social security system taxes labor earnings at the rate τss for individuals at the

working stage. So the tax function can be presented as

T (w,a) = τ(w+ ra)+ τssw (25)

After retirement, agents receive fixed social security benefits bss
C or bss

NC in each

period. The social security system is pay-as-you-go, i.e., it finances the benefits from

taxes collected from individuals during the working stage. Government also consumes

G for non-productive purposes to balance the budget.
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3.6 Sources of life-cycle inequality

The sources of earnings inequality over the life-cycle mainly come from three aspects:

human capital h, technology n, and productivity shocks z. In this subsection, I dis-

cuss these three sources and their associated mechanisms and explain how they affect

earnings inequality over the life-cycle.

3.6.1 Interaction between technology and human capital

Technology interacts with human capital mainly in three channels. The first channel

is the direct channel, i.e., earnings is a function of technology and human capital as

shown in Equation (6). This set-up explicitly assumes that technology and human cap-

ital are complements. As a result, the marginal benefit of human capital investments

increases with technology so people in advanced technologies have more incentives to

accumulate human capital. This idea dates back to the insight of Schultz (1975) where

technological progress complements ability in the formation of human capital. What’s

more, the incentive of technology upgrading also varies by human capital due to the

complementarity.

The catch-up channel indicates that the cost of technology usage negatively depends

on the level of human capital as described in Equation (20). This equation indicates it

is easier to stay with advanced technologies for workers with high human capital. Since

this cost applies to all workers regardless of switching or not, it also imposes barriers to

technology upgrading. To sum up, this catch-up channel lowers the cost of technology

usage for people with high human capital.

The last channel is the switching channel where the technology upgrading comes

with the loss of human capital. Since the switching cost is proportional as shown in

Equation (11), workers with high levels of human capital will suffer more human capital

when switching to better technologies. Thus they are less likely to make a huge step
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toward frontier technology. This channel works in the opposite direction as the catch-up

channel since it discourages people with high human capital to upgrade technology.

The first two channels generate a positive correlation between human capital and

technology which amplifies earnings dispersion over the life-cycle. On one hand, the

direct channel provides more incentives for human capital investments for workers in

advanced technologies. On the other hand, workers with high levels of human cap-

ital are more likely to switch to advanced technologies due to the catch-up channel.

Consequently, this reinforcement mechanism between human capital and technology

will magnify the dispersion in earnings through the interaction between these two com-

ponents and the correlation will become stronger over the life-cycle. Meanwhile, the

switching channel reduces earnings dispersion as it depresses technology upgrading,

especially for people with high human capital.

3.6.2 Idiosyncratic shocks

Another important source of inequality comes from idiosyncratic productivity shock z.

I follow the standard set-up in the literature to model income risks as an AR(1) process.

However, the introduction of technology decisions alleviates the dispersion brought by

the shocks. The reason is that the opportunity of switching technologies in each period

helps workers mitigate bad shocks, which is in the spirit of work from Dillon (2018)

and Liu (2019).

In the standard AR(1) income process, one might experience a sequence of persistent

negative shocks because of bad luck. In my model, due to the presence of technology

decisions, one can easily “reset” his productivity level by switching to another technol-

ogy with high productivity shock so the above scenario will not happen. That is, the

opportunity of switching technologies makes shocks less persistent, which lowers the

level of dispersion generated by productivity shocks.
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4 Parameterization and the Benchmark Economy

This section describes how I set the parameters in the model and discusses the proper-

ties of the benchmark economy. The parameters are chosen to match (1) the fraction of

college workers, (2) life-cycle profiles of mean earnings and variance of log earnings

for both college and non-college workers, and (3) life-cycle profiles of mean technol-

ogy level for both educational groups. I only focus discuss parameters associated with

technology usage, which is the focus of this paper. The rest of the parameterization is

standard and relegated to Appendix B.

Earnings function The Mincer regression with the technology index is used to iden-

tify parameters in the earnings function. Taking log of the earnings function in Equation

(6) generates

lnw = z+ lnh+(lnγη) ·n+ lnγ · t (26)

where n is the distance to the frontier and t represents year. Notice that this is analogous

to Mincer regression used in the empirical analysis.

Equation (26) implies that lnγ corresponds to the coefficient of year in the Mincer

regression and lnγ ·η maps to the coefficient of the technology index. Since I use year

dummies in the Mincer regression, I further run a linear regression on the estimated year

dummies and estimate the annual growth rate of the technology distribution is 0.5%, i.e.,

γ = 1.005. That is, if one stays with the same technology over time, all else equal, the

natural growth rate of his earnings is 0.5%.

After pinning down γ , the parameter η is identified to match the coefficient of the

technology index in the Mincer regression. Setting η = 111 means that the earnings

gap between the most advanced technology (n = 0) and the least advanced technology

(n =−1) is 0.77 in the model, which is consistent with the empirical findings in Section
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2.

Figure 6: Initial Technology Distributions (college and non-college)

(a) Non-college at age 18 (b) College at age 23

Note: This figure shows the initial distribution in terms of the distance for college and non-college work-
ers. The solid lines represent the fitted Beta distribution used for the model as FNC

n (n) and FC
n (n).

Source: Author’s calculation from ASEC 1968-2019 and O*NET.

Initial distributions of technology I take the initial technology distributions FNC
n (n)

and FC
n (n) as exogenous and infer them directly from the data. Specifically, I fit the

technology distribution at age 18 (23) with the Beta distribution for non-college (col-

lege) workers. The advantage of Beta distribution is that it has limited support [0,1].

After rescaling, it can be mapped to the interval of technology index [−1,0]. Figure 6

shows the fitted distributions and the raw distributions from the data.

Catch-up cost The catch-up cost is the disutility term associated with technology

usage, which imposes the barrier that stops workers from upgrading to frontier technol-

ogy. In particular, φ0 determines the overall level of technology usage and φ1 affects the

speed of technology upgrading, i.e. the slope of technology profiles.
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The parameter φ2 is the key to generate the technology usage gap between college

and non-college workers since the average human capital level is different across edu-

cation groups. The calibrated value of φ2 is negative, which implies that the catch-up

cost is relatively small for workers with more human capital. Thus college workers on

average have a higher technology level.

The education-specific discount factors δs are important to control for the trajectory

near the end of the life-cycle. The catch-up cost will drastically dominate the benefits

of technology upgrading as workers become old. Therefore this disutility term is also

adjusted by age to generate minor declines in technology level near the end of the life-

cycle.

