Reverse Bayesianism: Revising Beliefs in Light of Unforeseen Events

Christoph Becker ${ }^{1}$ Tigran Melkonyan ${ }^{2}$ Eugenio Proto ${ }^{3}$ Andis Sofianos ${ }^{4}$ Stefan Trautmann ${ }^{1}$

${ }^{1}$ University of Heidelberg ${ }^{2}$ University of Alabama
${ }^{3}$ University of Glasgow, CEPR, IZA and CESIfo ${ }^{4}$ Durham University

EEA-ESEM Annual Meeting - Barcelona 2023

Unforeseen events and Bayesian updating

- Standard Bayesian paradigm is silent about how individuals react to unforeseen events
- But the universe frequently expands - observe something that was unforeseen/unforeseeable before
- Some examples: 9/11, Fall of Berlin Wall, Global pandemics

Unforeseen events and Bayesian updating

- Standard Bayesian paradigm is silent about how individuals react to unforeseen events
- But the universe frequently expands - observe something that was unforeseen/unforeseeable before
- Some examples: 9/11, Fall of Berlin Wall, Global pandemics

Reverse Bayesianism

- Karni and Viero (2013, 2015, 2017); Karni et al. (2020):
- The construction of the new universe maintains consistency with the old structure
- Probability is shifted away from known outcomes proportionally \Rightarrow Keep ratios of previous estimates constant
- Intuitively simple and directly amenable to testing
- But adhering to rev. Bayesianism can be cognitively demanding \& hindsight bias

Main Hypotheses Tested

H1. Participants update their beliefs according to reverse Bayesianism. That is, for any $\hat{p}_{i}^{0}, \hat{p}_{i}^{u}$ and any outcomes $i, i^{\prime} \in C_{0}^{F}$:

$$
\frac{\hat{p}_{i}^{o}}{\hat{p}_{i^{\prime}}^{o}}=\frac{\hat{p}_{i}^{u}}{\hat{p}_{i^{\prime}}^{U}}
$$

H2. In treatments where unforeseen consequences are ruled out, the residual estimate: $\hat{p}_{x}=0$
H3. In treatments where unforeseen consequences are not ruled out, the residual estimate: $\hat{p}_{x}>0$
H4. Participants will not adjust their residual belief after an unforeseen event: $\hat{p}_{x}^{u}-\hat{p}_{x}^{o}=0$

Overview of both Experiments

Experiment 1

- Studies an "unforeseeable" event.
- Observe random draws from urn, then provide estimates.
- Elicits implicit residual probabilities.

Experiment 2

- Studies when individuals stop expecting new events.
- Explore urn sequentially, providing estimates after each draw.
- Elicits explicit residual probabilities.

Results Teaser:
We find evidence supporting reverse Bayesianism in both experiments.

General Design of Experiment 1

1. Observe 20 physical draws from a real urn

- Original urn: 24 balls worth 80 and 36 balls worth 190

General Design of Experiment 1

1. Observe 20 physical draws from a real urn

- Original urn: 24 balls worth 80 and 36 balls worth 190

2. After observing draws:

- Report probabilities: $\hat{p}_{80}^{o}, \hat{p}_{190}^{o}$ (Karni method Deatis)
- Do not need to add up to $1 \Longrightarrow \hat{p}_{x}^{o}=1-\hat{p}_{80}^{o}-\hat{p}_{190}^{o}$
- Report valuation of urn through: WTA ${ }^{\circ}$ (BDM Detals)

General Design of Experiment 1

1. Observe 20 physical draws from a real urn

- Original urn: 24 balls worth 80 and 36 balls worth 190

2. After observing draws:

- Report probabilities: $\hat{p}_{80}^{o}, \hat{p}_{190}^{o}$ (Karni method Details)
- Do not need to add up to $1 \Longrightarrow \hat{p}_{x}^{o}=1-\hat{p}_{80}^{o}-\hat{p}_{190}^{o}$
- Report valuation of urn through: WTA ${ }^{\circ}$ (BDM Detalls)

3. Previously hidden new urn is revealed and its content emptied into original urn \rightarrow Updated urn

- New urn: 15 balls either worth 15 or 375 (depending on condition)

