Posted Compensation Inequality

Xuanli Zhu Keio University

August 31, 2023

Roadmap

Introduction

Data

Empirical Facts

Discussion

A Simple Theory

Conclusion

A Vignette

A Vignette

\rightarrow Compensating Differential?

Research Questions

Empirical:

- 1. What consists non-wage compensations in today's labor market?
- 2. Do firms distinguish in their provision of amenities/disamenities? How?
- 3. What are their impact on wage disparity?

Research Questions

Empirical:

- 1. What consists non-wage compensations in today's labor market?
- 2. Do firms distinguish in their provision of amenities/disamenities? How?
- 3. What are their impact on wage disparity?

Theoretical:

- 1. Do observed firms' provision patterns consisting with existing theories?
- 2. Why empirical tests of compensating differential often fail?
- 3. What are general implications of non-wage compensations on labor market?

What This Paper Does

- 1. Investigate the provision patterns & wage effects of non-wage compensation (both pecuniary & nonpecuniary) by using job ads/vacancy data
 - Difficult to observe in census/survey data
 - Extract info from job texts using (basic) ML methods
 - Find stylized patterns in the data
 - Discuss the inconsistency between findings and existing theories

What This Paper Does

- 1. Investigate the provision patterns & wage effects of non-wage compensation (both pecuniary & nonpecuniary) by using job ads/vacancy data
 - Difficult to observe in census/survey data
 - Extract info from job texts using (basic) ML methods
 - Find stylized patterns in the data
 - Discuss the inconsistency between findings and existing theories
- 2. Construct a new & simple theory to rationalize our empirical findings
 - Extend the idea of compensating differential with a new force
 - Reconcile our empirical findings and offer important implications

Preview of Empirical Findings

- 1. Firms use common non-wage compensations to attract job seekers:
 - insurance; work-time; additional pay; environment; other fringe benefits
- 2. Non-wage compensations can predict posted wages, but mainly through their correlations with job/firm qualities
- 3. Diff firms in diff jobs have distinct compensation-provision patterns
 - High-wage firms w/ high-skill jobs: general better except leisure
 - Low-wage firms w/ low-skill jobs: general worse except leisure
- 4. Hedonic regression shows mixed results of compensating differential
 - Yes in low-wage firms; No in high-wage firms

Preview of Empirical Findings

- 1. Firms use common non-wage compensations to attract job seekers:
 - insurance; work-time; additional pay; environment; other fringe benefits
- 2. Non-wage compensations can predict posted wages, but mainly through their correlations with job/firm qualities
- 3. Diff firms in diff jobs have distinct compensation-provision patterns
 - High-wage firms w/ high-skill jobs: general better except leisure
 - Low-wage firms w/ low-skill jobs: general worse except leisure
- 4. Hedonic regression shows mixed results of compensating differential
 - Yes in low-wage firms; No in high-wage firms
- ightarrow These findings are inconsistent with the views of existing theories

Preview of Theoretical Model

- We suggest a new theory that extends Compensating Differential with "Efficiency Compensation" and productivity-based firm-worker Sorting
- Key idea:
 - 1. Many compensations observed in data are (in)efficiency compensation
 - 2. The level of efficiency depends on firm & worker productivity
- Mechanism: A new channel works in addition to compensating differential
 - 1. When a compensation is efficient, it counteracts compensating differential effect
 - 2. When a compensation is inefficient, it magnifies compensating differential effect
 - 3. Extent of this (in)efficiency channel depends on firm-worker productivity sorting

Preview of Theoretical Model

- We suggest a new theory that extends Compensating Differential with "Efficiency Compensation" and productivity-based firm-worker Sorting
- Key idea:
 - 1. Many compensations observed in data are (in)efficiency compensation
 - 2. The level of efficiency depends on firm & worker productivity
- Mechanism: A new channel works in addition to compensating differential
 - 1. When a compensation is efficient, it counteracts compensating differential effect
 - 2. When a compensation is inefficient, it magnifies compensating differential effect
 - 3. Extent of this (in)efficiency channel depends on firm-worker productivity sorting
- $\rightarrow\,$ This simple modification reconciles all findings and generates many important general implications

Related Literature

- 1. Literature on Compensating Differential:
 - Classic: Rosen (1974); Brown (1980); Rosen (1986); Hwang et al. (1992)
 - Recent: Mas and Pallais (2017); Maestas et al. (2018); Wissmann (2022) / Sorkin (2018); Taber and Vejlin (2020); Lamadon et al. (2022)
 - \rightarrow New insights & New theory that reconciles existed empirical failures
- 2. Literature on Compensation Provision:
 - Theory: Rosen (1974, 1986); Hwang et al. (1998); Hamermesh (1999); Mortensen (2005); Dey and Flinn (2005); Bonhomme and Jolivet (2009)
 - Empirical: Sockin (2022); Lachowska et al. (2022); Bana et al. (2022); Lamadon et al. (2022)