4.1 Understanding technology switching

Before showing the model’s performance, I first discuss the mechanism of technology

switching and how it varies by education and age. In Figure 7, I present kernel density

estimation of switching probabilities conditional on workers who switch to other tech-

nologies from the simulated economy. For illustration purposes, I only focus on workers

in the 3rd quintile group of the distance (−0.63 < n <−0.53).11

In general, technology switching is asymmetric such that the distribution is left-

skewed, i.e., people are more likely to upgrade technology. The reason is that technol-

ogy upgrade directly delivers a higher utility as it increases earnings and hence con-

sumption. However, the magnitude of upgrade is smaller compared to downgrades.

Figure 7 panel (a) shows that young workers are more likely to upgrade technology

compared to old workers. Panel (b) conveys a similar message between college workers

and non-college workers but the difference is relatively small.

To better understand the distribution of technology switching, I investigate the key

11Though technology switching largely depends on the current technology level, the intuition on
switching can also be applied to other quintile groups.
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Figure 7: Kernel Density of Switching

(a) Technology switching by age (b) Technology switching by education

Note: The figures show kernel density estimations of switching probabilities conditional on workers
who are in the 3rd quintile group of the distance in the previous period and decide to switch to other
technologies. A positive change in distance implies technology upgrading. Panel (a) shows the density
for all workers by age. Panel (b) shows the density for workers at age 25 by education.

equation:

V move
s (a,h,n,Z, j) = max

n′∈[−1,0]
V stay

s (a, h̃(n′,n,h),n′,zn′, j) (27)

This equation determines how far a worker would like to switch (n′) given the vector

of productivity shocks Z. In Figure 8, I plot V stay
s (a, h̃(n′,n,h),n′,zn′, j) as a function of

n′ and hold productivity shocks zn′ constant for all n′ ∈ [−1,0] for comparison purpose.

The value function is hump-shaped in n′. The value first increases with n′ since

technology level is positively correlated with earnings. However, two downward forces

stop workers from upgrading. First, technology upgrade leads to the loss in human

capital that is proportional to the distance of switching n′−n as shown in Equation (11).

In addition, workers have to pay the catch-up cost φs(n′,h′, j) in the new technology

n′. Moreover, since they suffer human capital loss, it also exacerbates the catch-up cost

as it decreases with h′. These two channels together explain why the value function
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Figure 8: Value function V stay(n′)

Note: The figure shows V stay
C (a, h̃(n′,n,h),n′,zn′ , j) as a function of n′ at age 25 with all state variables

evaluated at the median level. I also hold productivity shocks constant for all technologies. The vertical
line stands for current technology position n.

decreases with n′ above a certain threshold level. Therefore we see workers prefer a

short step of technology upgrade over a long step in Figure 7. The actual switching

behaviors are more complicated because shocks vary across technologies. One may

switch to a lower-ranked technology because he draws an extremely good shock z for

that technology.

4.2 The benchmark economy

In this subsection, I examine the quantitative properties of the benchmark economy and

compare them with the data counterparts. The parameterized model is able to match tar-

geted life-cycle profiles of earnings and technology usage for both educational groups.

In addition, the college attainment rate generated by the model is 29.8%, which is quite

close to the average college attainment rate (29.4%) over the period 1968-2019 in the

CPS sample.
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Figure 9: Life-cycle Earnings Profiles

(a) Mean earnings: Non-college (b) Mean earnings: College

(c) Earnings inequality: Non-college (d) Earnings inequality: College

Note: Panel (a) shows the age profile of mean earnings for non-college workers and panel (b) is for
college workers. The mean earnings of non-college workers at age 23 is normalized to 1 for comparison
purposes. Panel (c) shows the age profile of variance of log earnings for non-college workers and panel
(d) is for college workers.

Figure 9 shows that the model is able to match earnings profiles for both college

and non-college workers. In particular, non-college workers’ earnings growth over the

life-cycle is 60% while the magnitude of growth is about 150% for college workers.
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Figure 10: Technology Usage Profile

(a) Mean distance: non-college (b) Mean distance: college

Note: Panel (a) shows the age profile of the mean distance for non-college workers and panel (b) shows
the age profile of the mean distance for college workers.

College workers on average experience steeper earnings growth because they have a

higher baseline probability of human capital increase as shown Table B.1. This is the

abstraction that college workers on average have higher learning ability relative to non-

college workers.

Panel (c) and (d) show that the model generates increasing earnings inequality over

the life-cycle for both educational groups. For non-college workers, the growth in life-

cycle inequality is minor. The earnings dispersion profile slightly deviates from the data

for college workers at the beginning of the life-cycle due to the timing of graduation. In

the model, workers who choose the college path will graduate in four years and enter

the labor market at age 23 uniformly. In reality, there is a substantial amount of students

finishing bachelor’s degrees in more than four years so the timing of entering the labor

market also varies, which explains the dip in earnings dispersion profile as shown in

the data. Other than that, the model is successful in replicating the growth in life-cycle
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inequality.

Figure 10 presents the model’s performance on technology usage. The average dis-

tance profiles for both college and non-college workers are within the 95% confidence

interval from the data. The model generates hump-shaped mean distance profiles for

both college and non-college workers. The intuition is straightforward. At the early

stage of the life-cycle, individuals have the incentive to upgrade technology since they

can enjoy the benefit for the rest of the life-cycle. When approaching the end of the life-

cycle, the cost of technology upgrades outweighs the benefit of working with advanced

technologies. Consequently, workers gradually stop climbing up the technology ladder.

This is also confirmed by the observation from Figure 7 panel (a) where old workers are

more likely to choose technology downgrading.

Figure 11: Relative share of non-college workers (untargeted)

(a) Data (b) Model

Note: This figure shows the relative share of non-college workers over the technology distribution.
Specifically, I divide the all technologies into 15 bins with equal width and calculate the relative share of
non-college workers in each bin.

For validation, I examine untargeted moments: the relative share of college workers

over the technology distribution. Figure 11 suggests that the model can replicate the
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joint distribution of technology usage and education. In particular, the relative share of

non-college workers decreases with the technology level. The only unmatched part is

that there are fewer non-college workers at the top of the technology distribution.

The decreasing relative share is mainly driven by the catch-up channel. Equation

(20) suggests that staying at a higher technology position requires more effort and hence

leads to higher disutility. Since this catch-up cost decreases with the human capital level,

it implies that college workers on average face smaller cost as their human capital level

is higher. So they are more likely to climb up the technology distribution.