General Design of Experiment 1

1. Observe 20 physical draws from a real urn

- Original urn: 24 balls worth 80 and 36 balls worth 190

2. After observing draws:

- Report probabilities: $\hat{p}_{80}^{o}, \hat{p}_{190}^{o}$ (Karni method Details)
- Do not need to add up to $1 \Longrightarrow \hat{p}_{x}^{o}=1-\hat{p}_{80}^{o}-\hat{p}_{190}^{o}$
- Report valuation of urn through: WTA ${ }^{\circ}$ (BDM Detalls)

3. Previously hidden new urn is revealed and its content emptied into original urn \rightarrow Updated urn

- New urn: 15 balls either worth 15 or 375 (depending on condition)

4. Participants now report: $\hat{p}_{80}^{u}, \hat{p}_{190}^{u}, \hat{p}_{S}^{u}$, and $W T A^{u}$ (Karni method \& BDM)

General Design of Experiment 1

1. Observe 20 physical draws from a real urn

- Original urn: 24 balls worth 80 and 36 balls worth 190

2. After observing draws:

- Report probabilities: $\hat{p}_{80}^{o}, \hat{p}_{190}^{o}$ (Karni method Deatis)
- Do not need to add up to $1 \Longrightarrow \hat{p}_{x}^{o}=1-\hat{p}_{80}^{o}-\hat{p}_{190}^{o}$
- Report valuation of urn through: WTA ${ }^{\circ}$ (BDM Detalls)

3. Previously hidden new urn is revealed and its content emptied into original urn \rightarrow Updated urn

- New urn: 15 balls either worth 15 or 375 (depending on condition)

4. Participants now report: $\hat{p}_{80}^{u}, \hat{p}_{190}^{\mu}, \hat{p}_{S}^{\mu}$, and WTA ${ }^{u}$ (Karni method \& BDM)

Two conditions: Information Surprise \& Payment Surprise

- Students from University of Heidelberg and KIT
- 344 participants in total
- The design was pre-registered at the AEA RCT Registry

Reverse Bayesianism

Histograms of the ratio changes before vs. after the urn is updated

$$
\Delta R=\frac{\hat{p}_{80}^{o}}{\hat{p}_{190}^{o}}-\frac{\hat{p}_{80}^{u}}{\hat{p}_{190}^{u}}
$$

Histogram in blue, box plot in orange, outliers (circles) and mean (diamond) in black.

- Participants consistent with rev. Bayesianism. © Staisitical Tests)
- Ratios remain constant, but individual estimates are updated.

Residuals

Results for H2 \& H3:

- $\hat{p}_{x}^{o}=0$ cannot be rejected in any treatment \Rightarrow People do not implicitly expect the unknown when this is reasonably unforeseeable.
- $\hat{p}_{x}^{u}=0$ rejected in the PS, low prize treatment.
- Support for H2, limited support for H3.

Results for H 4 :

- Overall, $\hat{p}_{x}^{u}-\hat{p}_{x}^{o}=0$ in most treatments.
- Some evidence of $\hat{p}_{x}^{u} \neq \hat{p}_{x}^{o}$ in (PS, low prize).
- In line with H4.

Overview of both Experiments

Experiment 1

- Studies an
"unforeseeable" event.
- Observe random draws from urn, then provide estimates.
- Elicits implicit residual probabilities.

Experiment 2

- Studies when individuals stop expecting new events.
- Explore urn sequentially, providing estimates after each draw.
- Elicits explicit residual probabilities.

Experiment 2 - Design

Participants draw 30 samples out of 4 different virtual urns containing different colours (100 marbles per urn).

- Draws and colours are randomized © Example streen
- After each draw (Karni method):
- State probability estimate for every observed outcome so far.
- State a probability estimate for the residual, \hat{p}_{x}.

