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Abstract

When inferring the causal effect of one variable on another from

correlational data, a common practice by professional researchers, and

to a lesser extent by lay decision makers, is to control for some set

of exogenous confounding variables. An inappropriate set of control

variables can lead to erroneous causal inferences. This paper presents

a model of decision makers who use long-run observational data to

learn the causal effect of their actions on a payoff-relevant outcome.

Different types of decision makers use different sets of control variables.

I obtain upper bounds on the equilibrium welfare loss due to wrong

causal inferences, for various families of data-generating processes.

The bounds depend on the structure of the type space. When types are

“vertically differentiated” in a certain sense, the equilibrium condition

greatly reduces the cost of wrong causal inference due to poor controls.
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1 Introduction

Learning causal effects from observational data is an important economic

activity. Indeed, applied economists do it for a living. However, even lay

decision makers regularly perform this activity to evaluate the consequences

of their actions. They obtain data about observed correlations among vari-

ables (via first- or second-hand experience, or from the media) and try to

extract causal lessons from the data. Which college degree will improve their

long-run economic prospects? Will wearing surgical masks on airplanes lower

their chances of catching a virus? Is coffee drinking good for one’s health?

There are two main differences between causal inference from observa-

tional data as practiced by professional researchers and lay decision makers.

First, the researcher employs sophisticated inference methods that are sub-

jected to stringent scrutiny by other professionals. In contrast, lay decision

makers use intuitive, elementary methods, and they do not face pushback

when they employ these methods inappropriately. The second difference is

that while the professional researcher is an outside observer, lay decision

makers interact with the economic system in question; the aggregate behav-

ior that results from their causal inferences can affect the very correlations

from which they draw their inferences. Thus, it is apt to refer to the kind of

causal inference that lay decision makers engage in as “behavioral”, in both

senses of the word.

This paper is an attempt to model “behavioral causal inference”. I study

a decision maker (DM) who faces a choice between two actions, denoted 0

and 1. The DM’s choice is based on his belief regarding the action’s causal

effect on a payoff-relevant outcome (which also takes the values 0 or 1).

Using an intuitive causal-inference method, the DM extracts this causal belief

from long-run correlational data about actions, outcomes and a collection of

exogenous variables. The data is generated by the behavior of other DMs

in similar situations. In equilibrium, the DMs’ behavior is consistent with

best-replying to their causal belief.

The intuitive method of causal inference that the DM in my model em-

ploys is very simple: Measuring the observed correlation between actions and
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outcomes, while controlling for some set of exogenous variables. This is a

basic and widespread procedure in scientific data analysis, but it is based on

a simple idea that lay people practice to some extent. For example, when an

agent decides whether to wear a surgical mask for protection against viral

infection, it is natural for him to look for infection statistics about people in

his own age group. Likewise, when a student choosing a college major tries to

evaluate future earnings by STEM and non-STEM graduates, it is natural for

him to focus on people who share his highschool math background. In both

cases, when the agent consults data to estimate the consequences of various

actions, he tries to focus on data points that share his own characteristics –

if he has access to such fine-grained data. This type of controlling consists

of conditioning on the realization of some exogenous variables.

Another type of controlling involves adjustment rather than conditioning.

For example, in the above-mentioned surgical-mask example, the agent may

have access to data about the prevalence of certain genes and their correlation

with viral infection. Even if he does not know his own relevant genetic

background, he can nevertheless adjust his beliefs according to the available

data about the correlation between this variable and others.

In general, suppose that long-run correlational data is given by some

joint probability distribution  over actions , outcomes , and a collection

of exogenous variables 1   . The DM is able to control for the variables

indexed by  ⊆ {1  }; he conditions on a subset  ⊆ , and adjusts for

the variables in  \ . The DM’s estimated causal effect of  on  is given

by the formulaX
\

(\ | ) [( = 1 |  = 1 )− ( = 1 |  = 0 )] (1)

When the set  of control variables differs from the set that a outside re-

searcher would deem appropriate, the DM’s causal inference can be wrong: he

may misread the causal meaning of observed correlations, and consequently

obtain a biased estimate of the causal effect of  on .

Erroneous causal inference due to “bad (exogenous) controls” may take

various forms, which are easy to illustrate with directed acyclic graphs (DAGs),
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following Pearl (2009). For instance, suppose that in reality,  has no causal

effect on  and that every observed correlation between these variables is due

to confounding by an exogenous variable . These objective causal relations

are represented by the DAG ← → . Given the observed joint distribu-

tion  over   , the proper measurement of the average causal effect of 

on  is given by the formulaX


()[( = 1 |  = 1 )− ( = 1 |  = 0 )]

This formula will correctly yield a null causal effect. If, however, the DM

fails to control for , he will regard ( = 1 |  = 1) − ( = 1 |  = 0) as
the causal effect of  on  – in other words, he will mistake correlation for

causation – and potentially measure an erroneous, non-zero effect.

Bad controls can also involve excessive controlling for exogenous variables.

The following example is taken from Cinelli et al. (2022). The true causal

model is given by the DAG  ← 1 → 2 ← 3 → . Thus, as in the

previous example, the objective causal effect of  on  is null because there

is no causal path from  to . However, in this case the quantity ( = 1 |
 = 1)− ( = 1 |  = 0) is a correct formula for the objective (null) causal
effect. In other words, there is no need to control for any of the  variables.

Suppose, however, that the DM adjusts for 2. Then, his estimated causal

effect will beX
2

(2)[( = 1 |  = 1 2)− ( = 1 |  = 0 2)]

In this case, the variable 2 is a bad control, and the DM’s estimate can end

up being non-null.

This paper poses the following question: What are the limits to the DM’s

errors of causal inference due to bad controls, when the data-generating

process  has to be consistent with equilibrium behavior – i.e., when the

DM’s choice of actions given his information maximizes his subjective ex-

pected payoff with respect to the belief he extracts from  using his causal-
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inference procedure?1

I study this question with a simple model, in which a DM chooses an

action  ∈ {0 1} after a collection of exogenous variables  1   is real-
ized, where  ∈ {0 1} is the DM’s preference type. The DM’s vNM utility

function is (  ) =  −  · 1[ 6= ]. Thus, the DM will only choose  6= 

if he thinks that  has a beneficial causal effect on . In the baseline model,

I assume that the objective causal effect of  on  is null:  is determined

only by the exogenous variables according to some conditional probability

distribution (I relax this assumption in Section 5).

The DM’s control variables are given by a “data type” (drawn indepen-

dently from some given set  , which is defined by a distinct pair () as

described above, leading to an estimated causal effect of  on  (given )

as described by (1). The formula is evaluated according to a joint distrib-

ution over all variables. The DM observes the realization of , but he has

no long-run data about  and therefore does not use it for causal estimates.

In equilibrium, the distribution of  conditional on the exogenous variables

is consistent with each DM type best-replying to his causal belief. Section

6 explains how this solution concept can be recast in earlier frameworks of

equilibrium modeling with non-rational expectations, due to Jehiel (2005),

Spiegler (2016,2020) and Esponda and Pouzo (2016).

The basic insight of this paper is that this equilibrium condition can re-

strict the magnitude of the DM’s welfare loss due to errors of causal inference.

These errors consist of misreading the causal component of observed correla-

tional patterns. Agents’ response to their beliefs change these very patterns,

and hence the causal effects they deduce from them.

