
The Effect of Exit Rights on Cost-based
Procurement Contracts∗

Rodrigo Andrade†, Henrique Castro-Pires‡, Humberto Moreira§

August 15, 2023

This paper studies optimal procurement contracts in an environment with dy-
namic information arrival and ex-post exit rights. A procuring agency designs
contracts for a firm that receives information over time. In the first period, the
firm gets a private non-fully informative signal about the project’s cost. In the sec-
ond period, the firm fully learns the cost and decides whether to keep the contract
or take an exogenous ex-post outside option. We show that if the ex-post out-
side option value is sufficiently close to the ex-ante, the optimal mechanism takes
a static form: all first-period signal reports are pooled into a single contract, and
payments depend solely on the second-period reports. The interpretation is that
optimal contracts do not condition transfers on ex-ante self-reported cost estimates
but only on realized verifiable costs. Finally, we study if competition among a large
number of firms allows the procuring agency to screen the first-period information
and implement the second-best allocation. We show that the answer depends on
the value of the ex-post outside option: for low values, the procuring agency can
screen the first-period information and implement the second-best allocation at
approximately no additional cost, while for high values, the cost of implementing
the second-best allocation diverges. We relate our findings to firms’ incentives to
under-report expected costs, and the ubiquitous cost-overruns observed empiri-
cally in public projects.

Keywords: cost-based procurement, cost-overrun, dynamic mechanism design, ex-
post participation constraints, limited liability

∗For their helpful comments and suggestions, we thank Jeroen Swinkels, Alessandro Pavan, George
Georgiadis, David Besanko, Michael Riordan, Fernando Barros, Jefferson Bertolai, Fernando Barbosa,
and audiences at 2022 SEA Annual Meeting (Fort Lauderdale, FL), UFRGS, and FEARP/USP. Moreira
acknowledges FAPERJ and CNPq for financial support. This study was financed in part by the Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The views
expressed in this article are those of the authors. They do not necessarily represent those of the World
Bank. All errors and omissions are our own.
†World Bank, (email: rbandrade@worldbank.org).
‡University of Surrey, (email: h.castro-pires@surrey.ac.uk).
§Fundação Getulio Vargas (FGV/EPGE), Brazilian School of Economics, (email: hum-

berto.moreira@fgv.br).



1 Introduction

In procurement relationships, the information regarding a project’s cost often arrives
gradually. Due to their superior knowledge of their own technology, contractors are
usually better positioned to estimate a project’s cost than the procurer. However, even
the firms themselves face uncertainty regarding what are going to be the actual real-
ized costs. The law often protects firms against ex-post unfavorable cost realizations
by limiting their losses to their equity stake in the project or other more generous forms
of limited liability. Such protection limits the ability of procurers to extract payments
or seize the assets of insolvent suppliers. When designing procurement contracts, pro-
curers must consider this dynamic arrival of information while ensuring the contractor
is still solvent and willing to complete the project.

This paper studies optimal procurement contracts under dynamic asymmetric infor-
mation and ex-post exit rights. A procuring agency designs contracts for a firm that
receives information about a project’s costs over time. The firm can exit the contractual
arrangement and take an exogenous outside option at any time.1 The introduction of
exit rights in a dynamic procurement model captures the effect of limited liability pro-
tection on contract design and allows us to understand its interplay with asymmetric
information. In practice, we often observe such constraints. For instance, the filing
for bankruptcy without completing the project represents an ex-post outside option to
the firm. Our main result shows that when this ex-post outside option is sufficiently
attractive, the procuring agency should offer a single cost-plus contract without trying
to elicit the firm’s ex-ante cost estimates.

In many infrastructure sectors with large projects, it is essential to ensure project com-
pletion even when realized costs are higher than expected. Regulators in charge of
managing concession contracts, concerned with supplier insolvency and service conti-
nuity, often advocate for the “principle of financial equilibrium.” Under this principle,
the firm is entitled to a change in contract terms when unfavorable states of nature
materialize (Guasch, 2004).2 On a similar note, infrastructure concessionaires in Brazil
recently had enshrined in legislation a right to “relinquish their contracts” and have
their investments reimbursed if they demonstrate the non-viability of the concession
at any point in time.3 In this paper, at first we focus on the consequences of such strong
form of liability protection for incentives design in the concession context. In particu-
lar, we set up a two-period cost-based procurement model based on Laffont and Tirole
(1986) and introduce an ex-post participation constraint. The analysis of the model
entails a theoretical contribution concerning the optimality of static vs. dynamic con-
tracts, connecting the findings to an ongoing discussion in the literature.

1The requirement of performance bonds, which are paid upfront and returned to the firm upon
project completion, is often suggested as a solution to this problem but has limited scope due to cash
constraints or imperfect capital markets.

2In principle, compensation for unfavorable events should only be sought in case these events were
of extreme nature or lie completely outside the firm’s agency, such as force majeure events, changes in law,
or unilateral variations imposed by the authority. In practice, however, queries for financial equilibrium
amendments pertain to a wider and grayer range of sources.

3Law 13,448, of 2017, which sets rules for re-tendering concession contracts, was enacted in a context
in which a number of local infrastructure concessions were undergoing severe financial distress.
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In our model, a procuring agency designs contracts for a firm to execute a project.
The project is assumed to be valuable enough that the agency wants to implement the
project in any cost scenario. The procurer designs a contract to implement the project
at the lowest possible expenditure. The model has two periods: first, the firm receives
a private non-fully informative signal about the project’s intrinsic cost. Second, the
firm learns whether the intrinsic costs are high or low, then decides whether to stay
in the relationship or take its outside option.4 In case it stays, the firm chooses an
effort to reduce the cost. Cost-reducing efforts generates disutility for the firm as in the
classic Laffont and Tirole (1986) procurement model. Realized costs are verifiable and
observed by the procurer; however, neither the intrinsic cost nor effort are observable.

Revisiting the classic static Laffont and Tirole (1986) procurement model with two
types is helpful to gain an intuition for our results. In Laffont and Tirole (1986), the
optimal mechanism does not distort the effort choice of the low-cost type and distorts
downward the effort of the high-cost type. The distortion reduces the information rents
accrued by the most efficient (low-cost) type. In particular, the larger the prior belief
that the firm is low-cost, the more critical it is to reduce the information rents and the
bigger the distortion for high-cost types. In our model with ex-ante signal realizations,
the better the signal, the higher the chance of a low-cost firm. Hence, if the procuring
agency could directly observe the first-period signal realization, it would distort the
effort levels of high-cost firms more after better first-period signal realizations. How-
ever, first-period signals are the firm’s private information. We show that in a truthful
direct revelation mechanism, the first-period incentive compatibility constraints can
be characterized as a monotonicity and an envelope condition, which, together with
the ex-post participation constraint, require lower distortions after better signals —
the opposite monotonicity direction of what the principal wants absent incentive com-
patibility concerns.5 As a result, the procuring agency is better off not screening the
first-period information and offering a contract that conditions the transfers only on
realized verifiable costs.

The paper then characterizes optimal contracts for lower values of the firm’s ex-post
outside option. First, we establish a threshold ū1 for which any ex-post outside option
value above it implies that the ex-ante participation constraint is slack, and the optimal
contract takes a static form as in the classic Laffont-Tirole procurement model. Second,
we establish that there exists a second lower threshold ū2 for which pooling of the
first-period signals remain optimal for any ex-post outside option ū ∈ [ū2, ū1], even
though the ex-ante participation now binds. Finally, we characterize a third threshold
ū3 for which for any ex-post outside option ū ≤ ū3, the ex-post participation constraint
is slack, and — under a regularity condition — the optimal mechanism fully screens
first-period signals.

We then relate our findings to the ubiquitous cost overruns observed in procurement
projects. In practice, cost overruns are observed worldwide in many different sectors
ranging from transport and energy infrastructure to IT projects (see Siemiatycki (2015)
for a survey). For instance, Flyvbjerg et al. (2003) study cost overruns on a sample
of 258 major roads, tunnels, bridges, urban transit, and interurban rail projects in 20

4We refer to the first-period private information as “signals” and the second-period as “types”.
5This conflict is a form of non-responsiveness. See Castro-Pires and Moreira (2021) for further refer-

ences.
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countries and found that 86% of the projects in their sample had a higher cost than
initially estimated. We show that cost overruns are consistent with a setting in which a
miscalibrated procurer underestimates the firm’s ex-post outside option value and tries
to screen the ex-ante information but fails. She offers a mechanism that incentivizes the
firm to report the lowest cost estimate regardless of its private signal and take the ex-
post outside option if the cost realization is high. Hence, the reported ex-ante costs
underestimate actual cost realizations, and the firm often exercises its exit rights.

Finally, we extend the analysis to the case with multiple firms competing for the
project. In period 1, n firms observe private non-fully informative signals about their
own intrinsic costs. The procuring agency designs contracts and selects a single firm
to execute the project. In period 2, the selected firm learns its intrinsic cost, chooses
whether to leave the project, and, in case it does not leave, the amount of cost-reducing
effort. The key distinction with the baseline setting is that the procuring agency can
use the project allocation decision as an extra screening instrument. We define as the
second-best allocation the procuring agency’s choices if it could directly observe first-
period signals. That is, the second-best allocation describes which firm would be se-
lected for the project and what efforts would be recommended if the procuring agency
knew all first-period signal realizations. We, then, show that when the number of firms
is sufficiently large, the procuring agency can elicit first-period signals and implement
the second-best allocation at approximately no additional cost.6 However, if the ex-
post outside option value is sufficiently high, the cost of implementing the second-best
allocation diverges to infinity when the number of firms increases.

The results regarding multiple firms imply that competition solves the asymmetric
information issue only when the procuring agency can sufficiently punish firms that
have reported a low expected intrinsic cost but have a high realized verifiable cost. To
build the intuition, suppose that the procuring agency offers a mechanism that selects
the firm that reports the lowest expected cost (which is the selection rule in the second-
best). In that case, reporting lower expected costs increase the chance of being selected
for the project and might generate incentives for firms to under-report their expected
costs. For instance, any firm can pretend to have received the best first-period signal,
win the project with probability one, and take their ex-post outside option if it has a
high cost. When the ex-post outside option is valuable enough (as good as the ex-
ante, for instance), this potential deviation implies that the procuring agency must
leave strictly positive rents to every firm. As the number of firms grows, the cost of
implementing the second-best allocation explodes.

However, when the ex-post outside option value is low, the procuring agency can pun-
ish under-reporting by offering lower payments to firms who have reported a low ex-
pected cost but have a high realized one. Such a punishment allows the procuring
agency to increase the dispersion of ex-post utilities and screen first-period signals
without leaving additional rents to firms. Moreover, increasing the number of firms
reduces expected information rents and, in the limit, allows the procuring agency to
elicit first-period signals essentially for free.

Outline. This paper is organized as follows. In the next section, we discuss the related

6This result is in the spirit of Riordan and Sappington (1987), McAfee and McMillan (1987), and
Laffont and Tirole (1987a).
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literature; Section 2 presents the model and formally states the procurement design
problem under ex-post individual rationality. Section 3 provides the optimal solution
for the "absolute exit rights" case, in which the firm’s ex-post outside option is equal
to the ex-ante. Section 4 analyzes the problem for lower levels of the ex-post outside
option and relates the results to cost overruns. Section 6 discusses extensions beyond
binary types and the role of commitment. Lastly, Section 7 concludes and proposes
directions for future research. Appendix B presents a further discussion on the opti-
mality of pooling mechanisms under exit rights and alternative information structures.
Omitted proofs are left to Appendix A.

Related literature

Our paper contributes to the literature on dynamic procurement contracts. Baron and
Besanko (1984) pioneered the analysis with a multiperiod model of a continuing rela-
tionship between a regulator and a firm. In a sequence of papers, Laffont and Tirole
(1987a, 1988, 1990) analyze the effects of limited commitment on optimal contracts. In
contrast, our article focuses on the case of full commitment and the effects of an ex-post
participation constraint. We also show that our results remain valid if the procurer has
limited commitment power. In another related paper on dynamic procurement con-
tracts, Krähmer and Strausz (2011) study a moral hazard problem with pre-project
planning. They analyze how to provide incentives for information acquisition prior to
the execution of the project. We instead focus on how the ex-ante information relates
to ex-post exit rights and how they jointly affect optimal contracts.

Our article is also related to Courty and Li (2000), who studied the optimal sales of an
indivisible unit good under risk neutrality and sequential private information arrival
through the lenses of a sequential screening model. In that model, the agent is locked
in the relationship after accepting to participate in the mechanism. Hence, the mech-
anism offered by the principal had to respect only an ex-ante individual rationality
constraint. As a result, the optimal mechanism consists of a menu of option-contracts.7

In a related paper, Pavan et al. (2014) study mechanism design in dynamic quasilinear
environments where the information arrives over time. For a recent dynamic mecha-
nism design literature survey, we refer to Bergemann and Välimäki (2019).

On top of the dynamic nature, our article belongs to the literature that studies sequen-
tial screening in settings in which the agent’s losses in each period are bounded below
by the ex-ante outside option, e.g., Krishna et al. (2013), Krasikov and Lamba (2021),
Ashlagi et al. (2022), and Krähmer and Strausz (2022). Those articles study a frame-
work in which trade (or equivalently, production) happens in all periods, while our
model focuses on the case in which the first period refers only to information, and
production occurs only in the second period.