 \rightarrow New evidences & New theory that explains those new evidences

- 3. Literature on Efficiency Wage:
 - Salop and Salop (1976); Shapiro and Stiglitz (1984); Katz (1986); Krueger and Summers (1988); Bloesch et al. (2021)

 \rightarrow Apply the insights to a more suitable place: "Efficiency Compensation"

Roadmap

Introduction

Data

Empirical Facts

Discussion

A Simple Theory

Conclusion

Data Source

Lagou.com: the largest IT-centered online job board in China

- Over 6 million job vacancies between 2013 and 2020 vacancy trend
- Mainly jobs in the occupations demanded by IT-producing/using firms and are (routine or non-rountine) cognitive: Computer, Design & Media, Business Operation, Financial & Law, Sales, Admin roccupation classification
- Like other vacancy data, biased to young/low-experienced & high education workers/jobs in large cities
 summary statistics
- Vacancy information: job name, posted wage, location, requirements on education and experience, job task&skill description, job benefits, firm name, ... vacancy sample
- Final Sample after cleaning: 4 million job vacancies <a>sample cleaning

Posted Compensation/Amenity Information

- Pros:
 - 1. Hard to observe in census or survey data
 - 2. Compensations or amenities that firms regard as important to attract workers
 - 3. Also observe detailed job information

- Cons:

- 1. Not a full list of the compensations that a firm offer
- 2. Mainly amenities, rare disamenities (strategic hiding?)
- 3. Maybe cheap talk?
- Our empirical results will be mainly descriptive & exploratory
 - No priori, let the data speak
 - Find stylized facts of patterns & correlations in the data
 - Shed new insights in thinking theories

Unstructured Text Data

- V: full vocabulary set with 110,000+ tokens/features (i.e. words or terms)
- $V_{\text{comp}} \subset V$: compensation vocabulary set with 13,000+ features
 - Not all uniques: synonyms, different versions, typos
 - Common words or stop words
 - Irrelevant texts
- $\mathbf{C}_{comp} \in \mathbb{R}^{N \times |V_{comp}|}$: an indicator matrix to run regression
- So, high-dimensional data \rightarrow (basic) Machine Learning methods

Roadmap

Introduction

Data

Empirical Facts

Discussion

A Simple Theory

Conclusion

Q1: What are the non-wage compensations that firms use to attract workers?

Fact 1: Firms Provide "Common" Non-wage Compensations • chinese

insurance&fund; leisure; growth potential, bonus, environment, fringe benefits, ...

Q2: How do non-wage compensations affect wage?

Lasso Regression using V_{comp} : Top Features (Frequency > 1%) (lasso details)

	Top Positive			Top Negative			
	token	coef	freq	token	coeff	freq	
1	14th month pay	.331	.013	five insurance	301	.020	
2	large platform	.310	.016	commission	195	.022	
3	three meals	.263	.013	young	186	.012	
4	technology	.247	.025	easy	181	.014	
5	guru	.223	.024	training	174	.018	
6	flexibility	.149	.091	two-day weekend	154	.140	
7	options	.146	.043	promotion	138	.068	
8	shuttle	.144	.015	events	104	.010	
9	remuneration	.124	.015	holiday	093	.017	
10	six insurance & one fund	.121	.050	holidays	092	.046	
11	platform	.114	.046	provide	084	.012	
12	13th month pay	.114	.021	jobs	080	.097	
13	supplementary	.107	.011	achievements	077	.010	
14	stock	.099	.017	work system	076	.012	
15	salary	.099	.025	travel	073	.058	
16	good platform	.093	.010	entrepreneurship	069	.013	
17	listed company	.091	.023	five insurance & one fund	068	.261	
18	high salary	.074	.018	employees	066	.029	
19	products	.073	.012	time	063	.012	
20	lucrative	.069	.018	environment	062	.038	
21	shareholding	.069	.012	double pay	055	.032	
22	benefits	.068	.035	office	047	.018	
23	motivation	.063	.016	company	043	.050	
24	projects	.058	.030	wide	041	.012	
25	year-end bonus	.057	.042	snacks	041	.013	
26	team	.050	.108	growing	039	.025	

14/35

Fact 2a: Firm Non-wage Compensations Correlated With Job Attributes Lasso top features using V

▲ All V'_{comp}

Fact 2b: Compensations Explain Wage Differentials Through Linkage with (Both Job and) Firm Heterogeneity \bigcirc posted wage regression details

 $\ln w_{i,j,t} = \theta_i + \psi_j + \frac{\delta_i}{\delta_i} + \iota_t + \epsilon_i$