Example 1.1

The previous pair of examples of “bad controls” offer an extreme illustration

of this insight. Suppose that  = 0 with certainty – i.e., there are no

preference shocks. In the first example, the single exogenous variable  which

causes  is also the sole direct cause of . For the latter causal relation to be

1Eliaz et al. (2021a) perform worst-case analysis of estimated correlations due to causal

misperceptions. Spiegler (2022) presents an example of how equilibrium forces can restrict

the cost of committing a reverse-causality misperception.
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non-null, however, it must be the case that some DM data types condition

their action on . Since these same types control for , they correctly measure

the null objective causal effect of  on . Since  = 0 for sure, these types will

play  = 0 with certainty. By definition, the same lack of variation of  with

 extends to the types who cannot condition their action on . It follows

that no DM type will vary his action with , which destroys the confounding

effect of , and therefore any causal error due to failure to control for . This

means that in equilibrium, the DM will not incur any welfare loss due to

poor causal inference.

The same reasoning applies to the second example, which involves three

exogenous  variables. If a DM data type conditions on 1, his causal infer-

ence is sound and therefore his action is constant (since there are no prefer-

ence shocks); whereas if he does not condition on 1, his behavior is inde-

pendent of 1 by definition. Since no DM type varies his behavior with 1,

the link ← 1 that makes 2 a “bad control” is effectively severed. ¤

The main results in this paper – presented in Sections 3 and 4 – explore

the generality of this observation. I examine various families of joint distri-

butions over  1   , and characterize the upper bound on the DM’s

equilibrium welfare loss relative to the expected payoff from the rational-

expectations strategy  ≡ . When  has no causal effect on , the welfare

loss is simply  · Pr( 6= ).

It turns out that a simple binary relation over the set of data types is

critical for this upper bound. Say that one type () dominates another

( 00) if  ⊇  0 – i.e., the former type controls for every variable the

latter type conditions on. When  is constant, the upper bound is 0 when the

domination relation over  is complete and quasitransitive, and  when it is

not.2 Thus, when data types are ordered in a particular sense, the equilibrium

condition eliminates all welfare loss due to causal errors. Conversely, when

data types are not “ordered”, the upper bound on the DM’s welfare loss

is the same as when we do not impose any restriction on the conditional

2A binary relation is quasitransitive if its asymmetric part is transitive (following Sen

(1969)).
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action distribution. The former case fits situations in which DM types are

“vertically differentiated”, (roughly) in the sense that some types control for

more variables than others. The latter case fits “horizontal” differentiation,

in the sense that different types control for different variables.

I obtain partial characterization results when there is variation in .

Specifically, I assume that  =  for all data types, and that  is the sole

direct cause of . When the domination relation is complete (and there-

fore transitive), the upper bound on the DM’s equilibrium welfare loss is

Pr( = 1) · Pr( = 0). When the relation is incomplete, the upper bound

is max{Pr( = 1)Pr( = 0)}. When we relax all restrictions on the set
of data types or the data-generating process, the upper bound is 1. Once

again, whether data types are “vertically” or “horizontally” differentiated

plays a key role in how equilibrium forces constrain the cost of flawed causal

inference.

2 A Model

Let ,  and  be three variables that take values in {0 1}, where:  is

an action that a decision maker (DM) chooses;  is an outcome; and  is

the DM’s preference type. Let  = (1  ) be a collection of additional

exogenous variables that are realized jointly with , prior to the realization

of  and . Let  = {0 1} denote the set of values that  can take. Let 

be the set of values that the variable  can take. For every  ⊂ {1 },
denote  = ()∈ and  = ×∈.

I assume that  and  are the sole potential causes of  – i.e.,  has no

causal effect on . This assumption is made for expositional clarity; I will

relax it in Section 5.

The DM is a subjective expected utility maximizer, whose vNM utility

function is

(  ) =  −  · 1[ 6= ]

where  ∈ (0 1) is a constant. Thus, the DM has an intrinsic motive to match

his action to his preference type; he will choose  6=  only if he believes that
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this increases the probability of the outcome  = 1. If the DM understood

that  has no causal effect on , he would always choose  = .

There is a set  = {1  } of DM data types. Each type  ∈  is

associated with a distinct pair (), where  ⊆  ⊆ {1  }. The
interpretation is that  defines the set of  variables that type  can condition

on because he observes their realization before taking an action; and  is

the set of exogenous variables about which he has long-run data (note that

 is never among these variables). We say that type  is  if  = 

– i.e., the DM only has long-run data about the variables he conditions on.

Let  ∈ ∆() be a prior distribution over data types, which is independent

of all other variables (this independence assumption is immaterial for the

results in Section 3 but plays a role in Section 4). A strategy for type ( ) is

a function  :  → ∆(). By definition, this strategy is measurable with

respect to .

Let  be a joint probability distribution over    . I interpret  as a

steady-state or long-run distribution. Denote  = ( = 1). The assump-

tion that  has no causal effect on  means that  satisfies the conditional-

independence property  ⊥  | ( ).3 The distribution  can thus be factor-
ized as follows:

(   ) = ( )( |  )( |  )

where the term ( |  ) represents the DM’s average behavior across data
types:

( |  ) =
X
∈

( |  )

This term is endogenous, whereas ( ) and ( |  ) are exogenous.
I assume that a DM of data type  forms the following belief regarding

the causal effect of  on  given his observation of :

̃( | () ) =
X

\

(
| )( |  

) (2)

3Throughout the paper, I use the symbol ⊥ to denote statistical independence.
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The ̃ notation indicates that this is a subjective belief. The  notation

follows Pearl (2009). Its role here is merely to indicate that (2) is a causal

quantity, to be distinguished from purely probabilistic conditioning. The

DM’s attempt to evaluate the causal effect of  on  impels him to control

for every exogenous variable about which he has data. For some of these

variables (represented by ), he also learns their realization prior to taking

his action, and therefore he conditions on them. As to the other variables

(represented by \), the DM has data about their long-run correlation

with ,  and , yet he does not learn their realization prior to taking an

action, and therefore he adjusts his belief by summing over them.4

Data type ’s perceived causal effect of switching from  = 0 to  = 1

given  is

∆() = ̃( = 1 | ( = 1) )− ̃( = 1 | ( = 0) )

Plugging (2) into this definition, we obtain:

∆() =
X

\

(\ | )[( = 1 |  = 1 
)− ( = 1 |  = 0 

)]

(3)

This formula will serve us throughout this paper.

If the DM had long-run data about all exogenous variables (including ),

he could control for all of them, and thus correctly infer the action’s null

causal effect. In contrast, the DM in this model may end up believing that

 has a non-zero causal effect on  because he fails to control for all the

exogenous variables. In this case, he misinterprets part of the correlation

between  and  as a causal effect, whereas in reality this correlation is

entirely due to confounding by  .

The preceding paragraph may give the impression that the only case of

“bad controls” that the model captures is insufficient controls. However, note

4Formula (2) can also be interpreted in terms of standard subjective expected utility,

where the state space itself is subjective: 
is type ’s subjective state space and  is

his set of signals.
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that while controlling for all  + 1 exogenous variables is always correct, it

is possible that a strict subset of these variables is a sufficient set of controls.

In this case, controlling for additional variables may induce errors, as in the

example by Cinelli et al. (2022) described in the Introduction. The present

model allows for both insufficient and excessive controlling. However, the

model does not accommodate variables that are caused by  or  as possible

controls – it only focuses on so-called “pre-treatment” variables.

Definition 1 Let   0. A strategy profile  = (1  ) is an -equilibrium

if for every  = 1   and every   0, (0 |  )   only if

0 ∈ argmax


X
̃( | () )(  )

An equilibrium is a limit of a sequence of -equilibria for → 0.

The trembling-hand aspect of the equilibrium concept is required to en-

sure that all conditional probabilities it involves are well-defined. The exact

trembles do not play a role in the characterization results, with the exception

of Proposition 4.

The structure of  means that in equilibrium, type  will play  6=  with

positive probability at  only if

|∆()| ≥ 

Since  has no causal effect on , playing  6=  yields a welfare loss.