College decisions The college attainment decision is characterized by the combina-

tion of initial human capital h0 and psychic q. Figure 12 shows the college decisions

over the joint initial distribution. It is not surprising that people with higher cost q are

less likely to attend college since it is directly associated with the disutility term dur-

ing the college stage as shown in Equation (16). Moreover, people with low q would

accumulate more human capital.

Given the same level of q, individuals with higher initial human capital are less

likely to attend college. The reason is that the time cost of a college education exceeds

the benefit of human capital investments. If one skips the college stage, he directly

enters the labor market and gains earnings based on his initial human capital. If he

decides to attend college, he must forgo four periods of the working stage. Even though

he could accumulate additional human capital during the college stage, it cannot offset

the sacrifice of four periods of earnings.

5 Technology and Life-Cycle Earnings

In this section, I first conduct counterfactual experiments to shut down each channel

associated with technology separately and evaluate their effects on life-cycle earnings.

Then I completely remove the choice of technology usage from the model and quantify
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Figure 12: College decisions

Note: This figure shows the college decision based on the joint distribution of initial human capital (y-
axis) and cost of a college education (x-axis). Blue dots denote people who attend college.

its aggregate impact on earnings growth and earnings inequality. The summary of results

is shown in Table 3.

Results show that technology usage accounts for 31% of the growth in mean earn-

ings and 46% of the growth in earnings inequality. Moreover, I find that the model

generates a reinforcement mechanism between technology and human capital which

amplifies earnings growth and earnings inequality over the life-cycle.

5.1 Catch-up channel

The first experiment is to shut down the catch-up channel by reducing catch-up cost.

Since the entire technology distribution is moving forward, individuals have to pay

catch-up cost φs(n,h, j) (in disutility term) to stay at the same relative position over
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Table 3: Life-Cycle Earnings under Counterfactual Experiments

% of college
workers

Mean earnings
growth (log points)

Growth in life-cycle
inequality (log points)

Benchmark 29.8 59.4 12.3
Catch-up channel

reduced by 50% 26.2 70.8 7.2
reduced by 100% 17.1 75.0 1.5

Direct channel
reduced by 50% 21.8 46.0 7.4

reduced by 100% 17.8 41.5 5.5
Switching channel

reduced by 100% 30.3 76.4 15.5
Eliminate the initial advantage 22.5 57.9 7.8

Remove technology usage 18.2 44.6 6.6

Note: Column 1 shows the fraction of people attending college in each scenario. Column 2 and 3 presents
the growth in average earnings and earnings inequality (variance of log earnings) between age 60 and 23,
measured in log points.
To reduce the catch-up (direct) channel by 50%, I set φ0 (η) to be 50% of the original level. φ0 or η is
set to 0 to completely shut down each channel. To remove technology usage, I do not allow workers to
switch technologies and shut down all three channels.

time with the functional form

φs(n,h, j) = φ0(1+n)φ1hφ2δ
j−23

s (28)

where φ0, φ1 > 0 and φ2 < 0.

To reduce the catch-up channel by 50%, I set φ0 to be half of the parameter in Table

B.1. φ0 = 0 means completely shutting down the catch-up channel, i.e., the disutility

term associated with technology usage disappears.

Figure 13 panel (a) suggests that reducing the catch-up channel increases earnings

growth over the life-cycle. In particular, as shown in Table 3, the magnitude of earn-

ings growth increases by 15.6 log points after shutting down the catch-up channel. The

steeper growth is mainly driven by the change in technology usage patterns as shown

in panel (c). Without the catch-up cost, workers face fewer barriers when switching to
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Figure 13: Experiments with the Catch-up Channel

(a) Mean earnings (b) Earnings inequality

(c) Mean distance (d) Correlation between technology and HC

Note: The figure presents how life-cycle profiles change when reducing the catch-up channel. To reduce
the catch-up channel by 50%, I set φ0 to be 50% of the original level. φ0 is set to 0 to completely shut
down the catch-up channel. For comparison purpose, the mean earnings at age 23 are normalized to 1 in
all scenarios in panel (a).

advanced technologies so they climb up the technology ladder at a faster pace. Conse-

quently, the mean distance profile keeps increasing over the life-cycle even near retire-
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ment. Since technology level is positively associated with earnings, this leads to steeper

earnings growth over the life-cycle.

Panel (b) in Figure 13 suggests that turning down the catch-up channel greatly re-

duces the growth in life-cycle inequality and the quantitative evaluation is presented in

Table 3. In the benchmark economy, earnings inequality keeps increasing over the life-

cycle and it is accompanied by a stronger correlation between technology and human

capital as shown in panel (d). This observation confirms the reinforcement mecha-

nism discussed in Section 3.6.1 where workers with high human capital are more likely

to work with advanced technologies and vice versa. Therefore the increasing correla-

tion amplifies the earnings dispersion over the life-cycle through the positive feedback

loop.12

Reducing the catch-up channel weakens the impact of human capital on technology,

which undermines the reinforcement mechanism and hence lowers the growth in earn-

ings inequality. In the benchmark economy, the catch-up cost decreases with human

capital so it is easier to upgrade technology for people with high human capital. So

workers would be more stratified in the technology distribution on the basis of human

capital. Once the catch-up cost is removed, human capital will not facilitate technology

upgrading so there will be more people with low human capital switching to advanced

technologies. Indeed, panel (d) shows that the correlation between technology and hu-

man capital is almost zero when the catch-up channel is reduced by 50%. The correla-

tion even becomes negative after shutting down the catch-up channel.13 This suggests

that the amplification mechanism is weakened and therefore the growth in life-cycle

inequality decreases.

12In Figure C.1, I also show that the changes in life-cycle inequality is not driven by the composi-
tions effect, i.e. the change in the college attainment rate. The life-cycle inequality conditional on each
educational groups decreases when shutting down the catch-up channel.

13Due to the switching channel, people with high human capital are less likely to switch since the loss
in human capital is proportional. Therefore it forms a negative correlation between human capital and
technology.
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College decisions Table 3 shows that the college attainment rate drops 12.7 percent-

age points after shutting down the catch-up channel. To further understand the change

in the attainment rate, Figure 14 compares college decisions between the benchmark

model and the catch-up channel experiment. The black dots denote individuals who

will go to college in the benchmark case (φ0 = 3.1) but decide not to attend college after

shutting down the catch-up channel (φ0 = 0). In general, the threshold levels of cost q

for a college education decreases, especially for people with low human capital.