In the context of the dynamic arrival of information and a single trading period, Kräh-
mer and Strausz (2015) introduced an ex-post individual rationality constraint to a
sequential screening model motivated by withdrawal rights regulation in e-commerce

7 Option contracts refer to an arrangement where the buyer pays an upfront fee, and when he later
discovers his true valuation, he may decide to keep the good or withdraw from the contract with a
pre-specified refund.
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markets8. They find sufficient conditions for an optimal sales policy to be a static con-
tract, i.e., a mechanism that ignores any first-period information the agent might re-
port and conditions the allocation solely on ex-post private valuations. Bergemann
et al. (2020) furthered their result, finding necessary and sufficient conditions for opti-
mal pooling versus sequential separation with two ex-ante signals. Both papers have
environments where players’ utilities depend linearly on payoff-relevant private infor-
mation. Linear environments give rise to threshold mechanisms, i.e., mechanisms that
allocate the good with probability one to types above a certain threshold on the type
space.9

Krähmer and Strausz (2016) examine nonlinear pricing with ex-post participation in
an environment with curvature, binary signals, and a continuum of types. The authors
find that the optimality of static contracts breaks down if the principal can sell multiple
units and the distributions of types conditional on signals satisfy a cross-hazard rate
condition. They argue that variable quantities afford the principal an additional screen-
ing instrument, so discriminating ex-ante information becomes profitable again. In
contrast to Krähmer and Strausz (2016), we re-establish the optimality of full-pooling
of the first-period signals in a setting with binary types and arbitrary signal distribu-
tions. In Appendix B, we discuss the role of the cardinality of signals and types and
establish the importance of a cross-hazard rate condition to extend the results to a two-
signals-three-types setting.

We also contribute to the literature studying the effect of limited liability on optimal
contracts. In related work, Calveras et al. (2004) motivates the occurrence of abnor-
mally low bids in procurement auctions if bidders can file for bankruptcy ex-post.
Moreover, Ollier and Thomas (2013), Gottlieb and Moreira (2021), and Castro-Pires
and Moreira (2021) show that the lack of screening might stem from the interplay be-
tween limited liability, moral hazard, and adverse selection. Our results show that a
limited liability constraint also generates pooling in a dynamic setting without moral
hazard.

Our paper also contributes to the literature under which multiple agents compete for
incentive contracts as in Riordan and Sappington (1987), and McAfee and McMillan
(1987). Differently from previous work, we introduce exit rights that allow the firm to
take an ex-post outside option after fully learning the project’s cost. Then, we show
that competition solves the asymmetric information problem only if the ex-post out-
side option value is low enough. In a recent article, Chakraborty et al. (2021) show
that competition in procurement might be detrimental when there are moral hazard
concerns after the project has been assigned to a given firm. Despite having a similar
conclusion, their results stem from different sources than ours: they focus on distor-
tions caused by hidden actions, while we show that competition might be detrimental
due to the existence of attractive ex-post outside options.

8Although we focus on the procurement application, our model can be recast as a monopolist sell-
ing a good in which buyers have private information about their preferences for quality (or quantity).
While Krähmer and Strausz (2015) focus on the case with linear preferences (or single-unit demand), we
analyze the case with preference curvature (or multi-unit demand).

9Hence the relevance of the discussion on the optimality of "deterministic" versus "stochastic" con-
tracts, where the latter means a mechanism that allocates the good randomly to specific types.
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2 Environment

The procuring agency (principal) delegates the execution of a project to a firm (agent).
The project has a social benefit level assumed to be high enough to ensure the project’s
viability in all cost scenarios. The project’s total cost is given by

C = β − e,
where β ∈ {βL, βH} are the two possible levels for the project’s intrinsic cost (low and
high), and e ∈ [0, βH ] denotes the effort exerted by the firm to reduce the cost to level
C. Let ∆β = βH − βL > 0 be the incremental cost.

The interaction happens in two periods. In the first period, the procuring agency and
the firm sign the contract; in the second period, the firm executes the project. At the
contracting stage, the procuring agency announces the incentive scheme to the firm,
which accepts it if the expected profit from the partnership exceeds the initial reser-
vation utility, normalized to zero. The firm is uncertain about the project’s intrinsic
cost β, but observes a private signal s ∈ [s, s] which conveys information about the
likelihood of βH . Specifically, a firm who observes a signal realization s has probability
Pr(β = βL|s) = 1 − s of facing a low-cost project and Pr(β = βH |s) = s of a high-cost
project.10 The signal s is distributed according to a cumulative distribution F with a
strictly positive density f bounded away from 0.

In the production period, the firm privately learns the project’s intrinsic cost β. Then,
the firm has the right to exit the partnership and get an exogenous outside option ū ≤ 0.
Such a right imposes an ex-post participation constraint on contract design.

If the firm decides to complete the project, it chooses its optimal cost-reducing effort.
The firm has an effort disutility ψ : R+ → R+, which is assumed to be twice con-
tinuously differentiable, strictly increasing (ψ′ > 0), strictly convex (ψ′′ > 0), and
ψ′(βH) > 1. After the project is delivered, the procuring agency observes the final
cost C = β − e, but cannot distinguish between the intrinsic cost β and cost-reduction
effort e. A firm with type β and final cost C that receives a transfer T has payoff

V (β, C, T ) = T − C − ψ(β − C).

It is helpful to denote payoffs in terms of the net transfer t = T−C, that is, the payments
above the cost reimbursement. The procuring agency can fully commit to the offered
contract. The procuring agency designs a transfer T : [s, s] × R+ → R+, specifying a
remuneration schedule that depends on the firm’s reported signal and on the final cost
C, to minimize expected procurement costs.

By the dynamic revelation principle (Myerson (1986)), the problem is equivalent to
finding an optimal direct mechanism in an incentive-compatible and individually-
rational set. A direct mechanism assigns a net transfer tj(ŝ) and a cost requirement
Cj(ŝ) for each sequence of announcements (ŝ, βj).

We use the terms ex-ante and ex-post to refer to each stage of the model. Ex-ante refers to
after the signal has been observed but before the type is realized. Finally, ex-post refers
to after both signal and type have been realized.

10We denote random variables in bold.
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Incentive compatibility. In the second period, after the signal has been reported, the
firm’s only relevant decision is which β ∈ {βL, βH} to report. For j, i ∈ {L,H} denote
by uj(s|i) the ex-post profit of a firm of type βi who has reported signal s and type βj :

uj(s|i) = tj(s)− ψ(βi − Cj(s)).

Let ui(s) = ui(s|i) denote the firm’s profit from reporting their true type in the second
period. For every signal s, ex-post incentive compatibility is given by:

uL(s) ≥ tH(s)− ψ(βL − CH(s))

uH(s) ≥ tL(s)− ψ(βH − CL(s)).
(IC-2s)

Lemma 2.1. For all s, ex-post incentive constraints (IC-2s) are equivalent to

uL(s) ≥ φ(βH − CH(s)) + uH(s) (IC-2Ls )
uH(s) ≥ uL(s)− φ(βH − CL(s)), (IC-2Hs )

where φ(e) ≡ ψ(e)− ψ(e−∆β). Moreover, (IC-2Ls ) and (IC-2Hs ) jointly imply that CH(s) ≥
CL(s), and uL(s) > uH(s) are necessary conditions for ex-post incentive compatibility.

In Appendix

For any mechanism that satisfies all (IC-2s)’s, the second-period optimal continuation
strategy for the firm is to report her type truthfully no matter what signal it has re-
ported in period 1. That is, regardless of whether the firm has reported truthfully or
not in the first period, (IC-2s) ensures incentives for truthful reporting in the second-
period.11 Hence, from the first-period viewpoint, the expected payoff of a firm that has
observed signal s but reports signal ŝ is:

U(ŝ|s) = (1− s)uL(ŝ) + suH(ŝ).

Let U(s) = U(s|s) denote the firm’s expected profit from reporting its signal accurately
in the first period. Ex-ante incentive compatibility is thus given by:

U(s) ≥ U(ŝ|s), ∀ŝ, s. (IC-1s,ŝ)

Individual rationality. The direct mechanism satisfies multi-period voluntary partic-
ipation if it secures ex-ante and ex-post profits larger than the firm’s opportunity cost
in each period, i.e.12

U(s) ≥ 0, ∀s (IR-1)
uH(s) ≥ ū, ∀s. (IR-2)

11Note that Myerson (1986)’s revelation principle only requires truth-telling in the second-period after
a truthful report in the first. However, in our setting, the firm’s period two utility is independent of the
signal. Hence, incentive compatibility in period two automatically ensures truth-telling even when the
firm has misreported its first-period signal.

12 Under (IC-2s), ex-post profits are decreasing with β, i.e., uL(s) ≥ uH(s), ∀s, so the only relevant
ex-post IR constraint concerns the expensive project type βH .
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The ex-post constraint (IR-2) captures the concept of limited liability in procurement
contracting, as the firm is entitled to stop its loss at ū ≤ 0 in unfavorable states of
the nature. Moreover, the case ū = 0 is interpreted as a strong form of limited liability
protection, under which the firm is entitled to its ex-ante opportunity cost in all states.13

Design problem. Denote by Ti(s) = ti(s) + Ci(s) the ex-post transfer to the firm with
reported signal s and final cost Ci(s). The procuring agency wishes to minimize the
expected procurement cost that guarantees the project is executed:

P : min
{Ti(·),Ci(·)}i∈{L,H}

∫ s

s

{(1− s)TL(s) + sTH(s)} dF (s)

s.t. (IC-1s,ŝ), (IC-2s), (IR-1), (IR-2).

A direct mechanism {(Ti(·), Ci(·))}i∈{L,H} can be equivalently represented by the
recommended efforts and ex-post utilities for each sequence of reports, that is,
{(ei(·), ui(·))}i∈{L,H}. Therefore, the procuring agency’s design problem can be restated
as follows:

P : min
{(ei(·),ui(·))}i∈{L,H}

∫ s

s

{(1− s) [βL − eL(s) + uL(s) + ψ(eL(s))]

+s [βH − eH(s) + ψ(eH(s)) + uH(s)]} f(s)ds

s.t. (1− s)uL(s) + suH(s) ≥ (1− s)uL(ŝ) + suH(ŝ),∀ŝ, s (IC-1s,ŝ)

uH(s) ≥ ū, ∀s (IR-2s)

U(s) ≥ 0, ∀s (IR-1s)

uL(s) ≥ φ(eH(s)) + uH(s) ∀s (IC-2Ls )
uH(s) ≥ uL(s)− φ(eL + ∆β), ∀s. (IC-2Hs )

Two useful benchmarks

Before proceeding with the analysis of problem P , we define two useful benchmarks
by removing information frictions. In the first benchmark, we entirely remove any
information frictions, while the second assumes the principal observes s but not β.

Let the first-best allocation (denoted by eFB) be the effort recommendation the principal
would provide if she could directly observe the realized signal and type. Absent any
incentive compatibility constraints; the principal would recommend the effort level
that maximizes joint surplus. That is, for any pair of signal and type realization, the
principal would recommend

ψ′(eFB) = 1.

13Such strong limited liability protection is sometimes referred to as a “financial equilibrium princi-
ple” in the context of concession contracts (e.g., Guasch (2004)).
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Let the second-best allocation be the effort the principal would recommend if she could
observe s but not β. In this case, the principal could directly condition the mechanism
on s, but would need to elicit β in an incentive-compatible way. When the principal
observes s, we are back to the classic Laffont and Tirole (1986) model. Hence, for each
s, the second-best allocation is given by the solution to this classic problem and given
by

ψ′(eSBL (s)) = 1

ψ′(eSBH (s)) = 1− 1− s
s

φ′(eSBH (s)).

That is, the effort of the best type (βL) is set to the efficient level, while the effort of
the worst type (βH) is distorted downwards to reduce information rents to the highest
type. Both benchmarks will be helpful when looking for the problem P’s solution.

Binding Ex-post Incentive Compatibility

We resume the analysis of problem (P), and the next step is to characterize the incentive
constraints in a more tractable way. We first take the usual approach of characterizing
(IC-1s,ŝ) as an envelope and a monotonicity constraint.

Lemma 2.2. (IC-1s,ŝ) is equivalent to the following two conditions:

1. U ′(s) = −[uL(s)− uH(s)] a.e.;

2. uL(s)− uH(s) is decreasing.

The second step is to show that (IC-2Ls ) binds at almost every s ∈ [s, s]. Such a result is
useful because when (IC-2Ls ) binds, we can write uL(s) as a function of uH(s) and eH(s).
In particular, as U(s) is absolutely continuous once can write

U(s) = suH(s) + (1− s)uL(s) = suH(s) + (1− s)uL(s) +

∫ s

s

[uL(z)− uH(z)]dz.

Proposition 2.1. Take a mechanism that satisfies all constraints in problem P . Suppose that
there exists a positive mass set Ŝ of signals such that (IC-2Ls ) is slack for all s ∈ Ŝ. Then, there
exists another mechanism that strictly reduces the principal’s expected procuring cost.