Definition 2 (Expected welfare loss) Given a strategy profile , the DM’s

expected welfare loss is


X


( )
X
∈

( 6=  |  ) (4)

My main task in the next sections will be to derive upper bounds on this

quantity when  is required to be an equilibrium. Without this equilibrium
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condition, the upper bound is 1. To see why, suppose that  = 0 with

certainty, and that  ∈ {0 1}. Assume  =  with probability one for every

, and consider the strategy  that prescribes  =  with probability one.

Then, by definition, the probability of error is one. And if  ≈ 1, this means
that the welfare loss is approximately 1.

However, the strategy  is inconsistent with equilibrium, for essentially

the same reason as in Example 1.1. For the DM to vary  with , he must

be able to condition on  – i.e.,  6= ∅. But this means the DM correctly

controls for  when estimating the causal effect of  on , which means that

he correctly estimates it to be zero, contradicting the assumption that he

plays  6=  for some realization of . It follows that the requirement that 

is an equilibrium strategy can have bite.

Comment: Why does  ⊆ ? The assumption that  ⊆  means that

if the DM conditions on a variable, he must have long-run data about it.

In principle, one can easily imagine situations in which agents know the

realization of a variable without having data about its long-run statistical

behavior. For instance, the DM may know his height but lack access the

statistics about how height is correlated with the outcome of interest. In the

absence of such data, the DM cannot make use of his height information, and

therefore, we might as well assume that he lacks it. This is the justification

for the assumption that  ⊆ . Note that the DM knows the realization of

, and he makes use of this information to calculate his utility, but this does

not require access to any long-run statistical data.

Comment: A “persuasion” interpretation. Worst-case analysis of the DM’s

welfare can be interpreted through the prism of the small literature on

persuading boundedly rational agents (e.g., Glazer and Rubinstein (2012),

Galperti (2019), Hagenbach and Koessler (2020), Schwartzstein and Sun-

deram (2021), Eliaz et al. (2021b), and De Barreda et al. (2022)). Under

this interpretation, the DM is the receiver who takes an action. The sender’s

objective is to maximize the probability that the receiver plays  6= . To-

ward this end, he designs two features of the receiver’s environment. The

conventional feature is a distribution over the receiver’s signals. The less
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conventional feature (but one that is closer in spirit to Eliaz et al. (2021b))

involves the long-run statistical data to which the receiver has access, accord-

ing to which he forms his beliefs. Worst-case analysis can thus be viewed as

finding the sender’s optimal data provision strategy.

3 Analysis: Homogenous Preferences

In this section I characterize the maximal welfare loss that is consistent with

equilibrium behavior, when there is no variation in the DM’s preferences.

Specifically, assume that  = 0 with probability one, such that the DM’s

expected welfare loss is simply  times the ex-ante probability that he plays

 = 1. I show that the upper bound on this probability depends on a simple

property of the set of data types.

In this environment of preference homogeneity, the only potential source

of variation in the DM’s behavior is the way the various types condition their

actions on . Therefore, for any set  of data types, there is an equilibrium

in which the DM plays  = 0 with probability one. To see why, construct the

following sequence of perturbations around this strategy: for every  ∈ (0 1
2
),

every data type  plays  = 1 with probability , independently of .

By construction,  ⊥  under this strategy profile, and therefore ∆() =

0 for every type , such that  = 0 is the type’s unique best-reply. The

question is whether there are additional equilibria, in which the DM commits

an error with positive probability, and how large this probability can get. The

following example serves to illustrate this problem.

Example 3.1

Let  = 2. The two exogenous variables 1 and 2 take values in {0 1}, and
their joint distribution satisfies:

(1 = 1) = (2 = 1) =  ∈ (0 1)
(2 = 1 | 1 = 1) = (1 = 1 | 2 = 1) =  ∈ [1

2
 1)

( = 1 | 1 2) = 12 for every 1 2.
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Let  = 2, 1 = 2 =
1
2
, where  =  = {}. That is, each type conditions

his action on a distinct aspect of  and fails to adjust for the other.

The following is an interpretation of this specification. A business ex-

ecutive chooses a strategy for a company whose environment is defined by

financial and technological factors (represented by 1 and 2). The company

is profitable if both factors are favorable. The executive’s decision is informed

by an analyst’s report. There are two types of analysts, who specialize in (and

therefore monitor) the technological and financial environments, respectively.

Suppose that each type  = 1 2 always plays  = . Let us examine

whether this strategy profile is an equilibrium. Begin by calculating type 1’s

subjective estimate of actions’ causal effect on profits, given his information.

First, observe that since  = 12 independently of ,

( = 1 |  1 = 1) = (2 = 1 |  1 = 1)
( = 1 |  1 = 0) = 0

for every . (Note that these quantities never involve conditioning on a zero-

probability event. For example, the combination  = 0 1 = 1 occurs when

2 = 0 and the DM is of type 2.) Therefore, we only need to calculate

the following conditional probabilities, which also make use of the DM’s

postulated strategy:

(2 = 1 |  = 1 1 = 1) = 

 + 1
2
(1− )

(2 = 1 |  = 0 1 = 1) = 0

It follows that

∆1(1 = 1) =


 + 1
2
(1− )

− 0 = 2

1 + 

Therefore, if 2(1+ )  , type 1 will prefer to play  = 1 when 1 = 1. In

addition, we established that ∆1(1 = 0) = 0− 0 = 0. Therefore, type 1 will
prefer to play  = 0 when 1 = 0. The same calculations apply to type 2.

It follows that as long as   (2 − ), the postulated strategy profile
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is an equilibrium. The equilibrium error probability (i.e., Pr( = 1)) is ,

which can be arbitrarily close to one – hence, the equilibrium welfare loss

can be as large as the non-equilibrium benchmark. Thus, unlike Example

1.1, here equilibrium forces do not “protect” DMs from their errors of causal

inference.

The intuition behind this result is that since type  conditions his action

on  yet fails to control for , each type creates a confounding effect that

“fools” the other type. For example, type 1 is vulnerable to interpreting the

residual correlation between  and  after controlling for 1 – which exists

because of type 2’s behavior – as a causal effect. Note that the result does

 necessitate correlation between 1 and 2. Indeed, even when  = 1
2
,

the above equilibrium can be sustained as long as   2
3
. The reason is that

although the DM types in this case condition their actions on independent

exogenous variables, their subjective causal estimates involve conditioning on

 (a variable that records the DM’s aggregate behavior). Since this variable

is a common consequence of 1 and 2, conditioning on it creates correlation

between otherwise independent variables.

The equilibrium welfare loss is non-monotone with respect to the data

types’ sets of control variables. For example, suppose that type 1 = {1}
and 2 = 2 = ∅ – i.e., type 2 now does not control for any variable.

By definition, he does not vary his action with , and therefore 2 is not a

confounding variable. This means that type 1 effectively controls for any po-

tential confounder, and therefore he will not commit any error in equilibrium.

¤

Examples 1.1 and 3.1 demonstrate that for some sets of data types, the

equilibrium welfare loss is zero, while for others, it can be as large as when

we do not impose any equilibrium restriction. The results in this section

generalize this lesson. They will make use of the following binary relation 

over data types.

Definition 3 For data types   ∈  ,  if  ⊇ .
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The meaning of  is that data type  controls for every variable that

type  conditions on. Since  ⊇  for every  ∈  ,  is reflexive. Let  ∗

be the asymmetric (strict) part of  – i.e.,  ∗ if  and  /. Following

Sen (1969),  is quasitransitive if  ∗ is transitive.

Lemma 1 Suppose a binary relation  over  is complete and quasitran-

sitive. Then,  can be partitioned into  classes, 1  , such that for

every  = 1  ,

 = { ∈ ∪ |  / ∗ for all  ∈ ∪}

Moreover, for every  ∈ ,  for all  ∈ ∪≥.