Figure 14: College Decisions After Shutting Down the Catch-up Channel

Note: Always college stands for people who go to college in both cases. C to NC are people who go to
the college in the benchmark case (φ0 = 3.1) but decide to skip college after shutting down the catch-up
channel (φ0 = 0).

When catch-up cost is eliminated, people value human capital less because it is not

beneficial for technology upgrading as discussed above. As a result, a college education

becomes less attractive and the college attainment rate drops.
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Moreover, the decline in the threshold level of q becomes larger for people with low

initial human capital. This is because people with high human capital are less likely to

be subject to the catch-up cost when upgrading technologies in the benchmark model.

On the contrary, people born with low initial human capital are more likely to be deterred

from upgrading because they cannot afford the catch-up cost due to low human capital.

Therefore people with low human capital would like to attend college to accumulate

additional human capital even though their cost q is relatively high.

Once the catch-up cost is eliminated, people with low human capital will face no

barriers of technology upgrading so they can directly enter the labor market and climb

up the technology ladder. Consequently, only people with extremely low cost q would

like to attend college as they can accumulate a huge amount of human capital.

5.2 Direct channel

The direct channel means that earnings function is the product of technology level n and

human capital h as described below

w = exp(z) ·h · γ(η ·n+t) (29)

This functional form explicitly generates a complementarity between human capital and

technology.

The parameter η governs the productivity difference within the technology distri-

bution. To reduce the direct channel by 50%, I set η to be half of the calibrated value,

which means that the earnings gap between the frontier technology and the least ad-

vanced technology shrinks 50%. Similarly, I shut down the direct channel by setting

η = 0. In this extreme case, all technologies have the same productivity level as the

frontier technology (n = 0). This also implies that technology does not complement

human capital.
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Figure 15: Experiments with the Direct Channel

(a) Mean earnings (b) Earnings inequality

Note: The figure presents how life-cycle profiles change when reducing the direct channel. To reduce
the catch-up channel by 50%, I set η to be 50% of the original level. η is set to 0 to completely shut
down the catch-up channel. This implies that all technologies have the same productivity as the frontier
technology. For comparison purpose, the mean earnings at age 23 are normalized to 1 in all scenarios in
panel (a).

One caveat with the experiment of the direct channel is that lowering the parameter

η also increases the level of earnings for people who do not use the frontier technology.

This income effect might affect technology and human capital decisions at the aggregate

level. To control for this possible channel, I multiply earnings function by a factor less

than one such that the mean earnings at age 23 in each counterfactual is the same as the

benchmark economy.

Figure 15 shows that shutting down the direct channel reduces the growth of life-

cycle inequality and it also flattens the mean earnings profile. Specifically, Table 3

shows that the growth in mean earnings over the life-cycle decreases by 17.9. Moreover,

the growth in life-cycle inequality decreases by 6.8 log points. In Figure C.2, I also show

that the changes in life-cycle earnings profiles at the aggregate level is not mainly driven

by the composition effect.
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The intuition of flattened earnings inequality profile is similar to the experiment of

the catch-up channel, i.e., the reduction in η also undermines the reinforcement mech-

anism. Specifically, shutting down the direct channel first eliminates the dispersion

brought by technology usage and then compresses earnings dispersion through the com-

plementarity term. Moreover, it closes the channel from technology to human capital

since the incentive of human capital accumulation will not depend on the technology

level now.

College decisions Figure 16 compares the college decisions between the benchmark

model and the direct channel experiment. The black dots denote individuals who will go

to college in the benchmark case (η = 111) but decide not to attend college after shutting

down the direct channel (η = 0). In general, the threshold levels of initial human capital

and cost q for a college education both decreases, which implies a college education is

less attractive once technology has less impact on earnings.

The reduction in η affects the value of a college education mainly in two aspects.

First, as the data suggested in Figure 6, college workers on average work with better

technologies relative to non-college workers at the beginning of the life-cycle. The

reduction in η weakens this initial advantage in technology because now people have

higher earnings at the lower part of the technology distribution, which directly decreases

the benefit of a college education.

Second, since the earnings gap across technologies shrinks, the importance of the

interaction between technology and human capital also decreases. As a result, workers

have less incentive to accumulate human capital so more people would skip the college

stage and enter the labor market directly.
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Figure 16: College Decisions After Shutting Down the Direct Channel

Note: Always college stands for people who go to college in both cases. C to NC are people who go
to the college in the benchmark case (η = 111) but decide to skip college after shutting down the direct
channel (η = 0).

5.3 Switching channel

The last interaction channel is the switching channel, where workers suffer human cap-

ital loss when switching to better technologies as shown in Equation (11). As shown in

Table 3, shutting down switching channel increases the mean earnings growth to 76.4

log points and the growth in life-cycle inequality to 15.5 log points. The college attain-

ment rate does not change significantly because the switching cost is proportional to

human capital so it is not in favor of any specific educational groups.

Once the switching cost is removed, workers would upgrade technology more fre-

quently so they experience steeper earnings growth over the life-cycle. In addition, the

reinforcement mechanism becomes stronger so the life-cycle inequality also increases.
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The intuition is the following. Since the loss in human capital is proportional to human

capital, people with high human capital are less likely to make a huge step of technology

upgrading. Once this barrier is removed, they would upgrade technology more inten-

sively so the correlation between technology usage and human capital becomes stronger,

which leads to a higher level of inequality and a steeper growth in life-cycle inequality.

5.4 Initial advantage

The above experiment indicates that technology plays an important role in determining

college decisions. In this subsection, I disentangle the impact of technology on college

decisions and conclude that the initial advantage in technology distribution is another

key determinant. Once this advantage is eliminated, the college attainment rate drops

from 29.8% to 22.5%.

The empirical analysis shows that college workers on average work with better tech-

nologies relative to non-college workers at the beginning of the life-cycle and it is mod-

eled as the difference in initial technology distributions presented in Figure 6. I shut

down this channel by assuming that college workers also draw initial technology choices

from the same distribution as non-college workers.

The second last row in Table 3 shows that the elimination of the initial advantage

greatly reduces the college attainment rate. The intuition is also straightforward. When

college workers lose it relative advantage in technology usage at the beginning of life-

cycle, human capital investments become less attractive during the college stage. There-

fore marginal workers will not go to college and enter the labor market directly.