	With δ		Without δ	
	Comp.	Share	Comp.	Share
Var(In <i>W</i>)	.362	-	.362	-
$Var(\theta_i)$.158	.437	.163	.450
$Var(\psi_i)$.046	.128	.049	.136
$Var(\delta_i)$.002	.004		
$Var(\epsilon_i)$.097	.269	.098	.272
$2 \operatorname{Cov}(\theta_i, \psi_i)$.049	.137	.052	.142
$2 \operatorname{Cov}(\delta_i, \theta_i)$.006	.017		
$2 \operatorname{Cov}(\delta_i, \psi_i)$.003	.008		
$\operatorname{Corr}(\theta_i, \psi_i)$.289		.288	
$\operatorname{Corr}(\delta_i, \theta_i)$.193			
$\operatorname{Corr}(\delta_i, \psi_j)$.174			
Obs	3998840		3998840	
Firm	86165		86165	

Fact 2b: Compensations Explain Wage Differentials Through Linkage with (Both Job and) Firm Heterogeneity (posted wage regression details) Interpretation of the δ terms depends on how the amenity-wage relationship is modeled

	With	δ	Without δ		
	Comp.	Share	Comp.	Share	
Var(In <i>w</i>)	.362	-	.362	-	
$Var(\theta_i)$.158	.437	.163	.450	
$Var(\psi_i)$.046	.128	.049	.136	
$Var(\delta_i)$.002	.004			
$Var(\epsilon_i)$.097	.269	.098	.272	
$2 \operatorname{Cov}(\theta_i, \psi_i)$.049	.137	.052	.142	
$2 \operatorname{Cov}(\delta_i, \theta_i)$.006	.017			
$2 \operatorname{Cov}(\delta_i, \psi_i)$.003	.008			
$\operatorname{Corr}(\theta_i, \psi_i)$.289		.288		
$\operatorname{Corr}(\delta_i, \theta_i)$.193				
$\operatorname{Corr}(\delta_i, \psi_i)$.174				
Obs	3998840		3998840		
Firm	86165		86165		

Q3: How exactly firms & jobs vary in their compensation provision?

Gather Important Types and Check Occurrence

- We can take a direct look on if high/low wage firms or jobs are accompanied with low/high valued amenities
- We do this by selecting a set of major, well-defined, and economic important compensations from V_{comp} based on the frequency & Lasso coefficient
- We gather all relevant terms by checking proximate terms in the embedding space of a work-embedding model trained on the whole job texts
- We then examine how the occurrence ratio for each type differ across different firms & jobs

Fact 3: Systematic Differences in Compensation Provision Across Firms and Jobs (Interconductor States)

Q4: What if we test for compensating differential using hedonic regression?

Fact 4: Hedonic Regression Results are Mixed but in A Systematic Way

	(1)	(2)	(3)
Advanced Insurance	.117**	.087**	.014**
	(.001)	(.001)	(.001)
Backloading Wage	.054**	.030**	.010**
	(.001)	(.001)	(.001)
Stock Option	.114**	.058**	.087**
	(.001)	(.001)	(.001)
Coworker Quality	.140**	.059**	.024**
	(.001)	(.001)	(.001)
Work-Flexibility	.046**	.032**	.010**
	(.001)	(.001)	(.001)
Basic Insurance	062**	046**	025**
	(.000)	(.000)	(.000)
Training	057**	012**	003**
	(.001)	(.001)	(.001)
Work-Time	113**	081**	021**
	(.001)	(.000)	(.000)
Education FE	\checkmark	\checkmark	\checkmark
Experience FE	\checkmark	\checkmark	\checkmark
Year FE	\checkmark	\checkmark	\checkmark
C\comp		\checkmark	\checkmark
Firm FE			\checkmark
Adj. R ²	.506	.633	.738
No. Obs	3998840	3998840	3998840

Roadmap

Introduction

Data

Empirical Facts

Discussion

A Simple Theory

Conclusion

1. Most non-wage compensations in the labor market are common stuffs: insurance, work-time, extra pay, workplace, ...

 \rightarrow endogenous rather than exogenous variations in firm cost functions (& variations in worker preference?)

1. Most non-wage compensations in the labor market are common stuffs: insurance, work-time, extra pay, workplace, ...

 \rightarrow endogenous rather than exogenous variations in firm cost functions (& variations in worker preference?)

2. Non-wage compensations explain posted wage variance not via their own variations, but via their correlations with job/firm effects

 \rightarrow sorting is productivity-based; limited importance of compensating differential or co-determination with wage

1. Most non-wage compensations in the labor market are common stuffs: insurance, work-time, extra pay, workplace, ...

 \rightarrow endogenous rather than exogenous variations in firm cost functions (& variations in worker preference?)