The lemma confirms that when  is complete and quasitransitive, it

partitions  into layers, such that the first (top) layer consists of all  ∗-

undominated types, the second layer consists of all  ∗-undominated types

outside the first layer, and so forth.

When all data types are  (i.e.,  =  for all  ∈ ), the structure

of  is simplified:  means  ⊃ , hence  is automatically asymmetric

and transitive.5 The relevant distinction in this case is thus between complete

and incomplete  . Furthermore, if  is complete, it is a linear ordering over

 .

The following results fully characterize the maximal equilibrium welfare

loss, as a function of  . The first result generalizes Example 1.1, whereas

the second result generalizes Example 3.1.

Proposition 1 Let  = 0. Suppose  is complete and quasitransitive. Then,

the DM’s expected welfare loss is zero in any equilibrium.

5Strict containment follows from our assumption that all data types are distinct. Thus,

when all types are simple,  6=  whenever  6= .
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Thus, when  = 0 and the binary relation  is complete and quasitransi-

tive – i.e., the data types are ordered in a certain sense – the equilibrium

requirement fully “protects” the DM from choice errors due to flawed causal

inference. It does so by shutting down the channels through which the choice

behavior of some types could confound the relation between other types’ ac-

tions and . Types in the top layer of the  -based partition effectively control

for all sources of correlation between  and . Even when a top-layer type

does not control for some exogenous variable, this does not matter because

no other type conditions on this variable, hence it generates no confounding

effect. As a result, top-layer types’ subjective best-replying implies that they

do not generate any variation in choice behavior. This means that types in

the next layer effectively control for all potential confounders – which would

not be the case if we did not impose the equilibrium condition on the behav-

ior of top-layer types. This equilibrium effect spreads through all layers of

the partition.

Proposition 2 Let  = 0. Suppose  violates completeness or quasitran-

sitivity. Then, for any   ∈ (0 1), there exist  and (( )) such that
Pr( = 1)   in some equilibrium. In particular, when  ≈ 1, the equilib-
rium welfare loss can be arbitrarily close to 1.

Thus, the upper bound on the DM’s equilibrium welfare loss due to wrong

causal inferences critically depends on whether the binary relation  is com-

plete and quasitransitive. When it is, the equilibrium behavior of some data

types cannot generate a variation that produces confounding patterns that

other data types misinterpret as causal. When it is not, the equilibrium be-

havior of different types can create such confounding patterns that mutually

sustain their causal-inference errors. In that case, the equilibrium assump-

tion does not constrain the maximal possible welfare loss due to these errors.

The proof is constructive, involving a more elaborate version of Example 3.1.

The distinction between the two cases can be described as a distinction

between “vertical” and “horizontal” differentiation among data types. This
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is especially palpable in the case of simple types, where the results hinge

on whether  ∗ is a linear ordering. When it is, the types’ sets of control

variables are ordered by set inclusion, and in this case the equilibrium welfare

loss is zero. When it is not, the difference between types is that they control

for different variables, and this “horizontal” differentiation enables them to

create mutually reinforcing confounding patterns.

4 Analysis: Heterogeneous Preferences

In this section I reintroduce preference heterogeneity, by assuming  ∈ (0 1).
Unlike the homoegenous-preference case, here I lack a complete characteriza-

tion of the maximal equilibrium welfare loss, and present a number of partial

results. In particular, I restrict attention to simple data types, as defined in

Section 2 – that is,  =  for every data type . Recall that in this case,

 is complete if and only if it is a linear ordering. Denote  = ( = 1 | ).
Without loss of generality, assume 1 ≥ 0.

Example 4.1

Suppose  ≡ . Let = 0 and  = 1– i.e., there is a unique data type, with

 = ∅. One interpretation for this setting is that  represents a student’s de-
cision whether to select a math-intensive major in college;  indicates whether

he likes math; and  represents his subsequent earnings. The student learns

the correlation between  and . He has no access to control variables, and

therefore ends up treating the correlation as causal. The assumption that

 ≡  means that fondness for math is perfectly correlated with math skills

that determine earnings, independently of the student’s decision.

I will now show establish uniqueness of equilibrium in this setting, and

characterize the DM’s expected equilibriumwelfare loss. The DM’s estimated

causal effect of  on  is

∆ = ( = 1 |  = 1)− ( = 1 |  = 0)

Denote  = ( = 1 | ). When the DM’s strategy is fully mixed,  ∈
(0 1) for every . By the DM’s preferences, 1 ≥ 0. Now obtain explicit
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expressions for the terms that define ∆:

( = 1 |  = 1) =  · 1 · 1 + (1− ) · 0 · 0
 · 1 + (1− ) · 0

( = 1 |  = 0) =  · (1− 1) · 1 + (1− ) · (1− 0) · 0
 · (1− 1) + (1− ) · (1− 0)

A simple calculation establishes that since 1 = 1  0 = 0 and 1 ≥ 0,

we must have ∆ ≥ 0. This in turn implies that 1 ≥ 1−  in -equilibrium,

because when  = 1, the DM perceives no conflict between his intrinsic taste

for  = 1 and the estimated effect of his choice on . Plugging the known

expressions for 1 and  and taking the → 0 limit, we obtain

∆ =


 + (1− ) · 0

If 0 ≤  in -equilibrium, then ∆ → 1 in the  → 0 limit. But then,

∆  , hence playing  = 1 at  = 0 is subjectively optimal, in contradiction

with 0 ≤ . It follows that 0  0 in equilibrium. There are two cases

to consider. First, suppose 0 ∈ (0 1). This requires ∆ =  (and therefore

  ), such that

0 =
(1− )

(1− )

Since the DM only commits an error in equilibrium when  = 0, his expected

equilibrium welfare loss is

 · (1− ) · 0 = (1− )  (1− )

By setting  ≈ , we can get arbitrarily close to the upper bound of (1−).
Second, suppose 0 = 1. This requires us to sustain this equilibrium with

suitable trembles. Specifically, suppose 1 = 1 − 2 and 0 = 1 − . As

 → 0, we obtain ( = 1 |  = 1) ≈  and ( = 1 |  = 1) ≈ 0. If   ,

this is consistent with equilibrium. The DM’s welfare loss in this equilibrium

is

 · (1− ) · 1  (1− )
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Again, by setting  ≈ , we can get arbitrarily close to this upper bound.

Thus, for any configuration of  and , there is a unique equilibrium in

this setting. The DM’s equilibrium welfare loss in this equilibrium is always

below (1− ). This bound can be approximated arbitrarily well by setting

 ≈ . The trembling-hand aspect of our equilibrium concept is not necessary

for the upper bound.

As in earlier examples, equilibrium forces in Example 4.1 “protect” the

DM against causal errors, by pushing his welfare loss below (1 − ) –

compared with the non-equilibrium benchmark of 1. The intuition is as

follows. The DM mistakes the correlation between  and  for a causal

effect. This correlation is large when  varies strongly with ; it hits the

maximal level when  always coincides with . However, that extreme case is

precisely when the DM commits no error. At the other extreme, if the DM

almost always plays  = 1 because his estimated causal effect of  on  is

above , the frequency of the DM’s error is maximal. However, since in this

case  varies little with , the estimated causal effect is smaller.

In general, a larger estimated causal effect goes hand in hand with a lower

equilibrium frequency of making a decision error. This is why equilibrium

behavior limits the DM’s expected welfare loss due to failure to control for

. ¤

Let us now turn to characterizations of the upper bound on the DM’s

equilibrium welfare loss, under certain restrictions on the data-generating

process. I begin by imposing the domain restriction that ( |  ) ≡ ( | )
– i.e.,  ⊥  | . This fits situations in which the DM’s preference type is
a sufficient statistic for determining the outcome; the  variables are only

potential correlates of this statistic. For instance, whether a student regards

studying as a costly or pleasurable activity is the cause of her school perfor-

mance. This attitude (which is not observable to others) may be correlated

with observable socioeconomic indicators, but these are only indirect causes

or mere proxies for the true cause.
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Proposition 3 Suppose all data types in  are simple and  is complete.