Because of the composition effect14, the magnitude of earnings growth decreases

and the earnings inequality profile decreases over the life-cycle at the aggregate level as

presented in Figure 17.

14From Figure 9, we know that non-college workers have flatter mean earnings profile and earnings
inequality profile.
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Figure 17: Elimination of the Initial Advantage

(a) Mean earnings (b) Earnings inequality

Note: The figure presents life-cycle profiles when both educational groups draw initial technology choice
from the same distribution (as non-college workers). In panel (a), the mean earnings at age 23 is normal-
ized to 1 in the benchmark economy.

5.5 All together

Lastly, I turn down all interaction channels associated with technology and evaluate how

life-cycle earnings change. In particular, I do not allow workers to switch technologies

and shut down the catch-up cost associated with technology usage. Besides, I shut down

the direct channel by equalizing productivity levels across all technologies such that the

mean earnings at age 23 is the same as the benchmark economy.

The model boils down to a risky human capital investments model where life-cycle

earnings are only determined by endogenous human capital investments (at college and

during the working stage) and idiosyncratic shocks. The difference between life-cycle

earnings profiles can be interpreted as the contribution of technology usage.

As shown in Figure 18 and Table 3, after removing technology usage, the growth in

mean earnings decreases by 14.8 log points (25%). In addition, the growth in earnings
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Figure 18: Remove Technology Usage

(a) Mean earnings (b) Earnings inequality

Note: The figure presents life-cycle profiles after removing technology usage from the benchmark model.
The mean earnings at age 23 is normalized to 1 in panel (a) and the level of earning inequality at age 23
is normalized to 0 in panel (b).

inequality decreases by 5.7 log points (46%) over the life-cycle, which is larger than the

number (38%) obtained from the reduced-form analysis in Section 2.3. Moreover, the

fraction of college workers drops from 29.8% to 18.2%.

One caveat with the final result is that it is not additive because each experiment

might be intertwined with other channels. For example, shutting down the direct channel

also implicitly assumes that the initial advantage is eliminated. In addition, the effect

of the catch-up channel on life-cycle inequality is much larger than the overall impact.

This is because the catch-up experiment does not isolate the effects of the switching

channel, which in turn increases the growth in life-cycle inequality.
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6 Policy Analysis: Non-linear Taxation

In this section, I investigate the role of technology usage in non-linear taxation. Re-

cent findings in the literature show that a more progressive tax distorts the incentive of

human capital accumulation and hence decreases earnings growth.15 I find that these

distortionary effects on college attendance and earnings growth are larger with the pres-

ence of technology usage. That is, the reinforcement mechanism between technology

and human capital discussed above amplifies the impact of a progressive tax.

To reach this conclusion, I evaluate the effects of progressive taxes in two scenarios:

with and without technology usage. In particular, I re-parameterize the model without

technology usage, as mentioned in Section 5.5, to match the same set of moments except

for technology usage. Then I replace the proportional tax on labor earnings with a

progressive tax in both models and compare the effects on life-cycle earnings.

6.1 Progressive tax system

In the baseline model, individuals’ labor earnings and capital income are taxed at a flat

rate τ . I now replace the proportional tax rate on labor earnings with progressive taxes

and leave the tax rate on capital income unchanged.

I borrow the progressive tax system pioneered by Feldstein (1969) and later popu-

larized by Benabou (2002). In particular, the average tax rate on labor earnings is given

by

τ(w) = 1−λ (w/w̄)−τp (30)

where w̄ is the mean labor earnings in the economy. The average tax rate of the individ-

ual with mean labor earnings is 1−λ . This tax rate increases with labor earnings w in a

concave pattern since τp > 0.

15See Erosa and Koreshkova (2007) and Guvenen et al. (2014) for exmaple.
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The parameter λ controls for the level of the tax rate and the parameter τp stands for

the progressivity in the tax schedule. In the case of τp = 0, the average tax rate will not

depend on labor income, i.e., it boils down to the standard proportional tax.

A higher τp means the tax system is more progressive. In the following counter-

factual analysis, I consider three levels of progressivity as shown in Table 4. The least

progressive tax schedule is τp = 0.05, which is around the level estimated by Guner

et al. (2014) using data on federal tax returns in 2000. The second scenario is τp = 0.10,

a number estimated by Heathcote et al. (2020) where they additionally include gov-

ernment transfers alongside taxes. The last case with τp = 0.15 stands for the level of

progressivity in European countries, like the U.K. or Germany.16

6.2 An alternative model without technology usage

To evaluate the role of the technology channel, I conduct the same policy experiments in

two scenarios: model with and without technology usage. The model without technol-

ogy corresponds to the one discussed in Section 5.5 with re-parameterization to match

life-cycle profiles of earnings.

In particular, I solve for an alternative model where workers are not allowed to

switch technologies over the life-cycle. Furthermore, technologies are indifferent in

terms of productivity. To sum up, in this alternative model, life-cycle earnings are only

driven by endogenous human capital investments and idiosyncratic shocks.

The parameters associated with human capital are re-calibrated to match life-cycle

profiles of mean earnings and earnings inequality as well as the college attainment rate.

The parameters related to idiosyncratic shocks remain the same as in the baseline model

for comparison purposes. Details can be found in Section B.3.

16See Heathcote et al. (2020) for details.
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6.3 Tax progressivity and earnings over the life-cycle

I conduct policy experiments to explore how progressivity affects earnings over the life-

cycle with and without technology usage. The results in Table 4 indicate that a more

progressive tax system leads to a lower college attainment rate and a smaller earnings

growth over the life-cycle. Furthermore, these distortionary effects are smaller in the

alternative model without technology.

Table 4: How Progressivity Affects Life-Cycle Earnings

Progressivity
% of college

workers
Mean earnings

growth (log points)
Growth in life-cycle

inequality (log points)

Proportional tax: benchmark economy
τp =0 29.8 59.4 12.3

Progressive tax
Model with technology

τp = 0.05 25.9 55.1 11.6
τp = 0.10 22.3 50.5 11.0
τp = 0.15 18.9 45.9 10.2

Model without technology
τp = 0.05 26.4 56.7 11.7
τp = 0.10 23.0 52.5 11.1
τp = 0.15 19.8 50.2 10.4

Note: This table presents how earnings change with respect to the progressivity (τp) under two scenarios:
model with and without technology usage. Column 2 shows the mean earnings growth from age 23 to 60
at the aggregate level, measured in log points. Column 3 shows the change in the variance of log earnings,
measured in log points, between age 23 and 60. Total taxes collected by the government are constant in
each scenario.