Non-wage compensations explain posted wage variance not via their own variations, but via their correlations with job/firm effects

 → sorting is productivity-based; limited importance of compensating differential or

co-determination with wage

3. Firms in different jobs vary significantly in their compensation-provision patterns \rightarrow important mechanism of compensation provision linked with firm/worker quality

1. Most non-wage compensations in the labor market are common stuffs: insurance, work-time, extra pay, workplace, ...

 \rightarrow endogenous rather than exogenous variations in firm cost functions (& variations in worker preference?)

Non-wage compensations explain posted wage variance not via their own variations, but via their correlations with job/firm effects

 → sorting is productivity-based; limited importance of compensating differential or

co-determination with wage

- 3. Firms in different jobs vary significantly in their compensation-provision patterns → important mechanism of compensation provision linked with firm/worker quality
- 4. Hedonic regression shows systemically mixed results of compensating differential for compensations provided by diff firms in diff jobs
 - \rightarrow reason of the empirical failures linked with the provision patterns

The Phantom of Unobserved Worker Ability

- Yes, there still could be unobserved worker ability not-captured which cause bias in the estimation above (Rosen, 1986; Hwang et al., 1992)
The Phantom of Unobserved Worker Ability

- Yes, there still could be unobserved worker ability not-captured which cause bias in the estimation above (Rosen, 1986; Hwang et al., 1992)
- But would unobserved skill heterogeneity matter so much?
 - In our job vacancy data, the usually-unobserved job heterogeneity accounts for additional 5 percent of the posted wage variances
 - Unobserved job heterogeneity is typtically positively correlated with observed job heterogeneity

The Phantom of Unobserved Worker Ability

- Yes, there still could be unobserved worker ability not-captured which cause bias in the estimation above (Rosen, 1986; Hwang et al., 1992)
- But would unobserved skill heterogeneity matter so much?
 - In our job vacancy data, the usually-unobserved job heterogeneity accounts for additional 5 percent of the posted wage variances
 - Unobserved job heterogeneity is typtically positively correlated with observed job heterogeneity
- Perhaps compensation differential is not the sole or the major force?
 - The toughness of the omitted-variable problem indicates other dominant mechanism of compensating dispersion

Unobserved Worker Ability \rightarrow Compensation Inequality?

Can Existing Theories Explain Positive Wage-Amenity Relationship?

- Hwang et al. (1992); Mortensen (2005): income effect
- Hwang et al. (1998): firms with low amenity-providing cost use both better amenity and higher wage to attract workers

Can Existing Theories Explain Positive Wage-Amenity Relationship?

- Hwang et al. (1992); Mortensen (2005): income effect
- Hwang et al. (1998): firms with low amenity-providing cost use both better amenity and higher wage to attract workers
- Problem 1: income effect cannot explain why it is low-pay firms provide leisure but not high-pay firms (e.g. notorious 996 working culture in Chinese IT industry)
- Problem 2: amenity-producing cost cannot explain why it is high-pay firms provide many superior amenities like insurance or backloading wages
- Problem 3: sorting is purely from exogenous heterogenous amenity-producing costs (and/or heterogenous worker preference) or wage-queue tradeoff

Can Existing Theories Explain Positive Wage-Amenity Relationship?

- Hwang et al. (1992); Mortensen (2005): income effect
- Hwang et al. (1998): firms with low amenity-providing cost use both better amenity and higher wage to attract workers
- Problem 1: income effect cannot explain why it is low-pay firms provide leisure but not high-pay firms (e.g. notorious 996 working culture in Chinese IT industry)
- Problem 2: amenity-producing cost cannot explain why it is high-pay firms provide many superior amenities like insurance or backloading wages
- Problem 3: sorting is purely from exogenous heterogenous amenity-producing costs (and/or heterogenous worker preference) or wage-queue tradeoff
 - \rightarrow Our new model reconciles all these from a simple yet new angle

Roadmap

Introduction

Data

Empirical Facts

Discussion

A Simple Theory

Conclusion

Model Overview

- Workers: heterogeneous in productivity; homogenous in preference
- Firms: heterogeneous in productivity; homogenous in (dis)amenity prod func
- Firm-worker sorting is thus solely based on productivity
 - In the classic Rosen model, sorting purely on worker preference & firm cost
 - Reality is likely a mix and depends on demographics (Lentz et al., 2021)
 - We use O-Ring structure, so workers-sorting & only ex-post firm heterogeneity
- Key element: Non-wage compensations can be "(in)efficient"
 - Motivation: our observation; efficiency wage & its critiques; Dey and Flinn (2005)
 - Various micro-foundations: here the simplest way-"inducing effort"
 - Extra feature: the level of (in)efficiency depends on productivity sorting
 - We set one efficient amenity and one inefficient amenity for illustration

- A continuum of worker with heterogenous productivity $q \in [0, 1]$ and additively separable (quasi-linear) utility function $U(C, a, h) = C + \phi_a a \frac{h^{1+\phi_h}}{1+\phi_h}$
 - C is monetary consumption
 - $a \in \{0, 1\}$ is the indicator of a discrete amenity, e.g. insurance
 - h is a continuous disamenity, e.g. additional working hour