The proof takes two steps: first, we show that whenever (IC-2Ls ) is slack, it must be the
case that effort is not distorted from the first-best. Second, we show that any mecha-
nism in which (IC-2Ls ) does not bind for almost every s ∈ [s, s] can be strictly improved
on. For the first step, we start from a mechanism in which for a positive mass set Ŝ
we have (IC-2Ls ) slack and eH(s) 6= eFB. We, then, construct an alternative mechanism
that satisfies all constraints and has strictly lower expected procuring costs. Therefore,
we can restrict attention to mechanisms that have eH(s) = eFB whenever (IC-2Ls ) is
slack. Similarly, the second step takes a constructive approach. We start from a mech-
anism in which (IC-2Ls ) is slack for a positive mass set S̃, and then construct a strict
improvement.
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By Proposition 2.1, we know (IC-2Ls ) binds almost everywhere; hence

uL(s) = φ(eH(s)) + uH(s). (1)

Therefore, we can re-write principal’s problem as

P ′ : min
(eL(s),eH(s),uH(s))

∫ s

s

{
(1− s)

[
ψ(eL(s))− eL(s)

]
+ s
[
ψ(eH(s))− eH(s)

]
+
[
sβH + (1− s)βL

]
+
[
(1− s)φ(eH(s)) + uH(s)

]}
f(s)ds

subject to
eH(s) decreasing, (monotonicity)

suH(s) + (1− s)uL(s) = suH(s) + (1− s)uL(s) +

∫ s

s

φ(eH(z))dz, (envelope)

φ(eL(s) + ∆β) ≥ φ(eH(s)), (IC-2Hs )

uH(s) ≥ ū. (IR-2s)

3 High Ex-post Reservation Utility (ū = 0)

Suppose that the firm has a high-valued ex-post outside option (ū = 0), i.e., it cannot
be made worse off than her ex-ante outside option in any cost scenario. We will show
that it is optimal for the principal to not screen the ex-ante information in such a case.14

The first immediate observation is that when the firm has a high-valued ex-post out-
side option, the ex-post participation constraint implies the ex-ante participation con-
straint. That is, uL(s) ≥ uH(s) ≥ 0 implies

U(s) = (1− s)uL(s) + suH(s) ≥ 0, for all s ∈ [s, s].

The Pooling Mechanism

Before solving problem (P ′), we define a mechanism that disregards first-period
information and screens the firm’s type but not signal.

Definition (optimal pooling mechanism). The optimal pooling mechanism is defined by{(
ēH , ū

)
,
(
ēL, ū+ φ(ēH)

)}
,

14All results immediately hold for ū > 0. We focus on ū ≤ 0 because then −ū has the natural interpre-
tation of the cost of breaking the contract.
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where ēH and ēL are given by

ψ′(ēL) = 1

ψ′(ēH) = 1− 1− s∗

s∗
φ′(ēH)

(2)

and s∗ =
∫ s
s
sf(s)ds is the expected unconditional probability of an expensive project

βH .

It is important to highlight that the allocation of the pooling mechanism is different
from the second-best allocation. When computing the second-best allocation, we allow
the principal to observe s, and, hence, directly condition the contracts on s. While in
the pooling mechanism, the principal does not observe s and offers the same allocation
regardless of s. That is, it pools all s reports.

The pooling mechanism is the solution to the optimal procurement problem with two
project types (Laffont and Tirole, 1993, Section 1.3), in which the procurer agency be-
lieves the low-cost project βL happens with probability 1 − s∗. Hence, the pooling
allocation corresponds to static one since it does not depends on the first-period infor-
mation and conditions the mechanism solely on second-period reports. The following
theorem establishes that the pooling mechanism is optimal. We first state the theorem,
present the proof, and subsequently discuss its intuition which stems directly from the
proof.

Theorem 3.1. The optimal pooling mechanism is the solution to problem P ′. That is, it is
optimal for the procuring agency to refrain from screening the first-period information and
offer a cost-plus contract to the firm.

Proof of Theorem 3.1. The proof follows four steps:

1. Consider a relaxed problem that drops two constraints: (envelope) and (IC-2Hs ).

2. To solve the problem in step 1, we further relax the problem by dropping the
(monotonicity) constraint and subsequently ironing the solution in the appropri-
ate regions.

3. Show that the solution to the further relaxed problem (step 2) violates
(monotonicity) throughout the entire support. Hence, the solution to the prob-
lem in step 1 requires ironing everywhere.15

4. Find the solution to step 1 considering that we must pool all signals (due to step
3), and check that (envelope) and (IC-2Hs ) are satisfied.

Step 1: Consider the following relaxed problem:

min
(eL(s),eH(s),uH(s))

∫ s

s

{
(1− s)

[
ψ(eL(s))− eL(s)

]
+ s
[
ψ(eH(s))− eH(s)

]
+
[
sβH + (1− s)βL

]
+
[
(1− s)φ(eH(s)) + uH(s)

]}
f(s)ds

(3)

15Such approach was first proposed by Castro-Pires and Moreira (2021) in a static setting with moral
hazard and adverse selection.
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subject to
eH(s) decreasing, (monotonicity)

uH(s) ≥ 0. (IR-2s)

The first two immediate observations are that, in this relaxed problem, it is optimal to
set uH(s) = 0 and eL(s) = eFB for all s ∈ [s, s]. Hence, the relaxed problem becomes

min
eH(s)

∫ s

s

{
s
[
ψ(eH(s))− eH(s)

]
+ (1− s)φ(eH(s))

}
f(s)ds (4)

subject to
eH(s) decreasing. (monotonicity)

Step 2: Then, we follow the usual approach for solving problems with a monotonicity
constraint. We relax the monotonicity constraint and subsequently iron the solution in
the appropriate regions.

Note, however, that when we further drop the monotonicity constraint, we have fully
relaxed incentive compatibility in the first period. Hence, not surprisingly, the solution
to such further relaxation is given by the second-best allocation:

ψ′(eSBH (s)) = 1− 1− s
s

φ′(eSBH (s)) for all s ∈ [s, s].

Step 3: Note that eSBH (·) is strictly increasing, i.e.,

deSBH (s)

ds
=

φ′
(
eSBH (s)

)
s2
[
ψ′′
(
eSBH (s)

)
+ 1−s

s
φ′
(
eSBH (s)

)] > 0.

Hence, introducing back the monotonicity constraint requires ironing over the entire
support.16 Therefore, the solution to the problem in step 1 requires a constant eH(·).

Step 4: We, then, solve the problem in step 1, considering that eH(·) must be constant.
That is, we solve

min
eH∈[0,βH ]

{
s∗
[
ψ(eH)− eH

]
+ (1− s∗)φ(eH)

}
,

which delivers the pooling mechanism allocation. Taking stock of everything, the so-
lution to the problem in step 1 becomes u∗H(s) = 0, u∗L(s) = φ(e∗H(s)), e∗L(s) = eFB, and
e∗H(s) = ēH , where

ψ′(ēH) = 1− 1− s∗

s∗
φ′(ēH). (5)

It remains to show that the two relaxed constraints are satisfied. For (IC-2Hs ), note that
e∗H(s) < e∗L(s) = eFB. Hence,

φ(e∗L + ∆β) ≥ φ(e∗H(s)).

Finally, note that all signal reports are pooled together under the pooling mechanism.
Therefore, incentive compatibility in the first period is trivially satisfied; hence, it is
also the (envelope) condition.

16See Toikka (2011)’s separable case for a generalization of Myerson (1981)’s ironing approach.
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Intuitively, the more the principal distorts the agent’s effort downwards in the high-
cost state, the lowest the informational rents left to low-cost agents. Recall that the
higher the signal, the less likely the agent will have a low cost. Hence, the less impor-
tant is to reduce low-cost type’s information rents. Setting aside (IC-1s,ŝ), the principal
would like to distort less eH(s) when s is higher. However, eliciting the ex-ante infor-
mation requires the principal to distort more the effort choice in case of high costs for
agents with higher signals — the opposite of what is optimal absent the ex-ante in-
centive compatibility constraint. This conflict is precisely what the literature on static
screening denominates as non-responsiveness. Given non-responsiveness, the best for
the principal is not to screen the ex-ante information.

The critical implication of Theorem 3.1 is that the optimal mechanism does not con-
dition on first-period but only second-period reports. The result implies that in this
setting, optimal procurement contracts should not depend on ex-ante self-reported es-
timated costs but only on realized verifiable ex-post costs. That is, the optimal mech-
anism has a cost-plus structure in which the firm is reimbursed for its realized costs
and receives an additional net transfer to incentivize cost reduction. Such a net trans-
fer is smaller the higher the realized costs. The following subsection presents a simple
indirect implementation of such a mechanism.

Indirect Implementation

The previous subsection characterized the optimal direct and truthful revelation mech-
anism. It is useful to examine an indirect implementation closely resembling contracts
observed in practice. In particular, as the optimal contract does not condition on the
first-period signals, one can write the optimal mechanism as a transfer function con-
tingent on realized costs. If the realized cost is C, the firm receives T (C).

Given ēL and ēH , denote C̄L := βL− ēL and C̄H := βH− ēH . A transfer function that im-
plements the same outcomes as the optimal direct and truthful revelation mechanism
is

T (C) =


C̄L + φ(ēH) + ψ(ēL) if C ≤ C̄L,

T (C̄L) + (C − C̄L)[1− ψ′(ēH)] if C ∈ (C̄L, C̄H ],

T (C̄H) + C − C̄H if C > C̄H .

Graphically, the transfer function is represented in figure 1.
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Figure 1: Indirect Implementation.

4 Negative Ex-post Reservation Utility (ū < 0)

The analysis so far addressed the cases in which the ex-ante participation constraint
is redundant in the presence of the ex-post participation constraint. We now allow for
the ex-post outside option to be worse than the ex-ante (ū < 0). This section shows that
the result of not screening the ex-ante information remains valid as long as the ex-post
outside option is not substantially lower than the ex-ante. The results are divided into
three cases: in the first, the ex-post outside option is sufficiently close to the ex-ante,
and our previous results immediately apply, with the ex-ante participation constraint
being slack. In the second case, the ex-post outside option takes intermediate values,
and both ex-ante and ex-post participation constraints bind at the optimal mechanism.
However, even in this case, it is optimal not to screen the first-period information. The
third case analyzes the situation in which the ex-post outside option is sufficiently low,
which implies that only the ex-ante participation binds. In this last case, it is optimal
for the principal to fully screen first-period signals under a mild regularity condition.

4.1 Negative but High Ex-post Outside Option Values

When ū < 0, the ex-post participation (IR-2) holding does not necessarily imply the
ex-ante participation (IR-1) also does. The ex-ante expected utility of an agent who
reports truthfully under the pooling mechanism is given by

Ū(s) = (1− s)uL(s) + suH(s) = ū+ (1− s)φ(ēH),

which is bigger than zero (the normalized ex-ante outside option value) for any
s ∈ [s, s] only if ū is sufficiently large. Note that if Ū(s) ≥ 0, then the optimal pool-
ing mechanism (2) satisfies (IR-1). Hence, it is also optimal when we add the ex-ante
participation constraint. Define

ū1 := −(1− s)φ(ēH). (6)
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Therefore, the following result is immediate.

Corollary 1. The optimal pooling mechanism is optimal for any ex-post outside option ū ≥ ū1.

4.2 Intermediate Ex-post Outside Option Values

We now analyze cases in which the ex-post outside option is lower than ū1. We, then,
show that a modified pooling mechanism is optimal as long as ū is not too low.

Definition (Optimal pooling with binding (IR-1) mechanism). The optimal pooling with
binding (IR-1) mechanism is {(

ẽH , ū
)
,
(
ẽL, ū+ φ(ẽH)

)}
,

where ẽH and ẽL are given by:

ψ′(ẽL) = 1,

φ(ẽH) = − ū

1− s
.

(7)

The pooling with binding (IR-1) mechanism pools all ex-ante signals but ensures that
ex-ante participation is satisfied. Note that when ū is low (lower than ū1), the agents
with high signals would not be willing to participate in the pooling mechanism. The
pooling with binding (IR-1) mechanism limits the effort distortion for high-cost firms to
the maximum such that they would be willing to participate even if they have received
the worst possible signal. The following theorem shows the pooling with binding (IR-
1) mechanism is optimal for a range of ex-post outside option values ū ∈ [ū2, ū1], for
some ū2 < ū1.

Theorem 4.1. There exists ū2 < ū1 such that the pooling with binding (IR-1) mechanism is
optimal for any ū ∈ [ū2, ū1].

Theorem 4.1 extends the result that the principal prefers not to screen the first-period
information to cases in which the ex-ante participation also binds. For ū < ū1, the pool-
ing mechanism does not ensure the participation of firms with all signals. Hence, to
ensure ex-ante participation, the principal must increase the ex-ante utility of the firm
with the worst signal (and, consequently, the utility of firms with all other signals). One
way to increase the firm’s ex-ante utility is to reduce distortions in the recommended
efforts. In particular, to reduce distortions introduced precisely to limit information
rents. That is, by increasing eH , and consequently increasing uL, the principal reduces
the effort distortion and leaves additional rents to the firm. The pooling with binding
(IR-1) mechanism reduces such distortions until even the firm with the worst signal is
willing to participate.

Theorem 4.1 highlights that the main force that prevents screening is not the slackness
of (IR-1) but (IR-2) be binding. Overall, the central message of Theorem 4.1 is similar
to the one of Theorem 3.1: for sufficiently high ex-post outside option, the principal is
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better off by not screening the ex-ante information. The proof, however, is very differ-
ent. The approach is to address the design problem with a guess-and-verify algorithm:
we first guess that the pooling with binding (IR-1) mechanism is a solution to problem P .
Then, we construct Lagrange multipliers that sustain such a mechanism as a solution
to the procuring agency’s problem.

Proof of Theorem 4.1. Suppose that −(1− s)φ(eFB) ≤ ū < ū1. Notice that the optimal
pooling with binding (IR-1) mechanism described in (7) satisfies all (IC-1s,ŝ) constraints
with equality. Also, it immediately follows that it satisfies (IC-2Ls ) and (IC-2Hs ). Hence,
it suffices to focus on ex-post participation constraints (IR-2s), (IR-1s), and optimality
conditions.