6.3.1 In the baseline model

In the baseline model with technology usage, when the proportional tax is replaced with

a progressive tax at the U.S. level (τp = 0.05), the growth in life-cycle earnings decreases

by 4.3 log points and the college attainment rate drops by 3.9 percentage points. More-

over, the growth in life-cycle inequality decreases by 0.7 log points. The decreases in
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earnings growth and college attainment rate are higher when the progressivity increases

to a European level (τp = 0.15).

These findings are consistent with the common view in the literature that progressive

taxes distort the incentive to accumulate human capital.17 Since the marginal tax rate

increases with earnings, the marginal benefit of human capital investments decreases

as a larger fraction of income would be taxed. Therefore fewer people decide to go to

college and people make less human capital investments during the working stage. This

is confirmed by the observation in Figure 19 panel (b) where human capital is flatter

when the progressivity is higher.

In addition to human capital, progressive taxes also suppress the incentive of tech-

nology upgrading, and intuition is the same as the argument for human capital accumu-

lation. Panel (c) suggests that the mean distance profile shifts downward when taxes

become more progressive, which implies that people on average use less advanced tech-

nologies over the life-cycle. In particular, the average distance drops more than -0.05

at age 60 when switching from τp = 0.05 to τp = 0.15. The magnitude is equivalent to

0.4 times the standard deviation of the distance at age 23. Since earnings are a function

of human capital and technology, panel (b) and (c) in Figure 19 together imply a flatter

growth in life-cycle earnings if the tax system becomes more progressive.

One potential reason behind the flattening of earnings profile is the composition

effect, i.e., the decline in the college attainment rate. Since non-college workers have a

flatter mean earnings profile, the drop in the college attainment rate naturally leads to

a flatter earnings profile at the aggregate level. To rule out this possibility, I also look

at the life-cycle profiles for both college and non-college workers respectively and the

results show that the progressive taxes do disincentivize human capital accumulation

and technology upgrading for both educational groups.

As presented in Figure C.3 and Figure C.4 panel (a), the growth in life-cycle earnings

17See Guvenen et al. (2014), Krueger and Ludwig (2016), and Badel et al. (2020) for example.
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Figure 19: Earnings Profiles under Progressive Taxes

(a) Mean earnings

(b) Mean human capital (c) Mean distance

Note: Panel (a) shows the average earnings profile over the life-cycle and panel (b) shows the average
human capital profile. Both values at age 23 are normalized to 1 when τp = 0.05. Panel (c) presents the
mean distance profile, i.e., the average technology usage profile. A higher τp implies a more progressive
tax schedule.
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decreases with the progressivity for both educational groups. Panel (b) and (c) show that

workers have less incentive to accumulate human capital and upgrade technology when

facing a more progressive tax regardless of education. Therefore, the flattening of the

earnings profile is not solely driven by the change in the college attainment rate.

6.3.2 In the alternative model without technology

Now I turn to the alternative model without technology usage and evaluate the same set

of policy experiments. The last three rows in Table 4 show that progressive taxes gen-

erate smaller distortionary effects on earnings growth and earnings inequality without

the presence of technology. In other words, technology usage amplifies the impact of a

progressive tax on earnings growth and earnings inequality.

When the economy switches from a proportional tax to a progressive tax at a Euro-

pean level (τp = 0.15), earnings growth only decreases by 9.2 log points, which is 32%

smaller than the change in the baseline model with technology usage (13.5 log points).

Moreover, the decline in the college attainment rate is only 10 percentage points, which

is also smaller than the decline in the benchmark scenario.

The impact on life-cycle inequality under different progressivity is relatively smaller

compared to earnings growth. Specifically, when switching from proportional tax to a

progressive tax at a European level, the growth in life-cycle inequality decreases by 2.1

log points in the baseline model while the decline is 1.9 log points in the alternative

model. Overall, the distortionary effects of a progressive tax are smaller in the model

without technology usage.

To further understand the difference in policy implications, I focus on how progres-

sivity shapes human capital accumulation over the life-cycle since parameters related

to idiosyncratic shocks are fixed in both models. In Table 5, I present human capital

growth rates under different progressivity relative to the proportional tax in two mod-

els. For example, when the economy switches to a progressive tax with τp = 0.05, the
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Table 5: Human Capital Growth Relative to Proportional Tax

Progressivity Aggregate College workers Non-college workers

Model with technology
τp = 0.05 71.9% 57.8% 87.5%
τp = 0.10 67.4% 54.9% 83.3%
τp = 0.15 62.6% 52.8% 78.0%

Model without technology
τp = 0.05 93.4% 94.9% 94.9%
τp = 0.10 86.3% 88.5% 89.6%
τp = 0.15 78.7% 82.5% 82.6%

Note: This table presents how human capital growth changes with respect to the progressivity (τp) relative
to the benchmark mark case with proportional tax under two scenaiors: with and without technology
usage. The column 2 shows the relative growth for the economy and column 3 and 4 shows the relative
changes conditional on education.

growth in human capital between age 23 and 60 (measured in log points) decreases to

71.9% relative to the growth in the proportional tax in the baseline model with technol-

ogy usage. In particular, the growth for college workers is affected more, decreasing to

57.8%, compared to non-college workers (87.5%).18

Table 5 shows that human capital growth is less distorted by a progressive tax in the

alternative model without technology usage. For instance, when the economy switches

to the same progressivity level τp = 0.05, the growth in human capital only decreases

to 93.4% relative to the growth in the proportional tax in the alternative model without

technology usage, which is much smaller than the change in the baseline model (71.9%).

To sum up, the distortionary effects of a progressive tax are smaller in the alternative

model without technology usage for both college and non-college workers.

The intuition behind these results is similar as discussed above. In the baseline

model with technology, a progressive not only distorts the incentive to human capi-

tal investments but also suppresses the benefit of technology upgrading, which further

18The levels of growth rates are not comparable between the baseline model and the alternative model
since the model without technology usage is reparameterized to match the same set of life-cycle moments.
Therefore I compare how the growth rate change relative to the case with proportional tax.
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dampens human capital accumulation through the reinforcement mechanism. Therefore

ignoring technology usage channel results in an underestimation of policy implications

on progressive taxes.