	Task 1			Task 2	Task 3	Task 4
	Two colours	Four colours				
	Colour 1	55	40		53	75
Colour 2	45	28		35	25	48
Colour 3		20		12		28
Colour 4		12				12

- Students from Warwick Business School
- 174 participants in total
- The design was pre-registered at the AEA RCT Registry

Reverse Bayesianism

Histograms of ratio changes before vs. after the urn is updated
Third outcome: $\Delta R^{3}=\frac{\hat{p}_{H}^{U}}{\hat{p}_{L}^{L}}-\frac{\hat{p}_{H}^{O}}{\hat{p}_{L}^{O}}$
Fourth outcome: $\Delta R_{1}^{4}=\frac{\hat{\rho}_{H}^{u}}{\hat{\rho}_{M}^{H}}-\frac{\hat{\rho}_{H}^{o}}{\hat{\rho}_{M}^{O}} ; \Delta R_{2}^{4}=\frac{\hat{\rho}_{M}^{u}}{\hat{\rho}_{L}^{U}}-\frac{\hat{\rho}_{M}^{\circ}}{\hat{\rho}_{L}^{\circ}} ; \Delta R_{3}^{4}=\frac{\hat{\rho}_{H}^{u}}{\hat{\rho}_{L}^{L}}-\frac{\hat{\rho}_{H}^{o}}{\hat{\rho}_{L}^{O}}$

Histogram in blue, box plot in orange, outliers (circles) and mean (diamond) in black.

Again:

- Participants consistent with rev. Bayesianism.
- Ratios remain constant, but individual estimates are updated.

To what degree are participants Bayesian updaters?

- Unpacking bias (Tversky and Koehler, 1994; Sonnemann et al., 2013)

- Other graphs
- Unpacked estimate is significantly larger than the original residual ($p-$ values <0.001, both before and after correction)

Concluding remarks

- Predictions of Bayesian updating are typically systematically violated in experimental studies (Charness and Levin, 2005; Charness et al., 2007; Holt, 2009).
- We find that behaviour remarkably conforms with rev. Bayesianism
- Holds both for foreseeable and unforeseeable unknowns
- Holds whether participants did not expect further surprises (Experiment 1) or did (Experiment 2)
- Despite other biases in beliefs (unpacking of estimates after surprise)
- Additionally, we find that:
- Hope dominates fear when faced with the unknown Exidence
- Participants become complacent in their expectations of the unknown as they sample more © Evidence
- Planning new experimental sessions studying situations where a paradigm shift takes place, i.e., extent by which rev. Bayesianism still adhered to

Thanks for your attention

Karni (2009) Method

- Participants are asked to express a perceived likelihood or probability for a prize - in our case, proportion of prizes equal to value X within the urn
- This declared probability is compared to a random number between 0 and 1
- IF the random number is greater than the declared probability, participants receive a lottery paying X according to the true proportion of prize X within the urn
- Instead, IF the random number is less than the declared probability, participants receive a lottery paying X according to the random number probability
- Participants were told that declaring their true perception is in their best interest, if interested in more details they could click on a button explaining the above procedure

Standard BDM Method

Some details

- This method asks participants to state a minimum willingness to accept (WTA) for an item - in our context a lottery
- Their stated value is then compared to a random number
- IF stated WTA is greater than the random number, the participant does not sell the lottery and will thus be paid according to the realisation of the lottery
- Instead, IF stated WTA is less than or equal to the random number, the participant gets to sell the lottery for the value of the random number
- BDM method is said to be incentive compatible, i.e. aligns incentives for truthful reporting

Exp. 1 Design: Information Surprise (IS) Condition

1. Original urn:

- Participants told: "the urn contains two and only two prizes".
- Not told what these prizes or their relative proportions are.
- Not alerted on possible changes to composition of urn.

2. After reports on original urn:

- Hidden draw relating to $W T A^{\circ}$.

3. New \Rightarrow Updated urn:

- Draw one ball from new urn and told: "This urn contains only the prize you are (about to be) shown".

4. After reports on updated urn:

- Hidden draw relating to WTA ${ }^{u}$.

Exp. 1 Design: Payment Surprise (PS) Condition

1. Original urn:

- Participants told: "new balls representing different tokens to what you have been observing so far may be added to this urn".
- Not told about number of prizes in urn or anything about proportion of any prize.