If  ⊥  | , then the DM’s expected welfare loss in equilibrium is at most

(1− ).

Example 4.1 established the tightness of this upper bound. This result

also means that across all distributions that satisfy  ⊥ ( ) | , the ex-
pected welfare loss is at most 1

4
– compared with the non-equilibrium upper

bound of 1. This is yet another demonstration of how the equilibrium condi-

tion can restrict the decision cost of faulty causal inferences. When  → 0,

this loss converges to zero.

As in the case of Proposition 1, the proof of Proposition 3 proceeds by

induction on the set of data types, starting with the type having the largest

set of control variables. Although this type controls for every  variable the

other data types condition on, this does not mean he is immune to neglecting

confounders, because he fails to control for the preference type . Further-

more, since this type varies his behavior with , he exerts a “confounding

externality” on the other data types, who do not control for every  variable

he conditions on. This makes the inductive proof considerably more intricate

than the proof of Proposition 1. A key argument in the proof is that while

the different data types may disagree on the magnitude of the causal effect of

 on , they all agree on its sign, which is always (1− 0). This feature

holds in any equilibrium when  is complete.

When completeness of  is relaxed, the tight upper bound on the DM’s

expected welfare loss when  ⊥  |  is significantly higher.

Proposition 4 Suppose all data types are simple and  is incomplete. If

 ⊥  | , then the DM’s expected welfare loss in equilibrium is at most

max( 1 − ). Moreover, this upper bound can be approximated arbitrarily

well, by appropriately selecting ,  and ((  | )), if we allow each  to

get at least three values.

This result carries the relevance of the distinction between complete and

incomplete  to the setting with preference heterogeneity. The gap between
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the upper bounds in the two cases ((1−) vs. max( 1−)) is significant.

To attain the upper bound given by Proposition 4, I use trembles and also

require exogenous  variables to take at least three values. Whether these

elements in the construction are indispensable is an open question. In addi-

tion, unlike the case of complete  , the sign of the DM’s estimated causal

effect need not be constant; indeed, this feature plays an important role in

the implementation of the upper bound.

The final result in this sub-section lifts all restrictions on ((  | ))
and  and shows that in this case, the gap between equilibrium and non-

equilibrium upper bounds on the DM’s welfare loss disappears.

Proposition 5 Suppose all data types are simple and  is incomplete. Then,

for every   ∈ (0 1), there exist  and ((  | )) for which there is an
equilibrium in which Pr( 6= ) = 1.

The results in this section leave three open problems. First, does the

upper bound of (1 − ) obtained for complete  in Proposition 3 extend

to distributions  that violate  ⊥  | ? Second, do the results extend to
general (non-simple) data types? Finally, how do results change when the

distribution over data types is allowed to be correlated with  and ?

5 Consequential Actions

So far, we focused on the extreme case in which the DM’s action has a null

objective causal effect on the outcome. This facilitated the definition of the

DM’s equilibrium welfare loss due to poor controls. In this section I extend

the analysis to situations in which actions do influence outcome.

Define a variable  that takes values in 0 and 1, such that the objective

causal model behind the joint distribution over      is given by the

DAG
( ) → 

↓ ↓
 → 
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That is,  and  are exogenous, as before. The action  is a consequence

of ( ), via the DM types’ strategies. The variable  is also a consequence

of ( ), independently of  (just as  was in the baseline model). The

outcome  is purely caused by  and , according to the following conditional

probability:

( = 1 |  ) = + (1− )

where  ∈ (0 1).
This formulation implies that for every type , the perceived outcome of

actions is given by

̃( = 1 | () ) = + (1− )̃( = 1 | () )

where the last term is defined just as in the baseline model:

̃( = 1 | () ) =
X


(
| )( = 1 |  

)

The type’s estimated causal effect of  on  given  is

∆
 () = ̃( = 1 | ( = 1) )− ̃( = 1 | ( = 0) )

Since  ⊥  | ( ), the equilibrium analysis of ∆
 () and how it relates to

the DM’s strategy is the same as the analysis of ∆() in the baseline model.

It follows that the only thing that needs adjustment is the definition of

the DM’s welfare loss. The optimal rational-expectations action maximizes

−  · 1[ 6= ]

because  has no causal effect on , such that the only effect of  on  is via

the direct channel parameterized by . Therefore, the expected welfare loss

given a joint distribution  is

 · ( = 0 |  = 1) · (+ ) + (1− ) · ( = 1 |  = 0) · (− ) (5)
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Note that in equilibrium, the DM chooses  = 0 at  = 1 and  only if

 +   −(1 − )∆
 (). Likewise, the DM chooses  = 1 at  = 0 and 

only if −  (1−)∆
 (). Consequently, by (5), the upper bounds on the

DM’s equilibrium welfare loss are the same as in Sections 3-4, multiplied by

1− .

An example: Partying during an epidemic

This paper performed worst-case analysis of the equilibrium welfare impli-

cations of using bad controls for causal inference. Nevertheless, in economic

applications we wish to restrict the objective process so that it can capture

an underlying economic reality, and typically this process will not implement

the worst case. I now present a simple example of such an application.

Suppose that  = 1 means that the DM chooses to socially distance

himself during an epidemic – specifically, avoiding parties. The outcome

 = 1 represents good health. Let  represent the DM’s age ( = 1 indicates

an old DM). Let  represent the DM’s intrinsic taste for partying:  = 1

means that the DM dislikes parties. Let   1
2
.

The objective distribution  satisfies: ( = 1) = 1
2
; ( =  | ) =  for

all , where  ∈ (1
2
 1); and ( = 1 |  ) = 1

2
(+ 1− ). This distribution

is consistent with the DAG
 ← 

↓ . ↓
 → 

That is,  is only caused by  and . When an old DM goes to parties, his

health outcome is bad with certainty; when a young DM avoids parties, his

health outcome is good with certainty; in all other cases, the DM’s health

outcome is equally like to be good or bad.

Data type 1 controls for . This type correctly estimates the causal health

effect of switching from  = 0 to  = 1 to be 1
2
. Since   1

2
, this DM data

type will rationally play  = 1, independently of  and .

Data type 2 does not control for  (recall that even if it is obviously nat-

ural to assume that the DM knows his age group, the DM may lack statistics

about the age dependence of the correlation between  and , and therefore
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cannot use the knowledge of his age). This DM chooses  to maximize

( = 1 | )−  · 1[ 6= ] =
1

2
[+ 1− ( = 1 | )]−  · 1[ 6= ]

Let us analyze equilibria in this example.

Claim 1 The rational-choice benchmark can be sustained in equilibrium.

To prove this claim, recall that data type 1’s strategy is 1( = 1 |  ) =
1 for all  . Denote 2( = 1 | ) = . Then,

( = 1 |  = 1) = 1 + 2[1 + (1− )0]

21 + 2[1 + 0]

( = 1 |  = 0) = 1− 1 − (1− )0

2− 1 − 0

First, let us guess

( = 1 |  = 1)− ( = 1 |  = 0)  1

2
− 

Then,  = 1 is optimal for data type 2 regardless of . In this case, we need to

consider perturbed strategies to ensure that ( = 1 |  = 0) is well-defined.
Since 0 and 1 are arbitrarily close to 1, we obtain ( = 1 |  = 1) ≈ 1

2
.