7 Final Remarks

In this paper, I thoroughly quantify the contribution of technology to earnings through

the lens of a life-cycle model with a college decision, endogenous technology usage, and

human capital investments. The novelty of the model is to allow for rich interactions

between human capital and technology. In particular, human capital facilitates technol-

ogy upgrading through the catch-up channel. The direct channel makes human capital

accumulation investments contingent on technology as it leads to the complementarity

between these two factors in earnings. Moreover, the switching channel captures the

barrier to technology upgrading in terms of the loss of human capital.

My model suggests that technology usage accounts for 25% of the growth in mean

earnings and 46% of the growth in earnings inequality over the life-cycle. Furthermore,

counterfactual experiments suggest that both catch-up channel and direct channel are

crucial in generating increasing earnings inequality over the life-cycle. Specifically,

these two channels build up a reinforcement mechanism between technology and human

capital where workers with high human capital are more likely to work with advanced

technologies and vice versa. The interaction between these two terms amplifies the

earnings dispersion over the life-cycle.

Furthermore, I find that technology usage amplifies the impact of a progressive tax

on earnings growth and college attainment. Recent studies show that a more progressive

tax depresses human capital accumulation and hence lowers earnings growth. I find that

the distortionary effects are larger with the presence of endogenous technology usage

compared to a standard human capital model.
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A The Construction of the Distance to the Frontier

I use a combination of inputs from the O*NET data set to construct the index to mea-

sure technology usage at the individual level. The O*NET data set provides detailed

information on the importance of knowledge, tasks and skills for each occupation. In

particular, a random sample of workers chooses the description that best fits their daily

work in one specific aspect (for example programming skills). The answers are on a

scale from 1 (“not important”) to 6 (“extremely important”). The index of importance

for that occupation is the average responses from the sample of workers.

I extract indices of the following characteristics: knowledge about computers and

electronics, activities interacting with computers, programming skills, systems eval-

uation skills, quality control analysis skills, operations analysis skills, activities with

updating and using relevant knowledge, technology design skills, activities analyzing

data and information, activities processing information, knowledge with engineering

and technology, and activities managing material resources.

I sum all the values from the above characteristics and normalize the sum to the

interval [−1,0]. The normalized index is denoted as the distance to the frontier. By

construction, it measures how intensively workers use information technology at their

daily work. The occupation that uses information technology most intensively is con-

sidered to be the frontier technology and its distance to the frontier is 0.

B Parameterization

I first choose a collection of parameters from exogenous source. The rest of parameters

are jointly calibrated to match the life-cycle profiles of earnings and technology usage

for both educational groups. The parameters are listed in Table B.1.
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Table B.1: Parameters

Category Meaning Parameter

Externally chosen parameters
Demographic population growth rate µ = 0.0012

rate of return on asset r = 0.047
life expectancy and retirement age J = 75, JR = 64

Tax proportional tax rates on income τ = 0.15, τss = 0.1
Technology growth rate of the technology distribution γ = 1.005

productivity difference within the technology distribution η = 111
Initial distribution of tech approximated by Beta distribution from the data

Internally chosen parameters
Preference discount factor β = 0.988

disutility of human capital investments ξ = 0.25
Human capital human capital grid hmin = 1, hmax = 17.6

baseline probability of human capital increase pC = 0.35, pNC = 0.23
human capital decrease parameter αdown

C = 0.15, αdown
NC = 0.07

depreciation ρ = 0.99
human capital production at college stage αh = 0.35

Productivity shocks size of innovation σz = 0.132, σ ε
C = 0.143, σ ε

NC = 0.131
persistence of shocks ρ

z
C = 0.95, ρ

z
NC = 0.92

Catch-up cost disutility associated with technology usage φ0 = 3.14, φ1 = 1.5, φ2 =−1.3
age adjustment in disutility δC = 0.994, δNC = 0.999

Initial distributions initial human capital h0 µh0 = 1.01, σh0 = 0.1
physic cost of college q µq = 2.91, σq = 0.5
initial productivity z µz0 = 0, σz0 = 0.13

Note: This table presents parameters used in the benchmark economy. The first set of parameters is
chosen from external sources. The second set of parameters is jointly determined to match the life-cycle
profiles of mean earnings, variance of log earnings and mean distance for both college and non-college
workers as well as the average college attainment rate.

B.1 Parameters chosen from external source

Demographics The life-cycle starts from age 18 to 75 but I only focus on the life-

cycle statistics from age 23 to 60. Individuals retire after age 64 and live another 10

periods. The annual population growth rate is 1.2%, which is the geometric average

over the period 1959–2007 from the Economic Report of the President (2008). I assume

it is a small open economy where the interest rate is set exogenously to be 0.047 so the

after-tax interest rate is 4%.

Tax and social security In the benchmark model, I set the flat tax rate τ on income

to be 0.15, which is the approximation of the tax rate in the U.S. once itemizations, de-

ductions and income-contingent benefits are considered. The tax rate of social security
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on labor earnings is 0.1, which is close to the average rate in the period of analysis.

I assume the social security benefits for college workers are 17% higher than non-

college workers:

bss
C = 1.17bss

NC (31)

This number is borrowed from Guner et al. (2021) where they document how social

security benefits vary across household types and educational types.

B.2 Parameters chosen internally

The rest of the parameters except for the discount factor β are jointly chosen to match (1)

the fraction of college workers, (2) life-cycle profiles of mean earnings, mean distance

and the variance of log earnings for both college and non-college. I denote the set of 24

parameters as Γ. Since I target the entire life-cycle profiles, the number of parameters

is much smaller than the number of targeted moments.

Formally, the parameterization strategy is to minimize the distance between mo-

ments generated by the model and moments from the data. The minimization problem

is described below:

min
Γ

∑
s=NC,C

[
60

∑
j=23

(
(
Am

j,s−Ad
j,s

Ad
j,s

)2 +(
Bm

j,s−Bd
j,s

Bd
j,s

)2 +(
Cm

j,s−Cd
j,s

Cd
j,s

)2

)]
+(

ωs−ωd

ωd )2

where Am
j,s is the mean log earnings of workers at age j from s ∈ {C,NC} educational

group simulated by the model and Ad
j,s is the counterpart from the data. Bm

j,s and Cm
j,s

stand for variance of log earnings and mean distance respectively. ωm is the fraction of

college workers in the model and ωd is the counterpart from the data.