2. New \Rightarrow Updated urn:

- Draw one ball from new urn and told: "This urn contains new prizes. One such prize is the one you see. The urn contains no prizes similar to what you have been observing as a result of random draws from the other urn".

3. After urn is updated:

- Hidden draw relating to $W T A^{\circ}$.

4. After reports on updated urn:

- Hidden draw relating to WTA ${ }^{u}$.

Contrasting IS with PS condition

- Our aim is to induce an unforeseeable event and study reactions to it
- For an event to be unforseeable it must:

1. be unannounced and/or ruled out
2. have immediate payment consequences

- Incorprorating both risks a design that would contain deception
- either by ruling out any new event and then enforcing a payment relevant surprise
- or by enforcing a payment relevant surprise without forewarning
- Hence, two conditions:

IS: New event unannounced, but not instantly payment-relevant PS: New event instantly payment-relevant, but forewarned

Reverse Bayesianism

$$
\Delta R=\frac{\hat{p}_{80}^{\circ}}{\hat{p}_{190}^{\circ}}-\frac{\hat{p}_{80}^{L}}{\hat{p}_{190}^{U}}=0
$$

		Obs	Avg ratio change	p-value	p-value (corr)	$95 \% \mathrm{Cl}$	Bayes factor
IS	low prize	75	0.007	0.375	1.000	$[-\mathbf{0 . 0 6}, 0.05]$	14.76
	high prize	75	-0.039	0.981	1.000	$[-0.06,0.14]$	6.57
PS	low prize	93	0.016	0.918	1.000	$[-\mathbf{0 . 0 6}, 0.03]$	9.72
	high prize	100	-0.007	0.011	0.043	$[-\mathbf{0 . 0 4}, \mathbf{0 . 0 5]}$	16.35

Wilcoxon signed-rank test, p -values corrected by Bonferroni-Holm procedure, confidence interval from one sample t -test, Bayes factor from JZS test.

		Increased	Decreased	Const ratio	p-value	p-value (corr)	Unchanged Est
IS	low prize	29	23	23	0.488	1.000	1
	high prize	31	32	12	1.000	1.000	1
PS	low prize	33	37	23	0.720	1.000	0
	high prize	29	61	10	0.001	0.004	4

[^0]
Participants consistent with rev. Bayesianism, supporting H1

Do estimates of known outcomes change?

Ratios remain constant, but individual estimates are updated

		Obs	Diff	p-value	p-value (corr)
IS, low prize	$\hat{p}_{80}^{u}-\hat{p}_{80}^{o}$	76	-0.101	0.000	0.000
	$\hat{p}_{190}^{u}-\hat{p}_{190}^{o}$	76	-0.130	0.000	0.000
IS, high prize	$\hat{p}_{80}^{u}-\hat{p}_{80}^{o}$	75	-0.102	0.000	0.000
	$\hat{p}_{190}^{u}-\hat{p}_{190}^{\circ}$	75	-0.125	0.000	0.000
PS, low prize	$\hat{p}_{800}^{u}-\hat{p}_{800}^{o}$	93	-0.100	0.000	0.000
	$\hat{p}_{190}^{u}-\hat{p}_{190}^{\circ}$	93	-0.136	0.000	0.000
PS, high prize	$\hat{p}_{800}^{u}-\hat{p}_{880}^{o}$	100	-0.075	0.000	0.000
	$\hat{p}_{190}^{u}-\hat{p}_{190}^{o}$	100	-0.108	0.000	0.000

Wilcoxon signed-rank test, p-values corrected by Bonferroni-Holm procedure.

Residuals different from zero

		$\hat{p}_{x}^{t}=0$	$\hat{p}_{x}^{t}>0$	$\hat{p}_{x}^{t}<0$	p-value	p-value (corr)
IS, original	low prize	74	1	1	0.993	1.000
	high prize	71	3	1	0.314	1.000
PS, original	low prize	92	0	1	0.317	1.000
	high prize	90	6	4	0.549	1.000
IS, updated	low prize	61	10	5	0.251	1.000
	high prize	65	7	3	0.228	1.000
PS, updated	low prize	74	16	3	0.004	0.028
	high prize	84	11	5	0.146	1.000

Wilcoxon signed-rank test, p-values corrected by Bonferroni-Holm procedure.