Model Setting: Firm

- Firms are ex-ante homogenous with O-Ring production function: $Y_j = AN_i^{1+\alpha} \prod_{i=1}^{N_j} q_i e(a, h)$
 - N is assumed to be fixed exogenously <a>Control Control Cont
 - Compensations are (in)efficient: $e(a, h) = 1 + \gamma_a a + \frac{h^{\gamma_h}}{\gamma_h}$

(microfoundations: e.g. less exogenous or endogenous exit(Hwang et al., 1998; Dey and Flinn, 2005); convexity in hour productivity (Goldin, 2014))

- Firm pay direct cost κ for a and compensate wage w for h

Competitive Equilibrium & Matching

- Competitive equilibrium in this economy is defined as an assignment of worker types to firms and a utility schedule, u(q) such that
 - Firms maximize their profits
 - Labor market clears
- Complementary production function & additively separable utility function ensure positive assortative matching (PAM) even under imperfect transferable utility \rightarrow each firm will employ workers with same q

Firms' Optimal Choices

- A firm chooses $\{q, a, h, w\}$ to maximize profit s.t. market utility schedule \triangleleft firm problem

-
$$\mathbf{a}^* = \begin{cases} 1, & \text{if } q \ge q_a \\ 0, & \text{if } q < q_a \end{cases}$$
, and $\underbrace{AN^{\alpha}q_a^N\gamma_a + \phi_a}_{\text{mb}} = \underbrace{\kappa}_{\text{mc}}$

- If a is not efficient, i.e. $\gamma_a = 0$, return back to the canonical compensating differential
- If unit cost is $q\kappa$, higher q firms are still more likely to provide a
- $h^* = (AN^{\alpha}q^N)^{\frac{1}{1+\phi_h-\gamma_h}}$ increases in q

- $h^*(q)$ will be fully compensated by w(q), thus provision cost ex-post depends on q

Market Wage market utility

- \rightarrow offsetting compensating differential
- $\frac{(\bar{A}q^N)^{1+\omega}}{(1+\omega)(1+\gamma_h)}$ is the efficiency gain from *h*; $\frac{(\bar{A}q^N)^{\omega}}{1+\gamma_h}$ is the compensation for *h* \rightarrow magnifying compensating differential

Model Implications 1. Compensating Differential

- 1.1 Compensating effects can be confounded with productivity effects
 - Esp. for the up-end labor market where (in)efficiency forces are strong
- 1.2 The result of an empirical test on compensating differential will depend on the targeted labor market
 - If focusing on low-end labor market (close to q_a or $q < q_a$ with imperfectly mandated policies) \rightarrow easy to find clear evidence
 - If focusing on board or high-end labor market (& with heterogeneous usage in efficiency compensation or imperfect matching) \rightarrow tests likely to fail

1.3 Available variations for wage-amenity packages can be limited conditional on worker

- Depends on exogenous heterogeneity v.s. endogenous heterogeneity
- Constrains on both low-end and high-end markets

 \rightarrow Field/choice experiments (WtP) or RCT-like experiments (exogenous variations) not necessarily capture the whole picture of how labor market works

Model Implications 2. Labor Market Inequality

- 2 Efficiency compensations can enlarge both utility dispersion & wage dispersion
 - Ignoring non-wage compensations can underestimate labor market inequality
 - Moreover those compensations per se can actually be the drivers of wage inequality
 - \rightarrow Increased sorting or better use of efficiency compensations increases wage inequality

Model Implications 3. Job Mobility & Choice

- 3.1 The set of non-wage compensations that can justify job moves to low wage-premium firms is likely limited to inefficient amenities
 - Work-time/effort is the most likely culprit for moving downgrade
- 3.2 Greater compensating than just "compensating differential"
 - A worker with a ϕ_h shock would suffer not only traditional compensation differential but also a worse matching & an inferior package of other compensations
 - Again, available choices for wage-amenities packages are limited
 - \rightarrow Potential implications for gender wage gap and etc.

Roadmap

Introduction

Data

Empirical Facts

Discussion

A Simple Theory

Conclusion

Take-Away Message

- 1. Think explicitly about non-wage compensations: insurance/fund, work-time, pay schemes, work environment, fringe benefits, ...
 - \rightarrow empirical focus & policy targets & intuition when back-out revealed preference
- 2. Different Firms in different jobs have distinct provision patterns \rightarrow compensating differential \neq provision inequality
- 3. (In)Efficiency compensations & productivity sorting reconciles empirical findings and generates important implications
 - ightarrow high-wage firms can also offer better compensations without wage discounts

Appendix

Future Plan/Possibility

- Model the posted compensation as a discrete choice of firms?
- Interact/Distinguish with the income effect?
- Allow for heterogeneous preference and multi-dimensional sorting?
- Allow for search frictions and mismatch?
- Bring the model implications to the data?
- Combine with worker self-reporting data?
- Test if the similar empirical facts in the Japanese Data?