We present a solution algorithm that proceeds according to the following steps:

1. State a modified version of the principal’s problem, denoted byRū, which exoge-
nously sets ex-post profits uH(s) to ū;

2. Guess the set of active (IC-1s,ŝ) constraints at the pooling with binding (IR-1)
solution, and define a further relaxed problem that ignores the remaining inactive
constraints, denoted byRū′ ;

3. Construct problem Rū′’s Lagrangian and present a Karush-Kuhn-Tucker argu-
ment to the solution taking the form of the pooling with binding (IR-1) mecha-
nism;

4. Extend the Lagrangian to include the ex-post IR constraints and find multipliers
that sustain the pooling with binding (IR-1) mechanism and u∗H(s) = ū as an
optimal solution.

Step 1. First, we fix uH(s) = ū ≥ −(1 − s)φ(eFB). Moreover, using Proposition 2.1 we
set uL(s) = uH(s) + φ(eH(s)). Then, the modified principal’s design problem becomes:

Rū : min
{eL(·),eH(·)}

∫ s

s

{(1− s) [βL − eL(s) + ψ(eL(s)) + φ(eH(s))]

+ū+ s [βH − eH(s) + ψ(eH(s))]} f(s)ds

s.t. (1− s) [φ(eH(s))− φ(eH(ŝ))] ≥ 0, ∀ŝ, s
ū+ (1− s)φ(eH(s)) ≥ 0 ∀s.

Step 2. We then relax problem Rū by restricting the set of first-period incentive con-
straints to consider. We first define a reference signal s̃. Then, we restrict attention to
incentive constraints in which a firm with a signal below the reference (“good type”)
does not envy the allocation assigned to a signal above the reference (“bad type”).

Let the reference signal s̃ be such that

1− s′′

s′′
≤ 1− ψ′(ẽH)

φ′(ẽH)
≤ 1− s′

s′
∀s′ < s̃ < s′′.
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Definition. Define the restricted set of incentive constraints as

˜IC = {IC-1s,ŝ : s < s̃ < ŝ} .

Remark 1. If the optimal pooling with binding (IR-1) mechanism solves problem Rū

restricted to ˜IC, then it solves the problem (Rū) with all the (IC-1s,ŝ), as (7) trivially
satisfies all neglected incentive constraints.

Hence, it suffices to show that the optimal pooling mechanism is a solution to the
following version of the relaxed problem:

Rū′ : min
{eL(·),eH(·)}

∫ s

s

{(1− s) [βL − eL(s) + ψ(eL(s)) + φ(eH(s))]

+ū+ s [βH − eH(s) + ψ(eH(s))]} f(s)ds

s.t. (1− a) [φ(eH(a))− φ(eH(b))] ≥ 0, ∀a < s̃ < b

ū+ (1− s)φ(eH(s)) ≥ 0 ∀s.

Step 3. Note that the Karush-Kuhn-Tucker theorem for function spaces (Luenberger,
1997, p. 220) applies to concave optimization problems (i.e., convex objectives and fea-
sibility sets for minimization problems). However, the constraints (IC-1s,ŝ) in problem
(Rū′) are differences of convex functions φ(·) and are not necessarily convex. The fol-
lowing Lemma 4.1 establishes that the optimization problem Rū′ satisfies the Karush-
Kuhn-Tucker theorem conditions.

Lemma 4.1. ProblemRū′’s objective function is concave, its (IC) constraints are quasi-concave
functions, and the interior of the feasible set is non-empty.

By the quasi-concave version of the Karush-Kuhn-Tucker theorem (Arrow and En-
thoven, 1961, Theorem 1), a pair {eL(s), eH(s)} is a solution to problem Rū′ if there
exist positive multipliers λ : [s, s̃]× [s̃, s] → R+, γ : [s, s] → R+ so that {eL(s), eH(s)}
minimizes the Lagrangian:

L =

∫ s

s

{(1− s) [βL − eL(s) + ψ(eL(s)) + φ(eH(s))] + ū+ s [βH − eH(s) + ψ(eH(s))]} f(s)ds

−
∫ s∗

s

∫ s

s∗
λ(a, b)(1− a) [φ(eH(a))− φ(eH(b))] dbda−

∫ s

s

γ(s)
[
ū+ (1− s)φ(

(
eH(s)

)]
ds.
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The minimizer of Lmust satisfy the following pointwise first-order conditions (FOC):

[eL(s)] : f(s)(1− s) (−1 + ψ′(eL(s))) = 0

[eH(s)] :



f(s)s (−1 + ψ′(eH(s))) + f(s)(1− s)φ′(eH(s))−
∫ s

s̃

λ(s, b)(1− s)φ′(eH(s))db

−γ(s)(1− s)φ′(eH(s)) = 0 if s ∈ [s, s̃]

f(s)s (−1 + ψ′(eH(s))) + f(s)(1− s)φ′(eH(s)) +

∫ s̃

s

λ(a, s)(1− a)φ′(eH(s))da

−γ(s)(1− s)φ′(eH(s)) = 0 if s ∈ [s̃, s] .

The existence of a multipliers λ(a, b), γ(s) ≥ 0 that satisfy the preceding FOC system
is established in the following Proposition 4.1. Therefore, by Remark 1, the optimal
pooling mechanism also solves problemRū.

Proposition 4.1. There exist functions λ̃ : [s, s̃]× [s̃, s]→ R+, and γ̃ : [s, s]→ R+ such that
the pooling allocation {ēL, ēH} is an optimal solution to problemR0, with multipliers given by
λ̃(s, ŝ) and γ̃(s).

Step 4. The last step is to consider the Lagrangian that explicitly incorporates the ex-
post participation constraints (IR-2):

L̃ =

∫ s

s

{
(1− s) [βL − eL(s) + ψ(eL(s)) + φ(eH(s))]

+ uH(s) + s [βH − eH(s) + ψ(eH(s))]
}
f(s)ds

−
∫ s̃

s

∫ s

s̃

λ(a, b) {(1− a) [φ(eH(a))− φ(eH(b))] + uH(a)− uH(b)} dbda

−
∫ s

s

γ(s)
[
uH(s) + (1− s)φ(

(
eH(s)

)]
ds−

∫ s

s

µ(s)[uH(s)− ū]ds.

By the same argument in Arrow and Enthoven (1961), if there exist positive multipliers
λ(a, b) ≥ 0, γ(s) ≥ 0 and µ(s) ≥ 0 such that Lagrangian L̃ is minimized at {ẽL, ẽH} and
ũH(s) = ū, ∀s, then the pooling mechanism is a solution to problem P . Proposition 4.2
establishes the existence of such multipliers and concludes the proof of Theorem 4.1.

Proposition 4.2. There exists ū2 < ū1, such that for any ū ∈ [ū2, ū1), there exist functions
λ̃ : [s, s̃]× [s̃, s] → R+ and µ̃ : [s, s] → R+ such that the pooling with binding IR allocation
{ẽL, ẽH} and the ex-post profit level ũH = ū are a solution to problem P , with multipliers given
by λ̃(s, ŝ), γ̃(s) and µ̃(s).
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4.3 Low Ex-post Outside Option Values

We now analyze the case in which the ex-post outside option is sufficiently low, such
that it becomes slack. We first solve the problem without (IR-2) and then we find ū3

such that for all ū ≤ ū3, (IR-2) is slack.

Note that Proposition 2.1 holds even without (IR-2). Hence, we know that (IC-2Ls ) must
bind. As usual in mechanism design without an ex-post participation constraint, the
ex-ante participation constraint binds for the least efficient firm (in this case, the one
with the highest signal s). Hence, by U(s) = 0 and Lemma 2.2 we have

U(s) =

∫ s

s

φ(eH(t))dt. (8)

We can write the principal’s problem without (IR-2) as

P1 : min
(eL(s),eH(s))

∫ s

s

{
(1−s)

[
ψ(eL(s))−eL(s)

]
+s
[
ψ(eH(s))−eH(s)

]
+

∫ s

s

φ(eH(t))dt
}
f(s)ds

subject to
eH(s) decreasing.

Proposition 4.3. Suppose F (s)
sf(s)

is increasing. The solution
(
êL(s), êH(s)

)
to problem P1 is

characterized by

ψ′
(
êL(s)

)
= 1 and

1− ψ′
(
êH(s)

)
φ′
(
êH(s)

) =
F (s)

sf(s)
for all s ∈ [s, s].

We take the usual approach of relaxing the monotonicity constraint and then checking
it is satisfied. Whenever F (s)

sf(s)
is increasing, the solution satisfies the relaxed monotonic-

ity constraint. Moreover, whenever F (s)
sf(s)

is strictly increasing, there is full separation of
all ex-ante signals.

Note that (IC-1s,ŝ) implies that uH(s) must be increasing and by (IC-2s) we know
uH(s) < uL(s). Hence, an agent with the lowest signal and highest type realization
achieves the lowest ex-post utility. That is,

ûH(s) = Û(s)− (1− s)φ
(
êH(s)

)
=

∫ s

s

φ
(
êH(t)

)
dt− (1− s)φ

(
êH(s)

)
,

where the first equality comes from (IC-2Ls ) and the second from (8).

Corollary 2. Suppose F (s)
sf(s)

is increasing and ū ≤ ûH(s). Then, (IR-2) is slack, and the optimal
mechanism is characterized by Proposition 4.3.

In summary, we have established the pattern of optimal contracts for different levels
of ū. If the ex-post outside option value is high enough (ū ≥ ū1), we have full pooling
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of the first-period signals and a slack ex-ante participation constraint. Suppose the ex-
ante outside option takes an intermediary value (ū2 ≤ ū < ū1), then the pooling of the
first-period signals is preserved but with a binding ex-ante participation constraint.
Finally, for low enough ex-post outside options (ū ≤ ū3), there is full-screening under a
regularity condition. Below, we graphically illustrate the result with an example with
two ex-ante signals.17

Figure 2 displays the three aforementioned thresholds.18 At the level of ex-post outside
option ū1, the expected rent of the high-signal firm attains zero, so (IR-1) becomes
active, and the pooling with binding (IR-1) mechanism is optimal.
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Figure 2: Optimal ex-ante profits in response to ū.

Pooling the first-period signals is no longer optimal for ex-post outside options below
ū2, as the regulator benefits from separating each signal’s allocation and reducing the
low signal firm information rents. At ū3, (IR-2) becomes inactive.

17In Appendix A, we prove Theorem 3.1 using a constructive approach similar to Theorem 4.1. This
approach does not rely on the first-period signal being continuous, and the result holds for any distri-
bution of s regardless of whether it is continuous, discrete, or any combination of the two. We maintain
the non-responsiveness approach in the main text because it has the clearest intuition.

18The online appendix C describes the functional forms used for the numerical examples and provides
the Matlab codes.
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Figure 3: Optimal ex-post profits in response to ū.

Figure 3 shows the optimal ex-post utility level as a function of the ex-post outside
option value. For ū > ū1, the ex-ante constraint (IR-1) is inactive, the ex-post utility of
types βH and βL are parallel, as the difference uL(s) − uH(s) = φ(ēH) is constant and
given by (IC-2Ls ). When (IR-1) becomes active, the two ex-post profit levels begin to
distance one from another. The optimal mechanism becomes the optimal pooling with
binding (IR-1), which holds type βH at the ex-post outside option but leaves additional
rents to βL by decreasing the distortions on the effort of the high type firm. The optimal
mechanism pools first-period signals while holding the high-cost type’s profit at the ex-
post outside option and providing additional informational rents to the low-cost type
to ensure ex-ante participation. For sufficiently low ū, pooling breaks down, and the
principal discriminates profit levels among all report sequences (s, βi). Finally, when
(IR-2) becomes inactive, the levels characterized in Proposition 4.3 describe the ex-post
profits.

4.4 Cost Overruns

In the real world, we often observe cost overruns in procurement projects; see
Makovšek and Bridge (2021) for a survey of the empirical literature. From a theo-
retical perspective, the emergence of cost overruns is typically attributed to failures
of commitment in the contracting environment. For instance, Arvan and Leite (1990)
present an adverse selection model with sequential uncorrelated cost-types, where the
principal cannot commit not to cancel the project should it reveal unfavorable. In equi-
librium, the more cost-uncertain tasks are left to the tail end of the project, giving rise to
possible overruns. A different theoretical strand attributes cost overruns to incomplete
contracts, see Bajari and Tadelis (2001).
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This section lays a forth potential explanation for cost overruns not from non-
commitment or incomplete contracting, but from the procuring agency failing to antic-
ipate the extent of the firm’s right to exit the partnership. We show that, in our model,
if the procuring agency underestimates the firm’s ex-post outside option, then the firm
would have an incentive to underreport its cost estimate and exercise its outside option
if the project has a high-cost realization.

In Subsection 4.3, we have characterized optimal contracts absent (IR-2). Suppose
now that the principal is miscalibrated and believes that ū ≤ ū3, but the true out-
side option is ū = 0. By Proposition 4.3, we know the principal offers the mechanism{(
êi(·), ûi(·)

)}
i∈{L,H}

. Note that

ûH(s) =

∫ s

s

φ
(
êH(t)

)
dt− (1− s)φ

(
êH(s)

)
=

∫ s

s

[
φ
(
êH(t)

)
− φ
(
êH(s)

)1− s
s− s

]
dt < 0,

where the inequality comes from the fact that êH(s) is decreasing and s < 1.