- $\hat{p}_{x}^{o}=0$ cannot be rejected in any treatment \Rightarrow People do not implicitly expect the unknown when this is reasonably unforeseeable
- $\hat{p}_{x}^{u}=0$ rejected in the PS, low prize treatment
- Support for H2, limited support for H3

Adjusting beliefs after an unforeseen event

$$
\Delta \hat{p}_{x}=\hat{p}_{x}^{u}-\hat{p}_{x}^{o}=0
$$

		$\Delta \hat{p}_{x}=0$	$\Delta \hat{p}_{x}>0$	$\Delta \hat{p}_{x}<0$	p-value	p-value (corr)
IS	low prize	60	11	5	0.173	0.692
	high prize	63	6	6	0.937	1.000
PS	low prize	73	17	3	0.002	0.009
	high prize	82	11	7	0.345	1.000

Wilcoxon signed-rank test, p-values corrected by Bonferroni-Holm procedure.

- Overall, support for H4
- Some evidence of $\hat{p}_{x}^{u} \neq \hat{p}_{x}^{o}$ in (PS, low prize)

Differences in urn valuations

Original urn: WTA $^{\boldsymbol{o}}$				
	IS	PS	Diff	p-value
Low prize	110.39	138.47	-28.08	0.008
High prize	110.48	134.81	-24.33	0.002

Wilcoxon signed-rank test.

Updated urn: WTA				
	IS	PS	Diff	p-value
Low prize	86.45	96.70	-10.25	0.074
High prize	153.53	178.25	-24.72	0.160
Wilcoxon signed-rank test.				

- WTA $(P S)>W T A(I S)$ in both prize conditions
- Hope seems to dominate fear
- Caveat: for more uncertain prospects, WTA leads to higher valuations (Trautmann et al., 2011; Trautmann and Schmidt, 2012)

Part 1

Please draw a sample from the box.

Sample draw: $\mathbf{3 0}$

maroon

Please indicate in the fields below, how many marbles of a samples color you think are in this box. Remember, the box has a total of 100 marbles.

Exp. 2: Reverse Bayesianism

Statistical tests

Third outcome: $\Delta R^{3}=\frac{\hat{\rho}_{H}^{U}}{\hat{p}_{L}^{H}}-\frac{\hat{p}_{H}^{o}}{\hat{\rho}_{L}^{\circ}}=0$

		Obs	Avg ratio change	p -value	p -value (corr)	$95 \% \mathrm{Cl}$	Bayes factor
Task 1	ΔR^{3}	85	-1.365	0.172	1.000	$[-0.10,0.29]$	5.32
	ΔR_{1}^{4}	84	-0.548	0.584	1.000	$[-0.79,0.22]$	4.44
	ΔR_{2}^{4}	84	-2.134	0.033	0.362	$[-1.27,0.04]$	1.58
	ΔR_{3}^{4}	84	-1.005	0.315	1.000	$[-0.52,0.33]$	7.52
Pooled	ΔR_{P}^{4}	252	-2.229	0.026	0.284	$[-0.64,-0.03]$	1.49
Task 2	ΔR^{3}	169	-2.632	0.008	0.093	$[-0.31,0.01]$	2.26
Task 4	ΔR^{3}	173	-0.648	0.517	1.000	$[-0.26,0.06]$	5.71
	ΔR_{1}^{4}	164	-0.048	0.962	1.000	$[-0.07,0.25]$	6.05
	ΔR_{2}^{4}	163	-0.067	0.946	1.000	$[-0.19,0.69]$	6.09
	ΔR_{3}^{4}	163	-0.148	0.883	1.000	$[-0.14,0.27]$	9.46
Pooled	ΔR_{P}^{4}	490	-0.203	0.839	1.000	$[-0.03,0.30]$	5.64

Wilcoxon signed-rank test, p-values corrected by Bonferroni-Holm procedure, confidence interval from one sample t-test,
Bayes factor from JZS test.