We can also set the perturbations such that ( = 1 |  = 0) = 1
2
. It follows

that it is always possible to sustain the guess in equilibrium, such that the

DM will commit no error.

Claim 2 Assume

 
1

2
− 2 − 1
1 + 1

(6)

Then, there is an equilibrium in which type 2 always plays  = .

To verify this claim, let us guess

( = 1 |  = 1)− ( = 1 |  = 0)  1

2
− 
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Then, data type 2 will play  ≡  in equilibrium. Plugging this into the

expressions for ( = 1 | ), we obtain

( = 1 |  = 1)− ( = 1 |  = 0) = 1 + 2

21 + 2
− (1− )

Condition (6) means that this expression exceeds 1
2
− , thus confirming that

the guess is consistent with equilibrium.

What sustains this equilibrium is the positive correlation between age and

preferences. Young DMs like going to parties more than old DMs, and since

the DM chooses according to his intrinsic taste with probability 2  0, there

is positive correlation between attending parties and young age. In turn, this

softens the negative correlation between  and , to an extent that makes it

optimal for type 2 DMs to follow their taste. The expected welfare loss in

this equilibrium is

1

2
· 2 · (1

2
− ) 

µ
 − 1

2

¶
2

2− 2

The R.H.S of this inequality represents the maximal welfare loss in this

setting. It increases with the fraction of type 2. There are two forces behind

this observation. First, higher 2 obviously means that there are more DMs in

the population who are prone to error. Second, type 1 DMs do not vary their

behavior with  or , thus curbing the overall positive correlation between

 and  that leads type 2 DMs to underestimate the health consequences of

social distancing. The latter force is a beneficial “equilibrium externality”

that the sophisticated DM type exerts on the naive type: A larger share of

sophisticates implies that naifs commit a smaller error. Put differently, if

public health authorities could somehow “educate” part of the population to

reason better about causality, this would have a “multiplier effect” thanks

to this equilibrium externality.

There is potentially a third equilibrium in which 1 = 1 and 0 ∈ (0 1),
such that

( = 1 |  = 1)− ( = 1 |  = 0) = 1

2
− 
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For brevity, I omit the full characterization of this equilibrium.

6 Relation to Other Solution Concepts

The model of behavioral causal inference presented in this paper poses a new

question. However, it can be formulated by adapting existing frameworks of

equilibrium modeling with non-rational expectations.

Jehiel’s (2005) concept of analogy-based expectations equilibrium cap-

tures the idea that players’ perception of other players’ strategies is coarse.

In the present context, we can regard  as the action taken by a fictitious

opponent of the DM after observing the history (  1  ). In this con-

text,  defines type ’s information set, whereas  defines type ’s “analogy

partition”. Two histories belong to the same partition cell if they share the

same value of 
. My definition of equilibrium is consistent with Jehiel’s

assumption that type  believes that the fictitious player’s strategy is mea-

surable with respect to type ’s analogy partition, and that the equilibrium

belief is consistent with the average objective behavior of  conditional on

each partition cell.

The model can also be cast in the Bayesian-network language of Spiegler

(2016). The objective distribution  in the baseline model (where  has no

causal effect on ) is consistent with the following DAG:

 ←  → 

- ↑ %


Using the DAG language, the distinction between data types in the present

model can be redefined in terms of subjective causal models. Specifically,

type  believes in a causal model that involving the variables on which he has

data, and is given by the following DAG:
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\ −→ 

↑ % ↑
 −→ 

According to Spiegler (2016), the subjective belief that this model generates

obeys the Bayesian-network factorization formula

()(\ | )( | )( |   
)

The DM’s conditional belief over  as a consequence of  given  is described

by (2). Equilibrium in the present model is consistent with the notion of

personal equilibrium in Spiegler (2016,2020) when the DM’s subjective causal

model is random.

The Bayesian-network framework in Spiegler (2016) can be subsumed

into the more general concept of Berk-Nash equilibrium due to Esponda and

Pouzo (2016). According to this concept, the DMbest-replies to a conditional

belief (over outcomes given actions and signals), which minimizes a weighted

version of Kullback-Leibler divergence with respect to the objective condi-

tional distribution. Proper adaptation of this concept to the present context

requires the weights to be given by the DM’s ex-ante equilibrium strategy.

The reason I chose to present the model in a new language is twofold.

First, this mode of exposition is relatively simple and self-contained, hence

easier to follow for readers who may not know the previous frameworks.

Second, by drawing a connection with the familiar notion of “bad controls”,

this paper will hopefully help inspiring new research about how everyday

decision makers perform causal inference.

7 Conclusion

When DMs draw causal inferences from observed correlations, they may com-

mit errors if they fail to control for an appropriate set of confounding vari-

ables. This paper examined a model of this error, when DM types differ

in their sets of control variables. The main theme of the paper was that
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since DMs’ causal inferences determine how they condition their actions on

their signals, and since this response in turn shapes the very correlations

from which DMs draw their inferences, equilibrium analysis is required to

evaluate the decision cost of erroneous causal inference due to poor controls.

The main general insight that emerged from this analysis was that the

upper bound on this decision cost depends on whether DM types are dif-

ferentiated “vertically” or “horizontally”. In the former case, types can be

partially ordered in some sense according to the size of their control vari-

ables. The equilibrium cost of bad controls is significantly lower than the

non-equilibrium benchmark, and sometimes it completely vanishes. In the

latter case, types control for different variables, which can give rise to mu-

tually reinforcing confounding patterns, such that the maximal equilibrium

decision cost is significantly higher than in the former case; sometimes it

coincides with the non-equilibrium benchmark.
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Appendix: Proofs

Lemma 1

By definition,  ∗ does not contain cycles. Hence, the set of data types  ∈ 

such that  /
∗
 for all  ∈  (i.e., the set of  ∗-undominated data types) is

non-empty. Define this set by 1. Since  is complete,  for every  ∈ 1

and every  ∈  . The other cells in the partition are defined inductively:

After 1   are removed from  , let +1 be the set of 
∗-undominated

types in the remaining set. Since none of the sets are empty, the procedure

terminates after at most  steps. ¥

Proposition 1

I will show that  = 0 with probability one in any equilibrium. The proof

is by induction with respect to the partition defined by Lemma 1. Consider

an arbitrary type  in the top layer 1. This type satisfies  ⊇  for

all  ∈  . Hence, there is no  variable outside  that  DM type

conditions his action on. Since  is constant, this means that  ⊥  | 

– i.e., ( = 1 |  
) = ( = 1 | 

). Formula (3) then implies that

∆() = 0. It follows that in equilibrium, type  plays  = 0 for all .

Suppose the claim holds for all types in the top  layers in the partition,

and now consider an arbitrary type  in the (+ 1)-th layer. By definition,

 ⊇  for every type  outside the top  layers of the partition. As to

types in the top  layers, by the inductive step these types play a constant

action  = 0 in any equilibrium – i.e., there is no variation in their action.

It follows that if  is consistent with equilibrium, then  ⊥  | 
. Formula

(3) then implies ∆() = 0. It follows that in equilibrium, type  plays  = 0

for all . ¥

Proposition 2

Suppose first that  is incomplete. Then, there exist two types, denoted

conveniently 1 and 2, such that 1 \2 and 2 \1 are non-empty. Select

two variables in 1 \ 2 and 2 \ 1, and denote them 1 and 2 as well,

respectively. Suppose that 1 = 2 =
1
2
. Construct  as follows. First, let

30



1 2 ∈ {0 1}, and

(1 = 1 2 = 1) = 1− 

(1 = 0 2 = 1) = (1 = 1 2 = 0) =


2

where   0 is arbitrarily small. Second, let ( = 1 | 1 2) = 12. Thus,

1 and 2 are the only  variables that determine , and so we can afford

to ignore all other  variables. Given this specification of  and ( ),

we can construct an equilibrium in which for each type  = 1 2,  = 

with probability one – exactly as in Example 3.1 – such that Pr( = 1) is

arbitrarily close to one.