As ûH(s) < 0, the firm — regardless of what signal it has reported — prefers to take its
ex-post outside option in case the type realization is βH . Hence, regardless of its signal
report, the firm gets a payoff of 0 when the project’s cost is high. Note, however, that
ûL(s) > 0 is decreasing in s. Hence, reporting s is strictly better than any other report
for any realization of the signal s. That is, when the procuring agency underestimates
the firm’s ex-post outside option, the firm has the incentive to under-report estimated
costs (report the lowest signal s) and take the ex-post outside option in case of a high-
cost realization.

5 Multiple Firms

We have assumed so far that only one firm is available for the project. Such an assump-
tion is appropriate in many scenarios but not in others.19 In this section, we explore
whether sufficient competition might allow the procurement agency to screen firms
based on their ex-ante information.

We extend our model to accommodate multiple firms competing for the same project.
We assume that any one of n firms can execute the project. As before, each firm has an
ex-post project cost of Ci = βi − ei, where βi ∈ {βL, βH} and ei ∈ [0, βH ], and exerting
effort ei generates a disutility ψ(ei) for the firm. In period 1, each firm receives a private
signal si ∈ [s, s] about its own type, where Pr(βi = βH |si) = si. The principal, then,
must choose one firm to execute the project. In period 2, the selected firm learns βi

and decides whether to complete the project or take an ex-post outside option ū = 0.

19For instance, the Buy American Act requires the United States government to exclusively buy do-
mestic products when available. In some industries, such as naval or aerospace, often such restriction
implies that a single firm qualifies as a candidate for the project. In other less concentrated sectors, one
can observe more competition.
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Firms’ signals and types are assumed to be independent and identically distributed
across firms.

An important remark is that only the selected firm learns its intrinsic cost. The inter-
pretation is that the firm only fully learns a project’s cost when it is about to execute it.
In this setting, a direct and truthful revelation mechanism is a set of functions xi(−→s ),
eiL(−→s ), eiH(−→s ), uiL(−→s ), uiH(−→s ), `i(−→s ) inducing truth-telling. −→s is the vector of an-
nounced signals, xi(−→s ) is the probability firm i is selected, eij(

−→s ) is the recommended
effort if firm i is selected and it is of type βj ∈ {βL, βH}, uij(−→s ) is the ex-post utility
of firm i if selected when it is of type βj , and `i(

−→s )’s are transfers for the firms condi-
tional on their reported signals regardless of the project assignment. Note that as the
selected firm only observes its βi after being selected, the selection xi cannot depend
on β’s, but it can on the entire profile of signal announcements. Also, as only the se-
lected firm observes its βi, the recommended efforts and implemented ex-post utilities
cannot depend on the non-selected firms’ β’s, but they can depend on the entire profile
of reported signals.

The expected utility (in period 1) of a firm that is of type si but reports type ŝi while
the other firms report truthfully is

Ui(ŝi|si) = Es−i

[
`i(ŝi, s−i) + xi(ŝi, s−i)

(
siu

i
H(ŝi, s−i) + (1− si)uiL(ŝi, s−i)

)]
.

By standard arguments (as in Lemma 2.2), one can characterize incentive compatibility
in period one as an envelope and a monotonicity condition.

Lemma 5.1. Incentive compatibility in period 1 is equivalent to the following two conditions:

1. Ui(s) is absolutely continuous with

U ′i(s) = −Es−i

[
xi(si, s−i)

(
uiL(si, s−i)− uiH(si, s−i)

)]
;

2. qi(si) := Es−i

[
xi(si, s−i)

(
uiL(si, s−i)− uiH(si, s−i)

)]
is decreasing in si.

Note that when there was only one firm, the first-period incentive compatibility con-
straints required uL(s) − uH(s) to be decreasing, which conflicted with what the prin-
cipal would prefer if she directly observed the signal. When multiple firms are com-
peting for the project, the principal has an additional tool for screening: the project
assignment probability xi(−→s ).

We then redefine our benchmark second-best allocation, which must also include the
project assignment decision. In this setting, the second-best allocation is defined as the
principal’s optimal allocation (project assignment and effort recommendations) when
she can directly observe signals (s) but not types (β). That is, the allocation that solves
the principal’s problem when we drop the incentive compatibility constraint of the first
period. It is direct that the second-best allocation is given by selecting the firm with
the lowest signal and then using the Laffont and Tirole (1986) mechanism. That is,

xSBi (−→s ) =

{
1 if si < sj ∀j 6= i

0 otherwise,
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and20

ψ
′(
eSBL (−→s )

)
= 1 and

1− ψ′
(
eSBH (−→s )

)
φ′
(
eSBH (−→s )

) =
1− si
si

for all −→s ∈ [s, s]n.

We now show that if the number of competing firms is sufficiently large, the principal
can implement the second-best allocation at approximately no additional cost when
there is no ex-post participation constraint. Competition among multiple firms allows
the principal to elicit the ex-ante information almost for free. However, when there is
an ex-post participation constraint, the cost of implementing the second-best allocation
explodes to infinity as we increase the number of firms.

First, we show that when the number of competing firms is sufficiently large, there
exist transfers such that the second-best allocation can be implemented even if the
principal does not directly observe signals. We say that an allocation {xi(·), eiL(·), eiH(·)}
is implementable if there exist transfers and ex-post utilities {`i(·), uiL(·), uiH(·)} such that
jointly they satisfy incentive compatibility in both periods.

Lemma 5.2. There exists N ∈ N such that for any number of firms larger than N , the second-
best allocation is implementable.

It remains to construct the transfers that implement the second-best allocation and to
compute the principal’s payoff. We divide the analysis into two cases: first, when there
are no exit rights, that is, there is no ex-post participation constraint; second, when the
firm’s ex-post outside option is as high as the ex-ante.

5.1 Without Ex-post Participation Constraints

The goal is to implement the second-best allocation at the lowest possible cost to the
principal. When there are no exit rights, and the principal can directly observe the first-
period signal, she can set up transfers to assure incentive compatibility in the second
period while holding all firms at their ex-ante outside option value. That is, she can set
`i(
−→s ) = 0, and the payoffs of the selected firm at

ũL(si) = siφ(eSBH (si)) and ũH(si) = −(1− si)φ(eSBH (si)).

One can trivially check that incentive compatibility in the second period and partici-
pation in the first are satisfied. Hence, the principal’s cost when a firm with signal si is
selected is

π(si) = (1− si)
[
βL + ψ

(
eSBL (si)

)
− eSBL (si)

]
+ si

[
βH + ψ

(
eSBH (si)

)
− eSBH (si)

]
.

Moreover, as the principal selects the firm with the lowest signal, her ex-ante expected
cost when she directly observes signals is

Π =

∫ s

s

π(si)n[1− F (si)]
n−1f(si)dsi, (9)

20Ties have measure zero and can be broken arbitrarily.
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which converges to π(s) as n goes to infinity.

When the principal does not directly observe the signals, she must also incentivize the
firms to reveal their first-period private information. To implement the second-best al-
location, the principal must set transfers so that firms have the incentive to reveal their
signals truthfully. Naturally, it becomes costlier to the principal to elicit such informa-
tion given that she must leave information rents to lower signals. However, we show
that for a sufficiently large number of firms, the principal’s implementation cost is ap-
proximately the same as when she directly observes signals. When there is sufficient
competition (namely a large number of firms), and there is no ex-post participation
constraint, the procuring agency can elicit the ex-ante information essentially for free.

Proposition 5.1. If there is no ex-post participation constraint, the principal’s expected cost of
implementing the second-best allocation converges to π(s) as the number of firms increase.

The proof of Proposition 5.1 consists of constructing transfers `i(·) that implement the
second-best allocation. Then, we show that the expected value of such transfers con-
verges to zero when the number of firms increases.

The proposition above implies that as competition increases, the principal can elicit the
ex-ante information and implement the second-best allocation at no additional cost
when firms are locked in the relationship. However, the result relies on the absence
of an ex-post participation constraint. In the next subsection, we show that the cost
of implementing the second-best allocation explodes to infinity when the number of
firms increases and firms have sufficiently high exit rights.

5.2 With Ex-post Participation Constraints

As before, we look for the cheapest way to implement the second-best allocation. How-
ever, now the selected firm has an ex-post outside option which assures a payoff of 0.
As in the previous subsection, we start with the benchmark where the principal can
observe the firms’ signals directly. Hence, the cheapest transfers that implement the
second-best allocation when the principal observes signals are given by `i(

−→s ) = 0,
ûL(si) = φ(eSBH (si)), and ûH(si) = 0.

However, note that such a mechanism does not incentivize firms to truthfully reveal
their signals when the principal cannot observe them directly. The payoff of a firm who
reports signal ŝ, but has received signal s while the others report truthfully is given by

Ui(ŝ|s) = (1− s)φ(eSBH (ŝ))[1− F (ŝ)]n−1.

As φ(eSBH (ŝ))[1−F (ŝ)]n−1 is decreasing for sufficiently large n, the firm would have the
incentive to under-report its signal.

The principal must modify the mechanism by choosing transfers conditional on re-
ported signals (ˆ̀i(−→s )) such that to assure incentive compatibility in the first period and
ex-post participation. We show that the principal’s cost of implementing the second-
best allocation explodes when the number of firms increases.
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Proposition 5.2. Suppose the firms have an ex-post outside option of ū = 0. Then, the prin-
cipal’s expected cost of implementing the second-best allocation diverges to infinity when the
number of firms increases.

The proof consists of constructing the transfers that implement the second-best allo-
cation and showing that expected payments diverge to infinity. Absent the participa-
tion constraint, the principal can generate incentives for truthful revelation by making
firms that report better signals receive less favorable transfers in case their intrinsic
cost turns out to be high. However, when there is an ex-post participation constraint,
the principal cannot pay below a certain level. That is, the principal is limited on how
much she can punish a firm that has reported a low signal but ends up with a high
cost. Hence, firms benefit from under-reporting their signals to increase their proba-
bility of being selected. Then, if the chosen firm has a high-cost realization, it takes
its ex-post outside option. To avoid such under-reporting and implement the second-
best allocation (which requires selecting the firm with the lowest signal), the principal
must leave strictly positive rents to all other firms. In particular, she must pay firms
who are not selected to not under-report. Proposition 5.2 shows that the payments that
avoid under-reporting are bounded away from zero even when competition increases.
Hence, as the number of firms increases, the cost of such payments explodes.

6 Discussion

In this section, we briefly discuss two features in our modeling approach: the first one
regarding the principal’s commitment power and the second about the cardinality of
the type space.

6.1 Weakening Principal’s Commitment

We have assumed that the principal could fully commit to a mechanism. Regardless
if it was not sequentially optimal or renegotiation-proof. However, in many of the
results discussed, the optimal contract entails full pooling in the first period and offers
the optimal static contract conditional on the principal’s belief in the second period.
Therefore, the optimal mechanism under full commitment is renegotiation-proof, and
intra-period commitment is enough for those results.

This observation contrasts with other dynamic procurement models, which find dis-
tinct optimal contracts under full versus partial commitment. For instance, Laffont
and Tirole (1990) contrast the equilibria with commitment and renegotiation in a two-
period procurement model. However, in their setting, the production occurs in both
periods, and the agent’s type is persistent over time. Instead, we analyze a frame-
work in which production occurs only at the final period, but the information arrives
gradually.

Finally, our results of pooling of the first-period information resemble the literature on
ratchet effects, e.g., Freixas et al. (1985), Laffont and Tirole (1987b, 1988), and Gerardi
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and Maestri (2020). In such papers, the principal adjusts its offer whenever the infor-
mation is revealed at the beginning of the interaction. Then, the agent does not have
the incentive to reveal his type, which generates pooling. If the principal could commit
to a long-term contract, pooling would not always arise. However, pooling persists in
our setting even when the principal can fully commit to the mechanism. Our source of
pooling is non-responsiveness and not the lack of commitment.

6.2 Beyond Binary Types

The finding of full-pooling as optimal is novel for a sequential mechanism design
model with ex-post participation constraints and payoff curvature. It stands in sharp
contrast to the result in Krähmer and Strausz (2016), namely, that sequential screening
is optimal with multiple units for sale (i.e., nonlinear payoffs) under a cross-hazard
rate condition on the distribution of types. They argue that multiple units repre-
sent an additional screening instrument available to the principal, differently from the
indivisible-unit case, where linear payoffs lead to an optimal threshold mechanism.21

Krähmer and Strausz (2016) assume binary signals and continuous types together with
conditions over the distribution of signals and types such that screening the first-
period information is optimal. Their approach relies on finding sufficient conditions
under which the monotonicity constraints regarding incentive compatibility do not
bind. They impose conditions over the hazard rates and cross-hazard rates between
signals and types that prevent non-responsiveness from arising. Meanwhile, our paper
examines a setting in which the monotonicity constraint binds throughout the entire
support and, consequently, full-pooling of the first-period information arises. Hence,
we see our analysis as complementary to theirs. A key distinction between the two
settings is that we assume binary types and a continuum of signals while they assume
the opposite.

In Appendix B, we show that our results hold beyond the binary-type case. We ex-
tend the analysis to a setting with 2-signals and 3-types. Full-pooling remains optimal
for a large class of distributions provided a regularity condition over the cross-hazard
rates is satisfied. In a related paper but with linear payoffs, Bergemann et al. (2020)
argue that the optimality of ex-ante screening depends on how “different” forecasting
technologies are from each other, as measured by a transformation of the conditional
distributions’ cross-hazard rates. A general treatment for arbitrary signal-type distri-
butions remains an open question and is left for future work.