Lastly, I set the discount factor β to match the ratio between median asset and me-

dian labor income. The target ratio is 2.5, which is taken from the Survey of Consumer

Finances (SCF) 2013.19 The discount factor β is chosen to be 0.988 and it generates the

19Labor income w corresponds to earnings and asset a corresponds to wealth in the SCF .
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ratio between median asset and median labor income of 2.6 in the model.

Human capital process Human capital levels are discrete and represented by an

evenly spaced ordered set [hmin, ...,hmax]. The lowest level is normalized to 0 and the

highest level is 17.6. I set the number of human capital levels to be 41, which is the

same length as the working stage. The rationale is that it would take the whole working

stage to climb from the lowest level to the highest level since the accumulation of human

capital is stepwise. The rest of the parameters are set to match mean earnings profiles

and earnings dispersion profiles. The return of human capital production αh is chosen

to match the earnings difference between college workers and non-college workers at

age 23.

The parameterized values indicate that college workers have a higher baseline prob-

ability of human capital increase. This is in line with the results from the literature on

college attainment where they find the average learning ability is higher among college

workers. As a result, college workers on average accumulate human capital faster than

non-college workers.20 In addition, the parameter that governs human capital decrease

(αdown) is also higher for college workers, which is to match the depreciation near re-

tirement since the depreciation rate is the same across education.

Productivity shocks The size of shocks drawn over the technology distribution in

each period is σz = 0.132 and this applies to both education groups. The parameterized

size of innovation of AR(1) process for college and non-college workers are 0.143 and

0.131 respectively. The persistence parameter for college and non-college workers are

0.95 and 0.92. These values are in the ballpark of the empirical estimation by Guvenen

(2009). In addition, the values suggest that college workers experience larger and more

20In Keller (2014) and Kong et al. (2018), the learning ability affects the marginal return to effort in
the human capital production function. People with high learning ability would be sorted into the college
path and they will make more investments during the college stage. As a result, the average learning
ability of college workers is higher.
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persistent shocks relative to non-college workers, which is also supported by findings

from Guvenen (2009).

One caveat in interpreting productivity socks is that the realized shocks are the com-

bination of technology decisions and the AR(1) process. As discussed in Section 3.6.1,

one can easily “reset” his productivity by switching to new technology. In fact, the op-

portunity of switching technologies can help workers to avoid a sequence of negative

shocks.21 So the realized sequence of shocks is less persistent than the parameters of

the AR(1) process suggest.

Initial distribution The initial distributions of human capital h0 and q are crucial to

pin down the college attainment rate. Furthermore, the distribution of initial human

capital h0 is important to generate the levels of inequality in earnings at the beginning

of the life-cycle for both educational groups. Besides, the distribution of q governs

how college workers accumulate human capital during the college stage, which also

generates necessary variation in earnings within college workers.

B.3 Parameterization in the alternative model

Table B.2 shows the parameters that are re-calibrated in the alternative model without

technology usage. In particular, I leave parameters associated with shocks unchanged

and only modify the ones related to human capital production both in college and work-

ing stage. The discount factor is also chosen to match the ratio between median asset

and median earnings in the economy. The parameters that are not shown in Table B.2

remain the same values as Table B.1.
21This view is close to the literature on occupational mobility, e.g., Dillon (2018) and Liu (2019).
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Table B.2: Re-calibrarted Parameters

Category Meaning Parameter

Preference discount factor β = 0.991
Human capital baseline probability of human capital increase pC = 0.45, pNC = 0.22

human capital decrease parameter αdown
C = 0.16, αdown

NC = 0.06
human capital production at college stage αh = 0.30

Initial distributions initial human capital h0 µh0 = 0.90, σh0 = 0.066
physic cost of college q µq = 3.08, σq = 0.98
initial productivity z µz0 = 0, σz0 = 0.084

Note: This table presents parameters used in the alternative model without technology usage. Parameters
that are not shown in this table remain the same values as in the benchmark model.

C Life-cycle Profiles Conditional on Educational Group

In this part I present the life-cycle earnings profiles in the counterfactual experiments

conditional on educational group. In Figure C.1, I present the conditional life-cycle

earnings profiles when shutting down the catch-up channel. The mean earnings growth

increases for educational groups and the life-cycle inequality decreseas for both edu-

cational groups. Therefore the change at the aggregate level is not only driven by the

compositional effect.

However, the change in mean earnings for college workers is not monotone in the

sense that the mean growth is larger when the catch-up cost is reduced by 50%. When

there is not catch-up cost, college workers will upgrade technology more frequently so

they suffer more human capital loss. So the growth in mean earnings slightly declines

but the absolute level of earnings increases.

Similarly, Figure C.2 shows the conditional life-cycle earnings profiles when shut-

ting down the direct channel. The mean earnings growth and life-cycle inequality both

decreases for each educational group, which also indicates that the change at the aggre-

gate level is not only driven by the compositional effect.

Figure C.3 and Figure C.4 show the conditional life-cycle earnings profiles under
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taxation experiment. A more progressive depresses mean earnings growth and distorts

the incentive for human capital accumulation and technology upgrading for both college

and non-college workers.

Figure C.1: Experiments with the Catch-up Channel

(a) Mean earnings: non-college (b) Mean earnings: college

(c) Earnings dispersion: non-college (d) Earnings dispersion: college
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Figure C.2: Experiments with the Direct Channel

(a) Mean earnings: non-college (b) Mean earnings: college

(c) Earnings dispersion: non-college (d) Earnings dispersion: college
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Figure C.3: Earnings profiles under progressive taxes (non-college workers)

(a) Mean earnings (b) Mean human capital (c) Mean distance

Note: Panel (a) shows the average earnings profile over the life-cycle and panel (b) shows the average
human capital profile. Both values at age 23 are normalized to 1 when τp = 0.05. Panel (c) presents the
mean distance profile, i.e., the average technology usage profile. A higher τp implies a more progressive
tax schedule.

Figure C.4: Earnings profiles under progressive taxes (college workers)

(a) Mean earnings (b) Mean human capital (c) Mean distance

Note: Panel (a) shows the average earnings profile over the life-cycle and panel (b) shows the average
human capital profile. Both values at age 23 are normalized to 1 when τp = 0.05. Panel (c) presents the
mean distance profile, i.e., the average technology usage profile. A higher τp implies a more progressive
tax schedule.
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