Now suppose that  is complete but not quasitransitive. This means that

 ∗ must have a cycle of length 3– that is, we can find three types, denoted

1 2 3, such that 1 ∗2, 2 ∗3 and 3 ∗1 – that is, 1 ⊇ 2, 2 ⊇ 3 and

3 ⊇ 1. Since 
∗ is asymmetric by definition, this means that for each of the

three types  = 1 2 3, there is a distinct variable in {1  }, conveniently
denoted  as well, such that 1 ∈ 1\2, 2 ∈ 2\3 and 3 ∈ 3\1. Suppose

1 2 3  0 and 1 + 2 + 3 = 1. Let 1 2 3 ∈ {0 1}. Construct  as
follows: First,

(1 = 1 2 = 1 3 = 1) = 1− 

and

( = 0  =  = 1) =


3

for every  = 1 2 3 and   6= , where   0 is arbitrarily small. Second, let

( = 1 | 1 2 3) = 123. Thus, 1 2 3 are the only  variables that

determine , and so we can afford to ignore all other  variables. Suppose

each type  = 1 2 3 plays  =  with probability one. Using essentially the

same calculation as in the case of incomplete  , we can see that for every

 = 1 2 3, ∆( = 0) = 0, whereas ∆( = 1)→ 1 as → 0. Therefore, the

postulated strategy profile is an equilibrium. ¥

Proposition 3

The proof proceeds stepwise. Recall that since  is complete, it is a lin-
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ear ordering. For convenience, enumerate the types according to  – i.e.,

12 · · ·. For every  and every  ⊆ {1 }, denote () = ( = 1 |
) and () = ( = 1 | ).

Step 1: Deriving an expression for ∆()

Proof : Since  ⊥ ( ) | , we can write

( |  ) =
X


( |  

)( |   ) =

X


( |  )( | )

Plugging this in (3), we obtain

∆() = [( = 1 |  = 1 )− ( = 1 |  = 0 )][1 − 0] (7)

We have thus derived an expression for ∆(). ¤

Step 2: For every , ∆1() ≥ 0 and 1( = 1 |  = 1 1) = 1.
Proof : For every , the terms ( = 1 |  ) in (7) can be written as

()( |  = 1 )
()( |  = 1 ) + (1− ())( |  = 0 )

(8)

Consider the terms ( |  1) in (8). Note that

( |  1) =
X
−1

(−1 |  1)( |  1  −1 ) (9)

By definition, 1 ⊃  for every   1. This means that no data type 

conditions his actions on −1 . Therefore, (9) is equal to

X
=1

( |  )

By the DM’s preferences, ( = 1 |  = 1 ) ≥ ( = 1 |  = 0 )

in any equilibrium, for every  . It follows that ( = 1 |  = 1 1) ≥
( = 1 |  = 0 1) for every 1. A simple calculation then confirms that
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the expression (8) is weakly increasing in  for  = 1. Since 1 − 0 ≥ 0,

∆1() ≥ 0. ¤

Step 3: Extending Step 2 to all data types

Proof : The proof is by induction on  . Suppose that for every type  =

1 , ∆() ≥ 0 and ( = 1 |  = 1 ) = 1. Now consider type

 = + 1. We can write

( |  ) =
X
−

(− |  )
"X
≤

( |  ) +
X


( |  )
#

By the inductive step,

( = 1 |  = 1 ) = 1 ≥ ( = 1 |  = 0 )

for every  ≤ . By definition,  ⊆  for every   , hence ( |  )
is constant in −. Therefore,

( = 1 |  = 1 ) =
X
≤

 · 1 +
X


( |  = 1 )

We already observed that

( = 1 |  = 1 ) ≥ ( = 1 |  = 0 )

for every  . It follows that

( = 1 |  = 1 ) =
X
≤

 · 1 +
X


( |  = 1 )

≥
X
−

(− |  )
"X
≤

( |  = 0 ) +
X


( |  = 0 )
#

= ( = 1 |  = 0 )

As in the proof of Step 2, applying this inequality to (8) implies that∆() ≥
0 and ( = 1 |  = 1 ) = 1. This completes the inductive proof. ¤
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Interlude: Step 3 and Simpson’s paradox

Before turning to the next step in the proof, it may be helpful to pause and

discuss the significance of the proof of Step 3. In both Steps 2 and 3, the

key to proving that the DM’s estimated causal effect of  on  is always

non-negative is showing that ( = 1 |  = 1 ) ≥ ( = 1 |  = 0 )

for every  – i.e., that the DM’s average behavior conditional on  is

increasing in , for every  . In general, this need not be the case, despite

the fact that ( = 1 |  ) = P ( = 1 |  = 0 )  increasing in 

for every . The reason is that ( |  ) marginalizes ( = 1 |  ) over
− . The observation that monotonicity of conditional probabilities is not

always preserved under marginalization is known as Simpson’s paradox (see

Pearl (2009)). The challenge of the proof of Steps 2 and 3 is to ensure that

Simpson’s paradox is moot in the present context.

Step 4: An upper bound on the expected equilibrium welfare loss given 

Proof : We have established that in any equilibrium, all data types play  = 1

with probability one when  = 1. Therefore, they only commit an error if

they play  = 1 with positive probability when  = 0. Fix the realization of

. Let () be the lowest-indexed type  for which ( = 1 |  = 0 )  0.
Then, the DM’s expected welfare loss given  is

(1− ())

X
=()

( = 1 |  = 0 )

In order for type () to play  = 1 given  and  = 0, it must be the case

that  ≤ ∆()(). By Step 3, ( = 1 |  = 1 ) = 1 for all , hence

( = 1 |  = 1 ()) = 1. Plugging this identity into (7)-(8) and recalling
that 0 ≤ 1 − 0 ≤ 1, we obtain

∆()() ≤
(())

(()) + (1− (()))( = 1 |  = 0 ())

Since  ⊆  for every  for which ( = 1 |  = 0 )  0, it follows
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that none of these types  condition on −(). Therefore,

( = 1 |  = 0 ()) =
X

=()

( = 1 |  = 0 )

Denote this quantity by . This means that the DM’s expected welfare loss

given  is at most

(())

(()) + (1− (()))
· (1− ()) · 

This expression attains its maximal value when  = 1. Therefore, the fol-

lowing expression

(1− ())(()) = (1− ()) ·
X
0

(0 | 0() = ())(
0)

is an upper bound on the DM’s expected welfare loss given . ¤

Step 5: Deriving the upper bound on the DM’s ex-ante expected equilibrium

welfare loss

Proof : By Step 4, the ex-ante welfare loss is at mostX


()(1− ()) ·
X
0

(0 )(0) (10)

where (0 ) = (0 | 0() = ()). The coefficients (·) constitute a
system of convex combinations. Expression (10) is a concave function of

(()). By Jensen’s inequality, it attains a maximum when () =  for all

, such that the upper bound on the DM’s expected equilibrium welfare loss

is (1− ). ¥

Proposition 4

(i) Deriving the upper bound

Let  ≥ 1
2
, without loss of generality, such that max{ 1− } = . Suppose

there is an equilibrium in which the DM’s expected welfare loss exceeds .
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To reach a contradiction, the proof proceeds stepwise.

Step 1: Deriving a necessary condition

Proof : If the expected equilibrium welfare loss exceeds , then ( = 1 |  =
0)  0. Thus, there exist  and  such that ( = 1 |  = 0 )  0. Denote

∗
 = { | ( = 1 |  = 0 )  0}

Define

( ) =

( P
0|0


=

(0 | )( = 1 |  0) if ∗
 6= ∅

0 if ∗
 = ∅

Note that whether  ∈ ∗
 only depend on . Likewise, ( ) is effectively

a function of .