Shortcomings & Some Reliefs (Back Intro) (Back Data

- Vacancy data may be selective or less representative
 - Vacancy data is incline to young and more educated workers, esp. here
 - Not all jobs on the internet or different post frequency than job composition

(Valid issue for all vacancy data; Extent is an empirical question; With dev and structural transform, more and more likely to become the dominant cases; help to consider the aging worker cases)

- Our wage measure incorporates variation in hours
 - One might worry that those efficient compensations are solely compensating more working hours

(Often additional pay for overtime hours; Variation is limited comparing to wage; Inequality is often considered on overall compensation level; Need to think hour and wage as a package)

Trends on Collected Vacancies

39/35

A Sample Vacancy Back Intro Back Data

Job Title iOS开发工程师 Wage 18k-22k 深圳 / 经验1年以下 / 本科及以上 / web前端 / 全駅 内容原用 A和及以上 / web前端 / 全駅 內容原用 Basic Job Info 字节跳动 2018-09-10 发布于位均网 Post Info	☆ waa 已下线 △ ③ ◎ Ø	□ 完善在线阔历
· 海· 项 阿 阳 / 小 2 社 / 成		
呈 1 回示 W () L + F 1 − 职位诱惑: 六险一金,弹性工作,免费三载,载补,租房补贴,带薪休假,扁平管理,言	Job Benefits 新空间、团队氛围好	Ind 学行第の Firm Info
取位描述: Job Descrip 职位策告: 1、负责了告选代政规及移动新产品的开发; 2、参与APP性能、体验优化发展重复信评估体系重设; 3、参与客户端基础组件及废积设计, 推进研发效率; 3、参与客户端基础组件及废积设计, 推进研发效率; 4、参与 hybrid 智慧搭載、插件、React Native 等动态技术调研。	tion and Reqirement	 デ 「加速報 ● 88 内容済讯規模頻 ビ D総及以上 2000人以上 G http://www.bytedance.co
FR位要求: 1、本科及以上学历、计量机相关专业: 2、热爱计算机科学和互取网技术、对移动产品有法厚兴趣; 3、扎实的数据结构如算法基础;精通至少一门编程语言。包括但不限于:OI Java; 4、熟悉:IOS平台原理,具备将产品逻辑抽象为技术方案的能力; 5、关注用户体验,能够形成把技术状化到用户体验改进上; 6、对结论长程序的声。最多良好分化、新述问题的物力。	bjective-C, Swift, C, C++,	
工作地址		
深圳 - 南山区 - 广东省深圳市南山区南海大道2163号来福士广场15层	Work Address 查看地图	

Sample Cleaning

- Drop vacancies with not full-time jobs, outlier wages, job descriptions less than 20 words, nonChinese content
- Drop vacancies in 2013
- Drop vacancies from firms with less than 10 posts and from all the locations that have less than 1000 vacancies
- Drop duplicated vacancies based on job descriptions and education and experience requirements
- Drop vacancies with occupations not in selected major occupations

Data: Occupation Classification • Back

- No ready-for-use occupation classification
- Match to a set of selected 6-digit occupations ("minor") in six 2-digit occupations ("major") in U.S. SOC 2018
- Key idea: an occupation is defined by a bundle of skills and tasks
- 1st step: for each occupation choose several exclusive keywords, and find the set of just-match vacancies as the "learning" sample
- 2nd step: use the "learning" group to train a Naive Bayes classifier based on the job titles and job descriptions
- 3rd step: apply the trained classifier to both the "unknown" sample and the "learning" sample confusion matrix

Data: Summary Statistics • Back

	Pooled		Major Occupation					
	-	Computer	Design_	Business_	Financial_	Sales	Admin	
			Media	Operations	Legal			
Vacancy #	3,999,005	1,330,001	561,236	1,162,404	214,661	452,771	277,932	
- share	1.00	.33	.14	.29	.05	.11	.07	
Avg # Words	108.91	104.26	103.05	115.60	110.69	120.31	95.09	
Wage (1k CNY):								
- Mean	13.64	17.38	10.68	14.19	11.95	10.21	6.32	
- SD	9.24	9.79	6.31	9.52	9.19	6.53	3.90	
Firm:								
- #	86,330	67,369	68,092	78,244	41,285	58,847	59,016	
 Avg Posts 	46.32	19.74	8.24	14.86	5.20	7.69	4.71	
 Median Posts 	20.0	9.0	4.0	6.0	2.0	3.0	2.0	
Firm Size (share):								
15	.03	.03	.05	.02	.02	.03	.03	
- 15-50	.18	.17	.25	.16	.15	.19	.20	
- 50-150	.23	.21	.26	.22	.22	.23	.26	
- 150-500	.21	.21	.21	.22	.23	.20	.23	
- 500-2000	.15	.16	.12	.16	.18	.15	.14	
- 2000+	.20	.23	.11	.22	.21	.19	.13	
Education (share):								
 Vocational College 	.33	.24	.38	.29	.27	.51	.52	
- Bachelor	.54	.66	.47	.61	.63	.22	.24	
- Master/Doctor	.01	.02	.00	.01	.03	.00	.00	
 Not Specified 	.12	.08	.15	.09	.07	.27	.23	
Experience (share):								
- 0	.22	.12	.21	.16	.25	.48	.50	
- 1-3	.37	.33	.48	.37	.36	.31	.38	
- 3-5	.31	.41	.25	.33	.26	.16	.10	
- 5-10	.11	.14	.05	.14	.13	.05	.03	