7 Conclusion

This paper develops a model of optimal procurement with dynamic cost information
and ex-post exit rights. The motivation for ex-post individual rationality is that pro-
curement relationships often entail limited liability to the contractor. In our model with

21 Krähmer and Strausz (2015) have shown that, under ex-post participation constraints, the optimal
selling mechanism is a threshold mechanism (posted price), which pools first-period information.
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two ex-post types, the associated optimal policy exhibits the pooling of ex-ante signals.
Hence, the procuring agency prefers to ignore self-reported cost forecasts in contract
design, as exit rights increase the burden of ex-ante information rents.

The paper also explores how optimal contracts change when the firm’s ex-post out-
side option value decreases. For high values, the optimal mechanism does not screen
the first-period signals, and the ex-ante participation constraint is slack. For moder-
ately lower values, the ex-ante participation constraint binds, but the pooling of the
first-period signals remains optimal. For sufficiently low values, the ex-post partici-
pation constraint is slack, and it is optimal to screen the first-period information if the
distribution of signals satisfies a regularity condition.

Moreover, we show that competition solves the asymmetric information problem only
when the ex-post outside option is not high enough. On the one hand, when firms have
a weak limited liability protection, the principal can leverage competition to reduce the
information rents. On the other hand, if the ex-post outside option is sufficiently high,
it becomes increasingly costly to prevent misreporting from all firms. Note, however,
that our results with multiple firms restrict attention to how costly it is to implement
the second-best allocation. A complete characterization of the optimal mechanism with
multiple firms remains an open question.
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Appendix A Omitted Proofs

Proof of Lemma 2.1. Manipulating the first equation of (IC-2s), we get:

uL(s) ≥ tH(s)− ψ(βL − CH(s)) + uH(s)− uH(s)

= uH(s) + ψ(βH − CH(s))− ψ(βL − CH(s) + βH − βH),

which results in (IC-2Ls ). Similarly,

uH(s) ≥ tL(s)− ψ(βH − CL(s)) + uL(s)− uL(s)

= uL(s) + ψ(βH − CL(s))− ψ(βL − CL(s) + βH − βH),

which results in (IC-2Hs ).

Moreover, adding up the two equations in (IC-2s) yields

ψ(βL − CH(s)) + ψ(βH − CL(s))− ψ(βH − CH(s))− ψ(βL − CL(s)) ≥ 0,

⇔
∫ CH(s)

CL(s)

∫ βH

βL

ψ′′(β − C)dβdC ≥ 0

which, together with ψ′′ > 0 and βH > βL, yield CH(s) ≥ CL(s).

Proof of Lemma 2.2. The proof is a standard argument characterizing incentive com-
patibility. We present it here for completeness.

Note that U(ŝ|s) = uL(ŝ)− s
[
uL(ŝ)− uH(ŝ)

]
. As effort is bounded by βH , we have that

|uL(ŝ) − uH(ŝ)| ≤ φ(βH). Therefore, U(ŝ|·) is φ(βH)-Lipschitz continuous and differen-
tiable in s.

If (IC-1s,ŝ) is satisfied for all s, ŝ, then, U(s) = U(s|s) = sup
ŝ
U(ŝ|s) for all s ∈ [s, s].

Then, U(s) must be absolutely continuous and by Milgrom and Segal (2002)’s Envelope
Theorem

U ′(s) =
∂U(s|s)
∂s

= −
[
uL(s)− uH(s)

]
,

which proves the necessity of the envelope condition. Now we show that together
with monotonicity, they are necessary and sufficient.

Define g(ŝ, s) := U(s)− U(ŝ|s). Note that g describes the firm’s losses from misreport-
ing its signal. Hence, a mechanism satisfies the ex-ante incentive compatibility if and
only if g is weakly positive for all s, ŝ. Note that, as U(·) and U(ŝ|·) are absolutely con-
tinuous, g(ŝ, ·) is absolutely continuous and g(ŝ, ŝ) = 0. Hence, the mechanism satisfies
ex-ante incentive compatibility if and only if

g(ŝ, s) = g(ŝ, s)− g(ŝ, ŝ)

=

∫ s

ŝ

∂g(ŝ, x)

∂s
dx

=

∫ s

ŝ

[
U ′(x)− ∂U(ŝ|x)

∂s

]
dx

=

∫ s

ŝ

{[
uL(ŝ)− uH(ŝ)

]
−
[
uL(x)− uH(x)

]}
dx ≥ 0 ∀s, ŝ,
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which holds if and only if the monotonicity constraint is satisfied.

Proof of Proposition 2.1. We start with a lemma showing that whenever (IC-2Ls ) is
slack, then eH(s) = eFB.

Lemma A.1. Take a mechanism {(ei(·), ui(·)))}i∈{L,H} that satisfies all constraints in problem
P . Suppose that there exists a positive mass set Ŝ such such that (IC-2Ls ) is slack and eH(s) 6=
eFB. Then, there exists an alternative mechanism that strictly reduces the principal’s expected
procuring cost.

Proof of Lemma A.1. Let an alternative mechanism {(êH(·), ûH(·), (êL(·), ûL(·))} be
such that ûH(·) = uH(·), ûL(·) = uL(·), êL(s) = eL(s) and

êH(s) =

{
min{eFB, φ−1(uL(s)− uH(s))} if s ∈ Ŝ
eH(s) otherwise.

Note that (IC-1s,ŝ), (IR-1), (IR-2) and (IC-2Hs ) are directly satisfied by the alternative
mechanism since we did not change uL, uH , and eL. For (IC-2Ls ), note that

φ
(
êH(s)

)
≤ min

{
φ(eFB), uL(s)− uH(s)} ≤ ûL(s)− ûH(s).

Therefore, the alternative mechanism is ex-ante and ex-post incentive compatible and
individually rational. It remains to show that it reduces the principal’s expected
procuring cost. Note that êH(s) is closer to eFB than eH(s) was (strictly so for any
s ∈ Ŝ). Hence, as ψ(e) − e is strictly convex and minimized at eFB, the alternative
mechanism is strictly cheaper than the original.

By Lemma A.1, we can restrict attention to mechanisms such that eH(s) = eFB when-
ever (IC-2Ls ) is slack. The next step is to show that (IC-2Ls ) binds almost everywhere.
Take a mechanism {(eL(·), uL(·)), (eH(·), uH(·))} that satisfies all constraints in problem
P and has (IC-2Ls ) slack for a positive mass set S̃. As [uL(s)−uH(s)] must be decreasing
and eH(s) = eFB whenever (IC-2Ls ) is slack, there exists s̃ ∈ (s, s) such that for all s < s̃

1. eH(s) = eFB and

2. [uL(s)− uH(s)] > φ(eFB),

while for all s > s̃ we have uL(s)− uH(s) = φ(eH(s)).

Note that eH(s) ≤ eFB for all s > s̃. Otherwise, the principal could decrease eH(s) for
all s > s̃ and still satisfy all constraints while strictly reducing the objective function.

Now we construct an alternative mechanism that is strictly better than
{(eL(·), uL(·)), (eH(·), uH(·))}. Let {(êL(·), ûL(·)), (êH(·), ûH(·))} be such that
êL(·) = eL(·), êH(·) = eH(·),

ûH(s) =

{
U(s̃)− (1− s̃)φ(eFB) if s ≤ s̃

uH(s) otherwise,

and

ûL(s) =

{
U(s̃) + s̃φ(eFB) if s ≤ s̃

uL(s) otherwise.
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We need to check that {(êL(·), ûL(·)), (êH(·), ûH(·))} satisfies all constraints.

Regarding (IC-1s,ŝ), note that ûL(s)− ûH(s) is decreasing, and that

Û(ŝ|s) := ûL(ŝ)− s[ûL(ŝ)− ûH(ŝ)].

Also, note that Û(s) := Û(s|s) is such that

Û(s) = Û(s̃) +

∫ s̃

s

[ûL(t)− ûH(t)]dt.

Therefore, (IC-1s,ŝ) is satisfied.

For (IR-2) note that for all s ≥ s̃ nothing has changed. For s < s̃ note that

ûH(s) = U(s̃)− (1− s̃)φ(eFB) ≥ U(s̃)− (1− s̃)[uL(s̃)− uH(s̃)] = uH(s̃) ≥ ū.

For (IR-1) note that Û(·) is decreasing and Û(s) = U(s) ≥ 0. Hence, ex-ante participa-
tion is satisfied.

For (IC-2Ls ), note that ex-post utilities for s ≥ s̃ have not changed, while for s < s̃

ûL(s)− ûH(s) = φ(eFB) = φ(êH(s)).

Finally, for (IC-2Hs ), note that ex-post utilities for s ≥ s̃ have not changed, while for
s < s̃

ûL(s)− ûH(s) = φ(eFB) ≤ uL(s)− uH(s) ≤ φ(eL(s) + ∆β) = φ(êL(s) + ∆β).

The last step is to show that costs have strictly decreased. First, note that all efforts
implemented in the new mechanism are the same as in the original. Hence, the total
surplus has not changed, and to show the principal is better off, it suffices to show that
the expected utility of the firms strictly decreases. Moreover, as nothing has changed
for types above s̃ we only need to show that the expected utility of types s < s̃ has
decreased. Note that∫ s̃

s

U(s)f(s)ds =

∫ s̃

s

[
U(s̃)−

∫ s̃

s

U ′(t)dt
]
f(s)ds

=

∫ s̃

s

[
Û(s̃) +

∫ s̃

s

[uL(t)− uH(t)]dt
]
f(s)ds

>

∫ s̃

s

[
Û(s̃) +

∫ s̃

s

φ(eFB)dt
]
f(s)ds

=

∫ s̃

s

Û(s)f(s)ds.

Proof of Lemma 4.1. Showing that the constraints are quasi-concave functions: Let
x > x′, and thus φ(x) > φ(x′). Take θ ∈ [0, 1] and suppose that φ(θx + (1 − θ)x′) <
φ(x′). The contradiction follows immediately from the assumptions ψ′, ψ′′ > 0 and the
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definition of φ(·). The result comes from the fact that any affine transformation of a
quasi-concave function is quasi-concave.

Showing non-empty interior of the feasible set: Define ê such that φ(ê) := −ū/(1−s).
Then,

eH(s) := (1− s)eFB + sê

belongs to the interior of the feasible set.

Proof of Proposition 4.1. Substituting the pooling with binding IR-1 mechanism
{ẽL, ẽH} defined in (7) in the FOC equations, the equation for eL(s) becomes immedi-
ately satisfied (first-best). In turn, all terms φ′(ẽH) cancel out in the equations for eH(s),
so they become:

for s ∈ [s, s̃] :

f(s)s

[
1− s
s
− 1− s̃

s̃

]
− γ(s)(1− s) =

∫ s

s̃

λ(s, b)(1− s)db
(10a)

for s ∈ [s̃, s] :

f(s)s

[
1− s̃
s̃
− 1− s

s

]
+ γ(s)(1− s) =

∫ s̃

s

λ(a, s)(1− a)da.
(10b)

We now define functions γ̃ and λ̃ such that the first-order conditions are satisfied. First,
define γ̃(s) = 0 for s ∈ [s, s̃], and

γ̃(s) =
2s∗

(s− s̃)2

[
1− s∗

s∗
− 1− s̃

s̃

]
s− s̃
1− s

if s ∈ (s̃, s].

As s∗ ≤ s̃, we have that γ̃(s) ≥ 0 for all s ∈ [s, s]. Second, define α̃ : [s, s̃] → R+ and
β̃ : [s̃, s]→ R+ as

α̃(a) = f(a)a

[
1− a
a
− 1− s̃

s̃

]
− γ̃(a)(1− a)

and

β̃(b) = f(b)b

[
1− s̃
s̃
− 1− b

b

]
+ γ̃(b)(1− b).

Note that α̃(a) ≥ 0 and β̃(b) ≥ 0 for all (a, b) ∈ [s, s̃]× [s̃, s]. Moreover,∫ s̃

s

α̃(a)da−
∫ s

s̃

β̃(b)db = s∗

[
1− s∗

s∗
− 1− s̃

s̃

]
−
∫ s

s

γ̃(s)(1− s)ds = 0.

Then, define the Lagrange multipliers as

λ̃(a, b) =
β̃(b)α̃(a)

(1− a)
∫ s
s̃
β̃(z)dz

≥ 0.

We, then, have the first-order conditions (10) satisfied.
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Proof of Proposition 4.2. Reorganize L̃ to obtain:

L̃ = L+

∫ s̃

s

uH(s)

[
f(s)−

∫ s

s̃

λ(s, b)db− γ∗(s)− µ(s)

]
ds

+

∫ s

s̃

uH(s)

[
f(s) +

∫ s̃

s

λ(a, s)da− γ̃(s)− µ(s)

]
ds+ ū

[
1 +

∫ s

s

µ(s)ds
]
.

Note that, for given multipliers, the minimizer of L̃ coincides with the minimizer of L
if we define:

µ̃(s) =

f(s)−
∫ s
s̃
λ̃(s, b)db− γ̃(s) if s ∈ [s, s̃]

f(s) +
∫ s̃
s
λ̃(a, s)da− γ̃(s) if s ∈ [s̃, s].

It remains to show when the proposed multiplier µ̃(·) is positive for all s ∈ [s, s]. Note
that, for s < s̃:

µ̃(s) = f(s)−
∫ s

s̃

λ̃(s, b)db = f(s)
s(1− s̃)
s̃(1− s)

≥ 0.

For s > s̃:

µ̃(s) = f(s) +

∫ s̃

s

λ̃(a, s)da− γ̃(s),

which might be negative if γ̃(s) is large enough. Note, however, that if ū = ū1, then
s̃ = s∗, and γ̃(s) = 0 for all s ∈ [s, s]. Hence, µ̃(s) ≥ inf{f(s) : s ∈ [s, s]} > 0. Moreover,
for each s, µ̃(s) varies continuously with ū, which implies that there exists ū2 < ū1 such
that for all ū ∈ [ū2, ū1] we have µ̃(s) ≥ 0 for all s ∈ [s, s].