Participants consistent with rev. Bayesianism, supporting H1

Exp. 2: Reverse Bayesianism

 Statistical tests II| | | Increased | Decreased | Const ratio | p-value | p-value (corr) | Unchanged Est |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Task 1 | ΔR^{3} | 16 | 29 | 40 | 0.072 | 0.797 | 26 |
| | ΔR_{1}^{4} | 19 | 21 | 44 | 0.875 | 1.000 | 31 |
| | ΔR_{2}^{4} | 16 | 31 | 37 | 0.040 | 0.440 | 32 |
| | ΔR_{3}^{4} | 16 | 23 | 45 | 0.337 | 1.000 | 35 |
| Pooled | ΔR_{P}^{4} | 51 | 75 | 126 | 0.040 | 0.440 | 93 |
| Task 2 | ΔR^{3} | 35 | 59 | 75 | 0.017 | 0.189 | 46 |
| Task 4 | ΔR^{3} | 45 | 50 | 78 | 0.682 | 1.000 | 44 |
| | ΔR_{1}^{4} | 50 | 57 | 57 | 0.562 | 1.000 | 36 |
| | ΔR_{2}^{4} | 54 | 60 | 49 | 0.640 | 1.000 | 33 |
| | ΔR_{3}^{4} | 43 | 47 | 73 | 0.752 | 1.000 | 37 |
| Pooled | ΔR_{P}^{4} | 147 | 164 | 179 | 0.364 | 1.000 | 108 |

Matched pairs sign test, p-values corrected by Bonferroni-Holm procedure. 'Unchanged Est' denotes the subset of those
holding their ratios constant while not changing any of their estimates.

- Many keep estimates unchanged; possibly due to re-fill button
- Substantial share holds ratio constant, not trivial especially after fourth outcome

Do estimates of known outcomes change?

		Obs	Diff	p-value	p-value (corr)
Task 1, after third color	$\hat{p}_{H}^{U}-\hat{p}_{H}^{o}$	85	-0.06	0.000	0.000
	$\hat{p}_{L}^{L}-\hat{p}_{L}^{O}$	85	-0.04	0.000	0.000
Task 1, after fourth color	$\hat{p}_{H}^{U}-\hat{p}_{H}^{o}$	84	-0.04	0.000	0.000
	$\hat{p}_{M}^{u}-\hat{p}_{M}^{\circ}$	84	-0.02	0.000	0.005
	$\hat{p}_{L}^{u}-\hat{p}_{L}^{O}$	84	-0.02	0.000	0.000
Task 2, after third color	$\hat{p}_{H}^{L}-\hat{p}_{H}^{O}$	169	-0.07	0.000	0.000
	$\hat{p}_{L}^{U}-\hat{p}_{L}^{O}$	169	-0.05	0.000	0.000
Task 4, after third color	$\hat{p}_{H}^{L}-\hat{p}_{H}^{O}$	174	-0.07	0.000	0.000
	$\hat{p}_{L}^{u}-\hat{p}_{L}^{O}$	174	-0.07	0.000	0.000
Task 4, after fourth color	$\hat{p}_{H}^{L}-\hat{p}_{H}^{o}$	164	-0.05	0.000	0.000
	$\hat{p}_{M}^{L}-\hat{p}_{M}^{o}$	164	-0.03	0.000	0.000
	$\hat{p}_{L}^{u}-\hat{p}_{L}^{\circ}$	164	-0.03	0.000	0.000

Wilcoxon signed-rank test, p-values corrected by Bonferroni-Holm procedure.

Dynamics of Residuals

- No difference between treatments (Kolmogorov-Smirnov test, all
$p-$ values $>0.994)$.
- Pearson correlation coefficient between \# of samples and \hat{p}_{x} : $\rho<-0.311$
- Spearman correlation coefficient between \# of observed colours and $\hat{p}_{x}: \rho<-0.272$

To what degree are participants Bayesian updaters?

[^0]: Matched pairs sign test, p-values corrected by Bonferroni-Holm procedure. 'Unchanged Est.' denotes the subset of those holding their ratios constant while not changing any of their estimates.