43/35

What Are The Non-Wage Compensations That Firms Post?

insurance&fund; leisure; growth potential, bonus, environment, fringe benefits, ...

Lasso Regression **Generation**

- Two purposes: (i) a first look of the wage-amenity relationship (ii) shrink features
- Run a Lasso regression of log posted wage $\ln w$ on an indicator matrix $\mathbf{C}_{comp} \in \mathbb{R}^{N \times |V_{comp}|}$
 - Use BIC to tune the Lasso penalization hyper-parameter lasso details
- It shrinks V_{comp} to a vocabulary subset V'_{comp} with only 800 features (and C_{comp} to C'_{comp})
- Inference & Robustness:
 - Coefficients are in general not interpretable due to multicollinearity & flexibility
 - Use subsampling to do inference, results are robust

 subsampling
- Conduct same Lasso regression for $\mathbf{C} \in \mathbb{R}^{N \times |V|}$, and inspect top features & changes

Lasso Regressions <a>Aback

- Lasso regression (L1 penalization):

$$\hat{\zeta} = \arg\min_{\zeta} \sum_{i=1}^{N} \left(\ln w_i - \sum_{k=1}^{K} c_{ik} \zeta_k \right)^2 + \lambda \sum_{k=1}^{K} |\zeta_k|$$

- BIC as the criterion to gauge the hyperparameter λ : min BIC $(\lambda) = \frac{\|\ln \mathbf{w} - \mathbf{C}_{\lambda\lambda}^{2}\|^{2}}{\sigma^{2}} + \hat{d}f_{\lambda}\log N$
- Inference via subsampling (10x10)

Lasso Regression using V: Top Features (Frequency > 1%) • Lasso Regression using V: Top Features (Frequency > 1%)

	Top Positive			Top Negative			
	token	coef	freq	token	coeff	freq	
1	14th month pay	.152	.014	freshmen	155	.018	
2	three meals	.143	.014	five insurance	136	.030	
3	large platform	.131	.019	graduates	128	.033	
4	master degree	.126	.015	vocational major	100	.036	
5	lead	.107	.041	two-day weekend09		.166	
6	c++	.092	.051	vocational college	094	.148	
7	algorithm	.082	.061	assistant	079	.011	
8	guru	.082	.028	customer service	075	.030	
9	famous	.079	.019	social insurance	073	.028	
10	machine learning	.077	.016	accounting	071	.019	
11	formation	.076	.013	accommodation	067	.016	
12	undergraduate	.074	.319	administration	067	.027	
13	overseas	.072	.026	commissioner	063	.011	
14	react	.072	.020	taobao	059	.015	
15	development	.071	.374	assistance	058	.164	
16	undergraduate	.066	.029	ps	056	.029	
17	high salary	.063	.028	ltd.	056	.012	
18	landing	.060	.067	installation	055	.020	
19	strategy	.057	.047	photoshop	052	.039	
20	live streaming	.056	.014	careful	050	.032	
21	listed company	.055	.027	hardworking	050	.032	
22	large scale	.055	.072	verification	048	.011	
23	responsibilities	.055	.048	human resources	047	.032	
24	shuttle	.054	.018	website	047	.090	
25	<u>finance</u>	.054	.070	any major	047	.020	
26	six insurance & one fund	.053	.055	humanization	046	.012	

Confidence Intervals on Lasso Coefficients via Subsampling

Compare Lasso Coefficients

Features

Posted-Wage Regression

- So the predictive power of non-wage compensations in part comes from their correlation with job skills/tasks; What about firms?
- Posted wage regression: ln $W_{i,j,t} = \theta_i + \psi_j + \delta_i + \iota_t + \epsilon_i$
 - $\theta_i \equiv X_i \beta$ (job/worker effect), $X_i = \{ EDU_i, EXP_i, \mathbf{c}'_{i, \setminus comp} \}$
 - ψ_j (firm fixed effect)
 - $\delta_i \equiv \mathbf{c}'_{i,\text{comp}} \gamma$ (compensation effect)
 - *ι*_t (year fixed effect)
 - In practice, further dimensional reduction on $\mathbf{c}'_{i,\text{comp}} \& \mathbf{c}'_{i,\text{comp}}$ using PLS
 - This posted wage regression does a similar job to the AKM framework (Zhu, 2022)
- Variance decomposition: var $(\ln w_i) =$