Proof of Proposition 4.3.

Integrating by parts, we can re-write P1 as

min
(eL(s),eH(s))

∫ s

s

{
(1− s)

[
ψ(eL(s))− eL(s)

]
+ s
[
ψ(eH(s))− eH(s)

]
+ φ(eH(s))

F (s)

f(s)

}
f(s)ds

subject to
eH(s) decreasing.

Then, we relax the monotonicity constraint and minimize pointwise.

ψ
′(
êL(s)

)
= 1 and

1− ψ′
(
êH(s)

)
φ′
(
êH(s)

) =
F (s)

sf(s)
for all s ∈ [s, s].

As F (s)/sf(s) is increasing, we have that êH(s) is decreasing, and we found the solu-
tion.
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Proof of Lemma 5.2. An allocation is implementable if and only if its associated qi(si)
is decreasing in si, and uiL(si, s−i) − uiH(si, s−i) ≥ φ(eH(si)). Hence, an allocation is
implementable if and only if

q̂i(si) := Es−i

[
xi(si, s−i)φ(eH(si))

]
is decreasing in si.

By the definition of the second-best allocation, we get

q̂i(si) = φ(eSBH (si))[1− F (si)]
n−1.

Taking the derivative with respect to si we get

q̂′i(si) = (1− F (si))
n−2

[
− (n− 1)f(si)φ(eSBH (si)) + (1− F (si))φ

′(eSBH (si))
deSBH (si)

dsi

]
,

which is negative if and only if the square brackets term is negative. Note that if the
derivative of ēH(si) is bounded, then the term inside the square brackets is negative for
a sufficiently high n. By the definition of eSBH (si)

deSBH (si)

dsi
=

φ′(eSBH (si))

s2
iψ
′′(eSBH (si)) + si(1− si)φ′′(eSBH (si))

≤ φ′(eSBH (s))

s2ψ′′(eSBH (s)) + s(1− s)φ′′(eSBH (s))
.

Hence, for n sufficiently large, q̂′i(si) ≤ 0 for all si ∈ [s, s].

Proof of Proposition 5.1. For each number of firms n, we define a mechanism that
implements the second-best allocation so that the expected principal’s cost converges
in probability to π(s). For each n ∈ N, let the project assignment and recommended
efforts be the second-best allocation. Moreover, let the uH and uL be given by ũH and
ũL. It remains to construct transfers ` that assure first-period incentive compatibility
and ex-ante participation.

By Lemma 5.2 we know that for large enough n, the second-best allocation satisfies the
monotonicity requirement for incentive compatibility. For the envelope condition to
hold, it must be that

Ũi(si) = Es−i

[
˜̀
i(ŝi, s−i) + xSBi (ŝi, s−i)

(
siũ

i
H(ŝi, s−i) + (1− si)ũiL(ŝi, s−i)

)]
= Ũi(s) +

∫ s

si

φ(eSBH (s))[1− F (s)]n−1ds.

By letting Ũ(s) = 0, we can write

˜̀
i(
−→s ) =

∫ s

si

φ(eSBH (s))[1− F (s)]n−1ds. (11)

By construction, the new mechanism satisfies incentive compatibility in both periods
and assures ex-ante participation since Ũi(s) = 0 and Ũ ′i(si) ≤ 0. It remains to show
that the principal’s expected cost (denoted by Π̃) converges in probability to π(s) as n
goes to infinity.
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Note that this mechanism is the same as the case in which the principal observes the
first-period signal but with the addition of the transfers ˜̀

i’s. Hence,

Π̃− Π =
n∑
i=1

Esi [˜̀i(si)]

=n

∫ s

s

∫ s

si

φ(eSBH (s))[1− F (s)]n−1dsf(si)dsi

=

∫ s

s

F (s)

f(s)
φ(eSBH (s))n[1− F (s)]n−1f(s)ds.

(12)

Note that n[1 − F (s)]n−1f(s) is the density of the minimum of n independent random
variables distributed according to F , which converges in probability to s. Therefore,
Π̃− Π converges to φ(eSBH (s))F (s)/f(s) = 0. As Π converges to π(s), so it does Π̃.

Proof of Proposition 5.2. The mechanism that implements the second-best allocation
in the cheapest possible way minimizes expected transfers subject to ex-ante and ex-
post participation, and incentive compatibility for truthful reporting in both periods.

When ū = 0 ex-post participation directly implies on ex-ante participation. More-
over, ex-post participation requires the payoffs of all firms to be ex-post weakly posi-
tive. Note that such requirement imposes that transfers to non-selected firms must be
weakly positive (`i(−→s ) ≥ 0), and that the ex-post utility of a selected firm who has a
high type must also be positive. That is, ex-post participation is given by

`i(
−→s ) ≥ 0 and [`i(

−→s ) + uH(−→s )] ≥ 0 for all −→s , i. (IR− 2)

After being selected, the firm’s incentives to report its type remains as before. That is,
ex-post incentive compatibility is given by

uiL(−→s )− uiH(−→s ) ≥ φ(eSBH (−→s )) for all −→s , i. (IC − 2)

The ex-ante incentive compatibility is characterized by Lemma 5.1 as an envelope and
a monotonicity condition. Finally, given the second-best allocation rule, the principal’s
expected transfers are given by

n∑
i=1

E−→s

[
`i(
−→s ) + xSBi (−→s )

[
(1− si)[βL − eSBL (−→s ) + ψ(eSBL (−→s ))

+ uL(−→s )] + si[βH − eSBH (−→s ) + ψ(eSBH (−→s )) + uH(−→s )]
]] (13)

where the sum of `i’s denote the payments unconditional on project assignment and
the term multiplied by xSBi (−→s ) denotes the payments to the selected firm22.

Given that we fixed the allocation as the second-best, the only choices are the trans-
fers unconditional to project assignment (`i’s) and ex-post utilities (uiL and uiH). Then,

22The transfers to the selected firm are written as a function of recommended efforts and ex-post
utilities as done in previous sections.
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finding the cheapest way possible to implement the second-best requires minimizing
(13) subject to (IR − 2), (IC − 2), (envelope) and (monotonicity). That is, the cheapest
implementation of the second-best allocation can be found by solving

min
{uiL(·),uiH(·),`i(·)}

n∑
i=1

E−→s

[
`i(
−→s ) + xSBi (−→s )

[
(1− si)[βL − eSBL (−→s ) + ψ(eSBL (−→s ))

+ uL(−→s )] + si[βH − eSBH (−→s ) + ψ(eSBH (−→s )) + uH(−→s )]
]]

subject to
uiL(−→s )− uiH(−→s ) ≥ φ(eSBH (−→s )) for all −→s , i (IC − 2)

`i(
−→s ) ≥ 0 and [`i(

−→s ) + uH(−→s )] ≥ 0 for all −→s , i (IR− 2)

qi(si) = Es−i
[xSBi (si, s−i)(u

i
L(si, s−i)− uiH(si, s−i))] decreasing, (monotonicity)

Ui(si) = U(si) +

∫ s

si

Es−i
[xSBi (z, s−i)(u

i
L(z, s−i)−uiH(z, s−i))]dz for all −→s , i, (envelope)

where

Ui(si) := Es−i

[
`i(si, s−i) + xSBi (si, s−i)(siu

i
H(si, s−i) + (1− si)uiL(si, s−i)] for all i, si.

We proceed with two auxiliary lemmas that simplify the problem.

Lemma A.2. There is no loss in setting uiH(−→s ) = 0 for all i,−→s .

Proof. Take any vector of triples (uiL(·), uiH(·), `i(·)) that satisfy all four constraints.
Define an alternative mechanism in which

ũiH(−→s ) := 0, ũiL(−→s ) := uiL(−→s )− uiH(−→s ) and ˜̀
i(
−→s ) = `i(

−→s ) + xSBi (−→s )(1− si)uiH(−→s ).

By construction, the objective function has stayed the same. Also, as ũiL(−→s )− ũiH(−→s ) =
uiL(−→s ) − uiH(−→s ) the first two constraints are trivially satisfied. Finally, note that by
definition ˜̀

i(
−→s ) ≥ 0. Hence, all constraints were satisfied, and the objective function

was unchanged.

Lemma A.3. It is optimal to set uiL(−→s ) = φ(eSBH (−→s )) for all i,−→s .

Proof. If (IC − 2) is slack for any pair (−→s , i), then the principal can reduce uiL(−→s ) and
save on information rents.

It only remains to solve for the optimal report-conditional transfers (`’s) that assure
incentive compatibility in the first-period and ex-post participation.

First-period incentive compatibility is assured by monotonicity (which is satisfied un-
der the second-best allocation and uiL(−→s ) − uih(

−→s ) = φ(eSBH (−→s ), and an envelope con-
dition, as described in Lemma 5.1. Ex-post participation holds if and only if ˆ̀

i(
−→s ) ≥ 0
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for all vectors of reports. As the best allocation is given to the lowest type s, the best is
to set it to the lowest value consistent with ex-post participation, which is 0. Then, us-
ing the envelope characterization of incentive compatibility, we can write the transfers
of the cheapest mechanism to implement the second-best allocation as

Es−i

[
ˆ̀
i(si, s−i)

]
=Ui(si)− Es−i

[
xSBi (−→s )[(1− si)uiL(−→s ) + siu

i
H(−→s )]

]
=Ui(s) +

∫ si

s

U ′i(z)dz − [1− F (si)]
n−1φ(eSBH (si))(1− si)

=
{[
φ(eSBH (s))(1− s)− [1− F (si)]

n−1φ(eSBH (si))(1− si)
]

−
∫ si

s

φ(eSBH (z))[1− F (z)]n−1dz
}
.

Where the first equality comes from the definition of Ui, the second from replacing
xSBi , uiL, uiH , and (envelope). The third comes from integration by parts and setting
ˆ̀
i(s, s−i) = 0.

Note that only the expectation of ˆ̀
i(si, s−i)] with respect to s−i matters for incentive

compatibility. Hence, there is no loss in setting `i to depend only on si. With a slight
abuse of notation, we write the report-conditional transfers simply as ˆ̀(si). By con-
struction, such a mechanism satisfies incentive compatibility in the first and the sec-
ond periods; it remains to verify that ˆ̀(si) ≥ 0 for all si ∈ [s, s]. Note that ˆ̀(s) = 0.
Moreover, for sufficiently high n

ˆ̀′(si) = −(1− si)
d[1− F (si)]

n−1φ(eSBH (si))

dsi
≥ 0.

Hence, for sufficiently high n, the mechanism described here satisfies the ex-post par-
ticipation constraint. We now show that its cost diverges to infinity as we increase the
number of firms.

Note that the total expected report-conditional transfers paid by the principal is

n

∫ s

s

ˆ̀(si)f(si)dsi =

nφ(eSBH (s))(1− s)−
∫ s

s

φ(eSBH (z)
[1− F (z)]

f(z)
nf(z)[1− F (z)]n−1dz.

Note that lim
n→∞
{nφ(eSBH (s))(1− s)} = +∞, while

lim
n→∞

∫ s

s

φ(eSBH (z))
[1− F (z)]

f(z)
nf(z)[1− F (z)]n−1dz = φ(eSBH (s))

[1− F (s)]

f(s)
< +∞.

Therefore, the cost of implementing the second-best allocation diverges to infinity as
we increase the number of firms.

The constructive approach

This subsection presents an alternative proof for Theorem 3.1. It takes a constructive
approach similar to the one taken for ū < 0 in the main text. This alternative proof gen-
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eralizes the result beyond a continuum of first-period signals, allowing us to accom-
modate any distribution with or without atoms. We kept the non-responsiveness ap-
proach in the body of the text as it is the approach that conveys intuition more clearly,
despite losing generality.

Let q : S → (0, 1) be a right-continuous and weakly increasing function that denotes
the probability of being a high-cost type conditional on having received signal s. That
is, Pr(β = βH |s) = qs. Note that in our original formulation qs = s. By introducing
the function q : S → (0, 1), which can be constant on sub-intervals of S, we allow for
atoms in the ex-ante probability of being a high-cost firm23.

The constructive approach addresses the design problem with a guess-and-verify al-
gorithm: we first guess that the pooling mechanism is an optimal solution to problem P .
Then, we construct Lagrange multipliers that sustain such a mechanism as a solution
to the procuring agency’s problem.

Notice the pooling mechanism described in (2) satisfies all (IC-1s,ŝ) constraints with
equality. Also, it immediately follows that it satisfies (IC-2Ls ) and (IC-2Hs ). Hence, it
suffices to focus on ex-post participation constraints (IRs) and optimality conditions.
Our solution algorithm proceeds according to the following steps:

1. State a relaxed version of the principal’s problem, denoted by R, which exoge-
nously sets ex-post profits uH(s) to zero;

2. Guess-and-verify the set of active (IC-1s,ŝ) constraints at the pooling solution.
Define a further relaxed problem that ignores the remaining inactive constraints,
denoted byR0;

3. Construct problem R0’s Lagrangian and present a Karush-Kuhn-Tucker argu-
ment to the solution taking the form of the pooling mechanism (2); and

4. Extend the Lagrangian to include the ex-post IR constraints and find multipliers
that sustain the pooling mechanism (2) and u∗H(s) = 0 as an optimal solution.