By the equilibrium condition, every  ∈ ∗
 must satisfy

( = 1 |  = 1 )− ( = 1 |  = 0 ) ≥ ( = 1 |  = 1 )
=

1( )

1( ) + (1− )0( )
≥ 

which can be written equivalently as

0( ) ≤ (1− )

(1− )
1( ) (11)

Summing ( ) over  yields

̄() =
X
∈∗

( | )( = 1 |  ) (12)

Performing this summation over  on both sides of (11) implies

̄0() ≤ (1− )

(1− )
̄1()

for every  for which ∗
 6= ∅. (Note that ̄() = 0 when 

∗
 = ∅.) It follows
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that a necessary condition for the welfare loss to exceed  is

max


̄0() ≤ (1− )

(1− )
max


̄1() (13)

Note that

( = 1 |  ) =
X

=1

( = 1 |  )

Using this observation and (12), we can reformulate (13) as follows. Every

 is assigned a subset of types () = { |  ∈ ∗
 }. The joint distribution

 over ( ) and the strategy profile  induce a distribution  over  , such

that

() = ({ |  ∈ ∗
 } = |  = 0)

Denote

∗ = 
X


( |  = 0  ∈ ∗
 )( = 1 |  = 0 )

Then, (13) can be rewritten as

max


X
 |∈

()
X
∈

∗ ≤
(1− )

(1− )
max


̄1() (14)

This inequality is a necessary condition for the equilibrium welfare loss to

exceed . ¤

Step 2: The following inequality holds:

max


X
 |∈

()
X
∈

∗ ≥
ÃX



()
X
∈

∗

!2
(15)

Proof :6 If we prove that

X
 |∈

()
X
∈

∗P
 

∗


≥
ÃX



()
X
∈

∗P
 

∗


!2
6This proof is due to Omer Tamuz.
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then this will immediately imply (15) because
P

 
∗
 ≤ 1. Therefore, we can

assume without loss of generality that
P

 
∗
 = 1. Moreover, I will prove a

more demanding inequality:

X


∗
X

 |∈
()

X
∈

∗ ≥
ÃX



()
X
∈

∗

!2
(16)

The L.H.S of this inequality can be written equivalently as

X


()
X
∈

∗
X
∈

∗ =
X


()

ÃX
∈

∗

!2

Denote

() =
X
∈

∗

We can regard () as a real-valued random variable whose distribution is

determined by the distribution . The expression

X


() (())
2 −

ÃX


()()

!2

is the variance of this random variable, which is non-negative by definition.

This proves (16), and consequently the result. ¤

Step 3: Reaching a contradiction

Denote

 = max


̄1()

By the definition of ̄1 given by (12),  is a lower bound on Pr( = 1 |  = 1).
Therefore,

Pr( = 1  = 0) ≤  − 

Furthermore, Pr( = 1 |  = 0) is by definitionX


Pr( |  = 0)Pr( = 1 |  = 0 ) =
X


()
X
∈

∗
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Applying Step 2, the DM’s expected equilibrium welfare loss is bounded from

above by

 ·
"
 −  + (1− )

s
(1− )

(1− )

#
which by assumption exceeds . Rewriting this inequality as

 ·
"
 −  +

r
(1− )(1− )



#
−   0

and regarding it as a quadratic function of
√
, we can check that this in-

equality has no solution whenever   1
5
, a contradiction. ¥

(ii) Implementing the upper bound

Since  is incomplete,  ≥ 2. Moreover, there exist two data types, 1 and
2, and two exogenous variables, conveniently denoted 1 and 2, such that

1 ∈ 1 \2 and 2 ∈ 2 \1. Suppose 1+2 = 1. Without loss of generality,

let  ≥ 1
2
, such that max{ 1−} = . Suppose that 1 2 ∈ {0 1#}, and

construct the following distribution over triples ( 1 2):

Pr  1 2

 1 1 1

2 0 1 0

2 0 0 1

1−  0 # #

 −  − 22 1 0 0

Suppose that  is constant over the other  variables, such that they can

be ignored. Complete the exogenous components of  by letting 1 = 1 and

0 = 0. Since there are no relevant  variables other than 1 and 2, we can

set without loss of generality 1 = {1} and 2 = {2}.
Let each type  play  =  with probability one whenever  ∈ {0 1}.7
7This involves some imprecision: The definition of -equilibrium requires the DM’s

strategy to be fully mixed. I chose to include no perturbation when  = 0 1 in order to

clarify the role of trembles when  = #. This imprecision can be fixed by introducing

trembles on the order of 2 when  = 0 1.
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In addition, suppose each type  plays  = 0 with probability 1 −  when

 = #, where  and  are arbitrarily small. Let us calculate the terms in

∆1(1 = 1):

( = 1 |  = 1 1 = 1) = 

 + 1
2
≈ 1

( = 1 |  = 0 1 = 1) = 0

such that ∆1(1 = 1) ≈ 1. Let us now calculate the terms in ∆1(1 = 0):

( = 1 |  = 1 1 = 0) = 0

( = 1 |  = 0 1 = 0) =  −  − 22
 −  − 22 + 1

2
≈ 1

such that ∆1(1 = 0) ≈ −1. It follows that ∆1(1 = 1)   and ∆1(1 =

0)  −, such that type 1 strictly prefers to play  =  for all  ∈ {0 1}.
This is consistent with the postulated strategy.

Finally, note that ( = 1 |  1 = #) = 0 for both  = 0 1, hence

∆1(1 = #) = 0. It is therefore optimal for type 1 to play  = 0when 1 = #.

Since he follows this prescription with probability 1 − , this completes the

confirmation that type 1’s behavior is consistent with -equilibrium. By sym-

metry, the same calculation holds for type 2. We have thus constructed an

-equilibrium in which the DM commits an error with probability arbitrarily

close to . Since  can be arbitrarily close to 1, this completes the proof. ¥

Proposition 5

Since  is incomplete,  ≥ 2. Moreover, there exist two data types, 1 and
2, and two exogenous variables, conveniently denoted 1 and 2, such that

1 ∈ 1 \ 2 and 2 ∈ 2 \ 1. Let 1 = 2 = 05. Construct a distribution

 over  1 2  given by the following table (suppose that  is constant

over the other  variables, such that they can be ignored), where   0 is
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arbitrarily small:

( 1 2 )  1 2 

1−  −  0 1 1 1

 −  1 0 0 1

 0 1 0 0

 1 0 1 0

Suppose data type  plays  ≡ . Let us calculate ∆1(1) for each 1.

First,

( = 1 |  = 1 1 = 1) = 1−  − 

1−  −  +  · 05 ≈ 1
( = 1 |  = 0 1 = 1) = 0

where the second equation holds because the combination of  = 0 and 1 = 1

occurs only when 2 = 0, in which case  = 0 with certainty.

Second,

( = 1 |  = 0 1 = 0) =  − 

 −  +  · 05
( = 1 |  = 1 1 = 0) = 0

where the second equation holds because the combination of  = 1 and 1 = 0

occurs only when 2 = 1, in which case  = 0 with certainty.

Plugging these terms into the definition of ∆1(1) yields ∆1(1 = 1) ≈
1 and ∆1(1 = 0) ≈ −1. The calculation for type 2 is identical due to
symmetry. Therefore, for every   1, we can set  such that each data

type  will indeed prefer to play  ≡ . Furthermore, for both types ,

 = 1−  with probability arbitrarily close to one. Therefore, the DM plays

 = 1 −  with arbitrarily high probability, such that the expected welfare

loss is arbitrarily close to one. ¥
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