 $\operatorname{var}(\theta_{i}) + \operatorname{var}(\psi_{j}) + \operatorname{var}(\delta_{i}) + 2\operatorname{cov}(\theta_{i}, \psi_{j}) + 2\operatorname{cov}(\theta_{i}, \delta_{i}) + 2\operatorname{cov}(\psi_{j}, \delta_{i}) + \operatorname{var}(\epsilon_{i})$

Feature Clustering: Visualization • Back

Compensation Occurrence (More)

Hedonic Regression

	Pooled	Computer	Design_	Admin
			Media	
	(1)	(2)	(3)	(4)
Advanced Insurance	.014**	.016**	.009**	.002
	(.001)	(.001)	(.002)	(.003)
Backloading Wage	.010**	.013**	.022**	.011**
	(.001)	(.001)	(.002)	(.002)
Stock Option	.087**	.068**	.060**	.040**
	(.001)	(.001)	(.002)	(.003)
Coworker Quality	.024**	.016**	.005*	.008+
	(.001)	(.001)	(.002)	(.004)
Work-Flexibility	.010**	.007**	.009**	.005**
	(.001)	(.001)	(.001)	(.002)
Basic Insurance	025**	024**	017**	013**
	(.000)	(.001)	(.001)	(.001)
Training	003**	019**	003	.013**
	(.001)	(.001)	(.002)	(.002)
Work-Time	021**	018**	020**	022**
	(.000)	(.001)	(.001)	(.001)
Education FE	\checkmark	√	\checkmark	√
Experience FE	\checkmark	\checkmark	\checkmark	\checkmark
Year FE	\checkmark	\checkmark	\checkmark	\checkmark
Ξ ₂ ,,Ξ ₈	\checkmark	\checkmark	\checkmark	\checkmark
Firm FE	\checkmark	\checkmark	\checkmark	\checkmark
Adj. R ²	.738	.748	.730	.657
No. Obs	3998840	1325260	548808	260364
Firms' Problem

- Firm problem:
$$\max_{\substack{\{q_i\}_{i=1}^N, a, h, w(q)}} AN^{1+\alpha} \prod_{i=1}^N q_i e(a, h) - \sum_{i=1}^N w(q_i) - a\kappa N$$

s.t. $w(q) + \phi_a a - \frac{h^{1+\phi_h}}{1+\phi_h} \ge u(q) \quad \forall q \in \{q_i\}_{i=1}^N$

- Complementary production function & additively separable utility function ensure positive assortative matching (PAM) even under imperfect transferable utility \rightarrow a firm will employ workers with same q
- Rewrite the firm problem given equilibrium allocation: $\max_{q,a,h} AN^{1+\alpha}q^{N}(1+\gamma_{a}a+\frac{h^{\gamma_{h}}}{\gamma_{h}}) - N\left(u(q) - \phi_{a}a+\frac{h^{1+\phi_{h}}}{1+\phi_{h}}\right) - a\kappa N$ - FOCs: $\frac{AN^{1+\alpha}q^{N-1}e(a,h) = u'(q)}{AN^{\alpha}a^{N}h^{\gamma_{h}-1}} = h^{\phi_{h}}$

Market Utility Profile

$$- u(q) = \begin{cases} \frac{(\bar{A}q^N)^{1+\omega}}{(1+\omega)(1+\gamma_h)} + (1+\gamma_a)\bar{A}q^N + u_a, & \text{if } q \ge q_a \\ \frac{(\bar{A}q^N)^{1+\omega}}{(1+\omega)(1+\gamma_h)} + \bar{A}q^N + u_0, & \text{if } q < q_a \\ - & \text{where } \bar{A} \equiv AN^{\alpha}, \omega = \frac{1+\gamma_h}{1+\phi_h-\gamma_h}, u_0 = 0, \text{ and } u_a = \phi_a - \kappa. \end{cases}$$

If Firm Size Is Endogenous (Typical O-Ring Results)

- *N* is also a choice of the firm
- Additional FOC: $AN^{\alpha}q^{N}e(a, h)(1 + \alpha + N\ln(q)) = w + ac$
- Optimal choice on firm size: $N(q) = \frac{1+\alpha}{-\ln(q)}$
- Firm size increases in productivity q and is irrelevant to the choices of amenities
- All the relationships between productivity and amenity provision can be now directly translate to the firm size