Step 1. First, we fix uH(s) = 0. Then, the modified principal’s design problem becomes:

R : min
{eL(·),eH(·)}

∫ s

s

{(1− qs) [βL − eL(s) + ψ(eL(s)) + φ(eH(s))]

+qs [βH − eH(s) + ψ(eH(s))]} f(s)ds

s.t. (1− qs) [φ(eH(s))− φ(eH(ŝ))] ≥ 0, ∀ŝ, s.

Step 2. We then relax problem R by restricting the set of first-period incentive con-
straints to pairs of signals in which a firm with a below-average signal (“good type”)
does not envy the allocation assigned to an above-average signal (“bad type”). If the
pooling mechanism (2) solves this relaxed problem, then it also solves the problem R,
as it trivially satisfies all neglected (IC-1s,ŝ) constraints.24

23Note that any atom in the ex-ante probability of being a high-cost firm can be represented by qs
being constant in a given sub-interval.

24 This approach was first proposed by Krähmer and Strausz (2015).
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Definition. Define IC∗ as the set of incentive constraints in which a firm with a below-
average probability of having a high cost (“good type”) does not envy the allocation
assigned to an above-average probability of having a high cost (“bad type”). That is,
let q∗ =

∫ s
s
qsf(s)ds, and s∗ := inf{s ∈ S : qs ≥ q∗}, then define

IC∗ = {IC-1s,ŝ : (1− s) > (1− s∗) > (1− ŝ)}

Remark 2. If the pooling mechanism
{(
ēH , ū

)
,
(
ēL, φ(ēH)

)}
, as defined in (2), solves

problemR restricted to IC∗, then it solves the global problemR.

Hence, it suffices to show that the pooling mechanism is a solution to the following
version of the relaxed problem:

R0 : min
{eL(·),eH(·)}

∫ s

s

{(1− qs) [βL − eL(s) + ψ(eL(s)) + φ(eH(s))]

+qs [βH − eH(s) + ψ(eH(s))]} f(s)ds

s.t. (1− qa) [φ(eH(a))− φ(eH(b))] ≥ 0, ∀a < s∗ < b.

Step 3. Note that the Karush-Kuhn-Tucker theorem for function spaces (Luenberger,
1997, p. 220) applies to concave optimization problems (i.e., convex objectives and fea-
sibility sets for minimization problems). However, the constraints (IC-1s,ŝ) in problem
R0 are differences of convex functions φ(·) and are not necessarily convex. Lemma 4.1
establishes that the optimization problem R0 satisfies the Karush-Kuhn-Tucker theo-
rem conditions.

By the quasi-concave version of the Karush-Kuhn-Tucker theorem (Arrow and En-
thoven, 1961, Theorem 1), a pair {eL(s), eH(s)} is a solution to problem R if there exist
positive multipliers λ : [s, s∗]× [s∗, s]2 → R+ so that {eL(s), eH(s)} minimizes the La-
grangian:

L =

∫ s

s

{(1− qs) [βL − eL(s) + ψ(eL(s)) + φ(eH(s))] + qs [βH − eH(s) + ψ(eH(s))]} f(s)ds

−
∫ s∗

s

∫ s

s∗
λ(a, b)(1− qa) [φ(eH(a))− φ(eH(b))] dbda.

The minimizer of Lmust satisfy the following pointwise first-order conditions (FOC):

[eL(s)] : f(s)(1− qs) (−1 + ψ′(eL(s))) = 0

[eH(s)] :



f(s)qs (−1 + ψ′(eH(s))) + f(s)(1− qs)φ′(eH(s))−
∫ s

s∗
λ(s, b)(1− qs)φ′(eH(s))db = 0

if s ∈ [s, s∗]

f(s)qs (−1 + ψ′(eH(s))) + f(s)(1− qs)φ′(eH(s)) +

∫ s∗

s

λ(a, s)(1− qa)φ′(eH(s))da = 0

if s ∈ [s∗, s] .
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The following result establishes the existence of multipliers λ(a, b) ≥ 0 satisfying the
preceding FOC system. Therefore, by Remark 2, the pooling mechanism also solves
problemR.

Proposition A.1. There exists a function λ∗ : [s, s∗]× [s∗, s] → R+ such that the pooling
allocation {ēL, ēH} is an optimal solution to problemR0, with multipliers given by λ∗(s, ŝ).

Proof of Proposition A.1. Substituting the pooling mechanism {ēL, ēH} defined in (2)
in the FOC equations, the equation for eL(s) becomes immediately satisfied (first-best).
In turn, all terms φ′(ēH) cancel out in the equations for eH(s), so they become:

for s ∈ [s, s∗] :

f(s)qs

[
1− qs
qs
− 1− q∗

q∗

]
=

∫ s

s∗
λ(s, b)(1− s)db

(14a)

for s ∈ [s∗, s] :

f(s)qs

[
1− q∗

q∗
− 1− qs

qs

]
=

∫ s∗

s

λ(a, s)(1− qa)da.
(14b)

Let the left-hand side of equations (14a) and (14b) be defined as r(s) and r(s), respec-
tively. Reorganizing the expressions, one obtains

r(s) =
f(s)

q∗
(q∗ − qs) > 0, ∀s < s∗

r(s) =
f(s)

q∗
(qs − q∗) > 0, ∀s > s∗

Notice the terms
∫ s
s∗
r(b)db and

∫ s∗
s
r(a)da are equal, and denote them by r∗. Defining

the Lagrange multipliers as

λ(a, b) =
r(b)r(a)

(1− a)r∗
≥ 0

we have first-order conditions (14) satisfied.

Step 4. The last step is to consider the Lagrangian that explicitly incorporates the ex-
post participation constraints (IR-2):

L∗ =

∫ s

s

{
(1− qs) [βL − eL(s) + ψ(eL(s)) + φ(eH(s))]

+ qs [βH − eH(s) + ψ(eH(s)) + uH(s)]
}
f(s)ds

−
∫ s∗

s

∫ s

s∗
λ(a, b) {(1− qa) [φ(eH(a))− φ(eH(b))] + uH(a)− uH(b)} dbda

−
∫ s

s

µ(s)uH(s)ds.
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By the same argument in Arrow and Enthoven (1961), if there exist positive multipliers
λ(a, b) ≥ 0 and µ(s) ≥ 0 such that Lagrangian L∗ is minimized at {ēL, ēH} and u∗H(s) =
0, ∀s, then the pooling mechanism is a solution to problem P . Theorem A.1 establishes
the existence of such multipliers.

Theorem A.1. There exist functions λ∗ : [s, s∗]× [s∗, s]→ R+ and µ∗ : [s, s]→ R+ such that
the pooling allocation {ēL, ēH} and the ex-post profit level u∗H = 0 are a solution to problem P ,
with multipliers given by λ∗(s, ŝ) and µ∗(s).

Therefore, the pooling mechanism is optimal. In other words, the principal does not
charge different franchise fees to different signals, offering the same ex-post menu of
incentive contracts irrespective of the firm’s cost forecast. This result stands in contrast
to the optimal policy without an ex-post participation constraint, where the regulator
achieves an improved rent-efficiency trade-off from screening ex-ante signals.

Proof of Theorem A.1. Reorganize L∗ to obtain:

L∗ = L+

∫ s∗

s

uH(s)

[
f(s)−

∫ s

s∗
λ(s, b)db− µ(s)

]
ds.

+

∫ s

s∗
uH(s)

[
f(s) +

∫ s∗

s

λ(a, s)da− µ(s)

]
ds.

Note that L∗ coincides with L if we define:

µ∗(s) =

f(s)−
∫ s
s∗
λ∗(s, b)db if s ∈ [s, s∗]

f(s) +
∫ s∗
s
λ∗(a, s)da if s ∈ [s∗, s]

To see that the proposed multiplier µ∗(·) is always positive, note that, for s < s∗:

µ∗(s) = f(s)−
∫ s

s∗

r(b)r(s)

(1− qs)r∗
db =

f(s)

q∗

[
q∗ − q∗ − qs

1− qs

]
= f(s)

qs(1− q∗)
q∗(1− qs)

≥ 0.

Moreover, for s > s∗:

µ∗(s) = f(s) +

∫ s∗

s

λ∗(a, s)da ≥ 0.
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Appendix B Beyond binary types

This appendix extends the discussion presented in Section 3. We present a simple
version of the model, featuring 2 signals and 3 ex-post types, illustrating that pooling
might persist beyind the binary types case.

2 signals and 3 ex-post types

The case of 2 × 2-dimensional type-space is a special case of the model presented in
Section 2, so it results in optimal signal-pooling regardless of the information structure.
Now, consider the case of 2 signals si, i ∈ {L,H} and a 3 project types β ∈ {β0, β1, β2}.
Assume Pr(si) = νi, Pr(βk|i) = qi,k and β2 − β1 = β1 − β0 = ∆β.

Let ei,k denote the level of cost-reducing effort recommended to a firm who reports
signal si and project type βk, and φ(e) ≡ ψ(e) − ψ(e − ∆β) as in Section 2. In the
discrete case, the (binding) ex-post individual rationality constraints are given by:

ui(β0) = φ(ei,1) + φ(ei,0)

ui(β1) = φ(ei,0)

ui(β2) = 0, i = L,H.

Plugging into the ex-ante individual rationality constraint for signal i, it obtains:∑
k

qi,k [ui(βk)− uj(βk)] ≥ 0, j 6= i

⇔ qi,0 [φ(ei,1)− φ(ei,1)] + (qi,0 + qi,1) [φ(ei,2)− φ(ei,2)] ≥ 0. (ICi,j)

Denote the unconditional β-distribution as q̄k = νLqL,k +νHqH,k, and the pooling mech-
anism as ū(β2) = 0 and ēk, k ∈ {0, 1, 2}, such that:

ψ′(ē0) = 1

ψ′(ē1) = 1− q̄0

q̄1

φ′(e1,k)

ψ′(ē2) = 1− q̄0 + q̄1

q̄2

φ′(e2,k).

(15)

Note the pooling mechanism in (15) satisfies monotonicity constraints ēk − ēk−1 ≤ ∆β,
for k = 1, 2, under the conventional monotone hazard rate assumption:25

q̄0

q̄1

≤ q̄0 + q̄1

q̄2

.

25 This is the discrete version of d [G(β)/g(β)] /dβ ≥ 0, required for the monotonicity of optimal
mechanisms with more than two types (see Laffont and Tirole, 1993, section 1.4).
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The problem’s Lagrangian under ex-post participation constraints becomes as follows:

L∗ =
∑

i∈{L,H}

νi

 ∑
k∈{0,1,2}

qi,k [βk − ei,k + ψ(ei,k)] + qi,0φ(ei,1) + (qi,0 + qi,1)φ(ei,2)


− νLλLH {qL,0 [φ(eL,1)− φ(eH,1)] + (qL,0 + qL,1) [φ(eL,2)− φ(eH,2)]}

− νHλHL {qH,0 [φ(eH,1)− φ(eL,1)] + (qH,0 + qH,1) [φ(eH,2)− φ(eL,2)]}

+ νLuL(β2) [1− λLH + λHL − µL] + νHuH(β2) [1− λHL + λLH − µH ]

with associated first-order conditions, for i ∈ {L,H}:

qi,0 [1− ψ′(ei,0)] = 0 (16)

qi,1 [1− ψ′(ei,1)] + qi,0φ
′(ei,1)− λijqi,1φ′(ei,1) + λjiqj,1φ

′(ei,1) = 0 (17)

qi,2 [1− ψ′(ei,2)] + (qi,0 + qi,1)φ′(ei,2)− λij(qi,0 + qi,1)φ′(ei,2) + λji(qj,0 + qj,1)φ′(ei,2) = 0
(18)

ui(β2) [1− λij + λji − µi] ≥ 0. (19)

Notice from summing (19) for i ∈ {L,H} that there exist µL, µH ≥ 0 that support active
ex-post participation constraints if, and only if

λLH , λHL ∈ (0, 1) .

Moreover, the pooling mechanism (15) always satisfies the FOC (16), as it recommends
first-best effort to the least expensive project type. Evaluating (17) and (18) at the pool-
ing allocations ē1 and ē2, and canceling out the φ′(.) terms, it obtains, for i ∈ {L,H}:

qi,0
qi,1

λij −
qj,0
qi,1

λji =
qi,0
qi,1
− q̄0

q̄1

qi,0 + qi,1
qi,2

λij −
qj,0 + qj,1

qi,2
λji =

qi,0 + qi,1
qi,2

− q̄0 + q̄1

q̄2

.

We may restrict attention to the previous system for i = L, as there are only two linearly
independent equations. Denote the hazard rates h̄(βk) =

∑k−1
l=0 q̄l/q̄k and hi,j(βk) =∑k−1

l=0 qj,l/qi,k, with hi(β) ≡ hi,i(β).26 Stating the FOC system in matrix form, we get:[
hL(β1) −hL,H(β1)

hL(β2) −hL,H(β2)

]
·

[
λLH

λHL

]
=

[
hL(β1)− h̄(β1)

hL(β2)− h̄(β2)

]

Operating the linear system above using Cramer’s rule, one may check that

hL(β2)

hL(β1)
≥ h̄(β2)

h̄(β1)
≥ hL,H(β2)

hL,H(β1)
(20)

is a sufficient condition for the solution λ∗LH , λ
∗
LH ∈ (0, 1). Therefore, if the informa-

tion structure satisfies (20), the pooling mechanism (15) is an optimal solution to the
principal’s design problem under exit rights.27

26 The term hi,j(.) corresponds to Krähmer and Strausz (2015)’s definition of “cross-hazard rate”.
27 We conjecture (20) is also necessary for the optimality of pooling.
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